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Abstract  

A flexible spine is capable of bearing both transverse and axial external loads. At the same time, 

it is observed in animals that the spine deforms substantially during their motion and this allows 

the body to move efficiently and achieve high speeds. This paper deals with the modeling and 

design of one-dimensional flexible objects for a desired load-carrying capability and axial 

deflection. The flexible one-dimensional object is modeled as a serial chain of rigid segments 

connected by one-degree-of-freedom rotary joints with torsional springs and dampers at the 

joints. For a desired transverse and axial loading, optimization techniques are used to obtain the 

values of the orientation of the rigid segments, the joint stiffness and damping, which gives the 

desired axial displacement and the shape. It is shown that changing the orientation or the shape 

of the one-dimensional structure has more effect than changing the stiffness at the joints. Various 

types of loading and axial deflections are considered and the optimization procedure is illustrated 

through numerical examples. The response of such a flexible structure to a transient periodic 

loading is also obtained. 
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1  Introduction 

 

Quadruped robots are one of the key topics of interest in the field of robotics. This is motivated by 

four-legged animals which can carry large loads on their back and also navigate through rough 

terrains which are inaccessible to wheeled mobile robots. Several such legged robots have been 

designed and built (for example, HyQ2Max (Semini et al., 2011), ANYmal (Hutter et al., 2016), 

Big-dog (Raibert et al., 2008)). They mimic the motion of quadruped animals. Most of these robots 

have a rigid central structure along its primary axis, which reduces the flexibility of their body. 

The lack of flexibility reduces maneuverability and stride length. Motivated by Nature, recently 

researchers have attempted to design an articulated spine for a quadruped robot and this has shown 

encouraging results, in terms of energy efficiency and average running speed (see, for example, 

the MIT Cheetah (Seok et al., 2013),  Bobcat (Khoramshahi et al., 2013)). These designs can be 

classified into two broad categories, namely, active actuated spine (Culha, 2012) and passive 

flexible spine (Cao & Poulakakis, 2013). In recent work, researchers (Lei, Yu, & Wang, 2016) 

have also studied a bionic flexible body for side-wise bending. 

The spine or the vertebrae column in an animal is a flexible multi-body structure with 

multiple degrees of freedom (DoF) at each joint. These joints are actuated and constrained by many 

muscles and tendons leading to a limited motion of the spine. A one-dimensional serial chain 

connected by more than three joints, moving in a plane, can be thought of as a hyper-redundant 

serial manipulator (Chirikjian & Burdick, 1994). If the end of such a hyper-redundant serial robot 

is given a desired displacement, then there exists an infinite number of solutions for the joint 

variables to achieve the end displacement. To find an unique solution, also called the resolution of 

redundancy (Conkur & Buckingham, 1997), there exists several approaches. All these approaches 

deal with position and/or velocity of the rigid segment and not with the response to an external 

loading. In the statics of serial manipulators or a hyper-redundant manipulator, the issue of 

redundancy does not arise. For a given external force and/or moment applied at the end-effector, 

the reaction torques or the applied torque at the joints can be obtained from the transpose of the 

manipulator’s Jacobian matrix (Ghosal, 2006). However, for a given prescribed end-effector 

motion together with external loading at the joints or at the end, the joint torques cannot be obtained 

uniquely for a hyper-redundant manipulator. This is beacuse the Jacobian depends on the 

configuration of the manipulator that is to be determined. 

The spine under external loading can be treated as a loaded multi-body serial manipulator 

with a constrained end-point motion. The equations of motion of a serial manipulator, redundant 

or otherwise, can be formulated and solved numerically. From this formulation, for a given torque 

at the joints, the motion of the links can be obtained and likewise the torque at the joints can be 

computed for a desired motion of the links. In our one-dimensional model, the muscles and tendons 

of the original spine are approximated by torsional springs rather than actuators. As none of the 

joints are active, with the introduction of torsional springs at the joints, the hyper redundant 

manipulator problem becomes a problem of an under-actuated system (Seifried, 2014). Obtaining 

the desired motion of an under-actuated serial robot and its shape, when subjected to transverse 

and axial loading, is much more difficult. In the case of a flexible spine, the model contains a large 

number of rigid segments to obtain realistic motion. As we do not introduce any actuators capable 

of directly controlling the states of the system, it can be described as an articulated passive system. 

The primary reason for this effort, when compared with a spine of a single rigid segment, is that 

the flexible central structure is known to be more energy efficient (Alexander, 1988). It also known 

to enable a higher average speed as compared to a rigid central frame. Work done by 
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Khormoashiha and Ijspeert (Khoramshahi et al., 2013) shows the benefits of an active spine. It is 

clear from this work that the larger the spine deflection, the better the average gait speed. 

Obtaining the shape of a flexible structure subjected to loading or an end-point 

displacement and or force is also dealt in the context of shape optimization in compliant 

mechanisms (see, for example, the work by Xu and Ananthasuresh(2003) and the references 

contained therein). In these studies, the flexible links are modeled as continuous beams and a finite 

element formulation is used to determine the shape of the structure against external loading and 

desired deflection. In reference Xu & Ananthasuresh (2003) the parameters of Bezier curve have 

been used as the design variables. A modified version of the work has been done by Zhou and Ting 

(2008) where they have used wide curves to take into account the vriable width-profile of the 

beams. In the case of the spine, the assumption of discrete rigid segments connected by joints is 

more reasonable and the motion of the rigid segments and the rotations at the joints can be large 

resulting in significant change in their orientation. 

In this paper, we focus on modeling and design of flexible spines that can bear transverse loads on 

its axis and also deform in a desired manner due to a load applied along the axial direction. We 

have used the equation of motion to study the motion of a serial chain of rigid segments 

connected by joints with torsional springs and damping at the joints. The theory developed is 

applicable to an arbitrary number of segments. We assume reasonable constraints on the angular 

motion at the joints. For a given transverse loading, the spring stiffness and link orientation at the 

joints are obtained by optimizing an appropriate objective functions related to the work done by 

the loads. Next, for a desired end-point motion, we use a modified objective function and 

techniques from structural optimization (Haftka & Gurdal, 2012) to obtain a design which is not 

only is capable of bearing transverse loads but also providing the desired end-point motion. 

Additionally, we attempt to design the flexible structure to give a desired time response by 

obtaining appropriate damping at the joints. The designs are obtained using a gradient-based 

optimization techniques. 

The paper is organized as follows: In Section 2, we briefly describe the modeling of the 

flexible one-dimensional spine as a serial chain manipulator, and then derive the equations of 

motion including the effect of the springs and dampers at the joints, external loads acting on the 

nodes and the axial force applied at the free end. In Section 3, we analyze the optimization problem 

for a serial chain with two links and present the necessity of using an optimization approach for a 

system with large number of links. In Section 4, we frame the optimization problems for the static 

deflection and the dynamic response. In Section 5, we describe the numerical methods used to 

solve the optimization problems and present numerical results for the static and dynamic cases. 

We are able to show that many of the structures obtained from optimization have similar features 

to that of the vertebrae of fast moving quadrupeds. In Section 6, we present the conclusions, 

limitations and scope for further work. 

 

2  Modeling of a multi-link flexible serial chain 

Modeling and analysis of animal spine has become a focus of many research efforts related to 

locomotion [ (Ijspeert et al., 2007), (Roos, et al., 2006)]. A realistic view of the vertebrae column 

would require each segment to have all six degrees-of-freedom (DoF) at each joint if the 

constraints due to the muscles and tendons are ignored (Christophy et al., 2013). However, this is 

computationally intensive. Furthermore, many of the DoFs in the 6-DoF model are unnecessary. 

To simplify our modeling, we consider the spine to be a multi-body serial manipulator with rigid 

segments and joints with some limits to the angle of rotations at the joints. We also assume that 
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the joints have torsional springs that offer resistance to the rotations at the joints. Figure 1 shows 

a 𝑁 link serial chain with one end fixed and the free end subjected to a horizontal force resulting 

in a desired end motion. The rotations at the joints, 𝜃𝑖, are with respect to a horizontal 𝑋 axis and 

hence are absolute rotations. Each joint has an associated lumped stiffness 𝐾𝑖  and a lumped 

damping 𝐶𝑖. At each joint, there is a loading along the negative 𝑌 axis denoted by 𝑃𝑌 which the 

structure must be capable of bearing in addition to the self-weight. The desired end motion is 

denoted by 𝛿𝑋 and this is due to a horizontal actuating force 𝑃𝑋 that can be arbitrary.   

 

   
Figure  1: An 𝑁 link constrained serial chain with axial and transverse loading 

  

2.1  Equilibrium equation and equations of motion 

 

The location of each joint (𝑋𝑖, 𝑌𝑖) is given by  

 𝑋𝑖 = ∑𝑖−1
𝑗=1 𝐿𝑗cos𝜃𝑗 ,    𝑌𝑖 = ∑𝑖−1

𝑗=1 𝐿𝑗sin𝜃𝑗  (1) 

The 𝑌  deflection of the end-point is assumed to be zero and hence there exists a constraint, 

denoted by Φ(𝜃), of the form  

 Φ(𝜃) = ∑𝑁
𝑖=1 𝐿𝑖sin𝜃𝑖 = 0 (2) 

Denoting the deflection at the 𝑖tℎ joint along 𝑋 and 𝑌 axes by Δ𝑋𝑖 and Δ𝑌𝑖, respectively and 

rotation by 𝛿𝜃𝑖, we can obtain the total potential energy as  

 𝑃𝐸 =
1

2
∑𝑁

𝑖=1 𝐾𝑖𝛿𝜃𝑖
2 − ∑𝑁+1

𝑖=1 𝑃𝑋,𝑖Δ𝑋𝑖 − ∑𝑁+1
𝑖=1 𝑃𝑌,𝑖Δ𝑌𝑖 − ∑𝑁

𝑘=1 𝑚𝑘𝑔𝑌𝑔𝑘 (3) 

where, 𝛿𝜃𝑖 = (𝜃𝑖 − 𝜃0,𝑖) − (𝜃𝑖−1 − 𝜃𝑖−1,0), 𝜃0,𝑖 is the original orientation of the 𝑖tℎ angle, 𝜃𝑖 is 

the deformed orientation of the 𝑖tℎ angle, 𝐾𝑖 is the torsional stiffness of the 𝑖tℎ joint, 𝐿𝑖 is the 

length of the 𝑖tℎ  link, 𝑃𝑋,𝑖 , 𝑃𝑌,𝑖  are the loads applied along 𝑋  and 𝑌  axis on the 𝑖tℎ  joint 

respectively, 𝑔 is acceleration due to gravity and 𝑌𝑔𝑘 is the position of the center of mass of the 

𝑘tℎ link with mass 𝑚𝑘. 

Associating a Lagrange multiplier 𝜆 with the constraint in equation (2), we can write the 

Lagrangian  

 ℒ = −𝑃𝐸 + 𝜆Φ(𝜃) (4) 

and we can generate 𝑁 + 1 equilibrium equations by taking partial derivative with respect to 

states 𝜃𝑖 and co-state 𝜆. We get,  

 𝐾𝑚𝛿𝜃 = 𝒫(𝜃) (5) 

where, 𝒫(𝜃) denotes the load vector generated due to loadings and constraints. 

For a dynamic system we use the Lagrangian (𝐾𝐸 − 𝑃𝐸) and Lagrange multiplier (Λ) with 

the constraint equation, to develop the equations of motion. Following the standard approach 

(Ghosal, 2006), the equations of motion can be written as  
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 𝑀𝐴(𝜃)𝛼̈ + 𝐶𝐴(𝜃, 𝜃̇)𝛼̇ + 𝐾𝐴𝛿𝛼 = 𝒫(𝜃, 𝑡) (6) 

where, 𝛼  is [𝜃, Λ]𝑇  with Λ denoting the Lagrange multiplier, 𝑀𝐴(𝜃) is the augmented mass 

matrix, 𝐶𝐴 is the matrix of Coriolis and damping terms, 𝒫 is the moment vector due to loadings 

and constraints. The above equilibrium equations and the equation of motion determine final states 

when a loading is applied. These equations will be considered as constraints for the optimization 

problems discussed in Section 4. 

3  Analysis of the multi-link system 

As mentioned earlier, the aim of this work is to design a flexible structure to withstand transverse 

loads and have a desired motion due to an axial load. To get an insight into the problem, we begin 

with a simple two-segment system as shown in Figure 2. For deriving the mathematical expression 

we consider the following conventions: 𝜃0,𝑖 is the unloaded orientation of the 𝑖𝑡ℎ link, 𝜃1,𝑖 is the 

orientation of the 𝑖𝑡ℎ link when only the vertical loading is applied, 𝜃2,𝑖 denotes the orientation 

of the 𝑖𝑡ℎ link when both vertical and horizontal loading is applied.  

 

 
(a) 

 

 
(b) 

 
(c) 

 

 

Figure 2: 2 link system with flexible node – fig (a): The unloaded structure expressed in general 

form, fig (b):2 link_Pa: Structure loaded by the passive loading, 𝑃𝑌, fig (b):2 link_Ac: Loaded 

structure with the horizontal force 𝑃𝑋   

Additionally, we remove the two springs at joint 1 and 3 and consider the two link system 

with only one torsional spring at the second joint with a spring stiffness denoted by 𝐾. The second 

joint is a also loaded with a vertical force 𝑃𝑌. It is prescribed that the system deflect by 𝛿 along 

𝑋-axis under the action of an actuating force 𝑃𝑋. The link lengths are assumed to be equal and 

hence,𝜃𝑗,1 = −𝜃𝑗,2 = 𝜃𝑗 . We wish to determine the undeformed angle 𝜃0 such that for the given 
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nodal stiffness, 𝐾, the end-point deflection due to the loading 𝑃𝑋 is 𝛿. 

The static equilibrium equation for the loading conditions is given by 

 4𝐾(𝜃1 − 𝜃0) = 𝑃𝑌𝐿cos𝜃1 (7) 

 4𝐾(𝜃2 − 𝜃0) = −2𝑃𝑋𝐿sin𝜃2 + 𝑃𝑌𝐿cos𝜃2. (8) 

The end-point deflection by 𝛿 can be expressed as 𝐿(cos𝜃2,1 − cos𝜃0,1) + 𝐿(cos𝜃2,2 − cos𝜃0,2) 

and since 𝜃2,1 = −𝜃2,2 = 𝜃2, we get  

 cos𝜃2 = cos𝜃0 +
𝛿

2𝐿
. (9) 

 For a given small 𝛿, equations (8) and (9) can be solved in closed-form to give 𝜃0 in terms of 𝐾 

as  

 𝜃0 =
1

2
[sin−1 (

2𝑃𝑋−
4𝐾𝛿

𝐿2

√𝑃𝑌
2+4𝑃𝑋

2
) − tan−1 (

2𝑃𝑋

𝑃𝑌
)] (10) 

 Likewise we can obtain an expression for 𝐾 in terms of 𝜃0 as  

 𝐾 =
𝐿

2𝛿
(2𝑃𝑋𝐿sin2𝜃0 − 𝑃𝑌𝐿sin𝜃0cos𝜃0 −

𝛿

2𝐿
[2𝑃𝑋𝐿cos𝜃0 + 𝑃𝑌𝐿sin𝜃0]) (11) 

For large 𝛿, closed-form expressions are not available and equations (8) and (9) need to be solved 

simultaneously using numerical techniques. 

The two equations (8) and (9) are in terms of three variables 𝜃0, 𝐾 and 𝛿 and there exists 

infinitely many solutions for these three variables for a given loading 𝑃𝑋 and 𝑃𝑌. This feature 

makes the problem amenable to optimization of an objective function and we use the minimization 

of the strain energy stored in the system to obtain an unique solution. We assume that the energy 

stored in the system is minimum under zero axial loading, i.e., when 𝑃𝑋 =0. We pose the 

optimization problem as follows.  

 

min
𝜃0,𝐾

𝒥 = 2𝐾(𝜃1 − 𝜃0)
2

Subject to cos𝜃2 = cos𝜃0 +
𝛿

2𝐿

 (12) 

where 𝜃1 is the deflected angle obtained from equation (8) under 𝑃𝑌 loading, 𝜃2 is the deflected 

angle obtained from equation (8) under loading 𝑃𝑋 and 𝜃0 is the undeformed angle. 

From the objective function 𝒥 = 2𝐾(𝜃1 − 𝜃0)
2, we can obtain  

 

 
𝜕𝒥

𝜕𝐾
= 2(𝜃1 − 𝜃0)

2 + 4𝐾(𝜃1 − 𝜃0)
𝜕𝜃1

𝜕𝐾
 (13) 

 
𝜕𝒥

𝜕𝜃0
= 4𝐾(𝜃1 − 𝜃0) (

𝜕𝜃1

𝜕𝜃0
− 1) (14) 

 

 From equation (7), we get  

 

 
𝜕𝜃1

𝜕𝐾
= −

4(𝜃1−𝜃0)

4𝐾+𝑃𝑌𝐿sin𝜃1
 , 

𝜕𝜃1

𝜕𝜃0
=

4𝐾

4𝐾+𝑃𝑌𝐿sin𝜃1
 (15) 

 and substituting the above in equation (13) we get 

 

 
𝜕𝒥

𝜕𝐾
= 2(𝜃1 − 𝜃0)

2 (1 −
2𝑃𝑌𝐿sin𝜃1

4𝐾+𝑃𝑌𝐿sin𝜃1
) 

 

 
𝜕𝒥

𝜕𝜃0
= 4𝐾(𝜃1 − 𝜃0) (

−𝑃𝑌𝐿sin𝜃1

4𝐾+𝑃𝑌𝐿sin𝜃1
) (16) 

 and finally we can find the ratio of the percentage change in 𝒥 with respect to 𝐾 and 𝜃0 as  
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 𝑅 =
2𝐾

cot𝜃1+2(𝜃1−𝜃0)
 (17) 

Since 𝐾 >> 1 and as long as 𝜃1  is not close to zero, 𝑅 is greater than 1. From this we can 

conclude that the objective function is more sensitive to change in 𝜃0 in comparison to change in 

𝐾 and change in shape is preferred to change in stiffness. The negative sign implies than increase 

in 𝐾  decreases 𝜃1 . The preference of shape over stiffness was also seen in the numerical 

simulations when there are large numbers of rigid segments. We also use this observation to define 

a scaling 𝐶𝐾 for the general multi-link case discussed later. 

The constrained Lagrangian can be written as  

 

 ℒ = 𝒥 + 𝜆1 (cos𝜃2 − cos𝜃0 −
𝛿

2𝐿
). (18) 

 

where 𝜆1 is the Lagrange multiplier. The gradients with respect to the design variables can be 

written as  

 

 
𝜕ℒ

𝜕𝐾
= 2(𝜃1 − 𝜃0)

2 + 4𝐾(𝜃1 − 𝜃0)
𝜕𝜃1

𝜕𝐾
− Λ1sin𝜃2

𝜕𝜃2

𝜕𝐾
 (19) 

 
𝜕ℒ

𝜕𝜃0
= 4𝐾(𝜃1 − 𝜃0) (

𝜕𝜃1

𝜕𝜃0
− 1) + Λ1 (−sin𝜃2

𝜕𝜃2

𝜕𝜃0
+ sin𝜃0) (20) 

 

where the derivatives are obtained from equation (8) under different loading conditions. 

As (𝜃1 − 𝜃0)  in very small hence (𝜃1 − 𝜃0)
2  is less than (𝜃1 − 𝜃0) . Also, 1 ≤ 𝐾 , 

making 4𝐾(𝜃1 − 𝜃0) ≥ 2(𝜃1 − 𝜃0)
2. From this it can be said that 

𝜕ℒ

𝜕𝐾
 is less than 

𝜕ℒ

𝜕𝜃0
. This means 

that changing shape is preferred by the system to changing nodal stiffness. This behavior was also 

observed in many simulations, specially with larger number of links.  

 

General form for multi-link system 

 The general form of the energy stored in the 𝑁  link system due to the loading 𝑃𝑦,𝑖 , 

denoted by 𝒥, can be written as  

 𝒥 =
1

2
Δ𝜃1

𝑇𝐾𝑚Δ𝜃1 (21) 

 

where, 𝐾𝑚 denotes the stiffness matrix and Δ𝜃1 denotes the change in angle 𝜃0 under vertical 

loading only – the general form for change in angle is Δ𝜃𝑘 = 𝜃𝑘 − 𝜃0 . where, 𝜃𝑘 =
[𝜃𝑘,1. . . 𝜃𝑘,𝑖. . . 𝜃𝑘,𝑁]𝑇. The constraints for general formulation are given by  

Φ1 = ∑

𝑁

𝑖=1

𝐿𝑖sin𝜃0,𝑖 

Φ2 = ∑

𝑁

𝑖=1

𝐿𝑖(cos𝜃2,𝑖 − cos𝜃0,𝑖) − 𝛿 

where 𝑁 denotes the number of links. For the 𝑁 link system, the Lagrangian, ℒ, can be written 

as  

 ℒ = 𝒥 + 𝜆1Φ1 + 𝜆2Φ2, (22) 

The gradient with respect to 𝐾𝑖 is given as 

 
𝜕ℒ

𝜕𝐾𝑖
=

1

2
Δ𝜃1

𝑇 𝜕𝐾𝑚

𝜕𝐾𝑖
Δ𝜃1 + Δ𝜃1

𝑇𝐾𝑚
𝜕𝜃1

𝜕𝐾𝑖
− 𝜆2 ∑𝑁

𝑗=1 𝐿𝑗sin𝜃2,𝑗
𝜕𝜃2,𝑗

𝜕𝐾𝑖
 (23) 
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and the gradient with respect to 𝜃0,𝑖 is  

 
𝜕ℒ

𝜕𝜃0,𝑖
= Δ𝜃1

𝑇𝐾𝑚 [
𝜕𝜃1

𝜕𝜃0,𝑖
−

𝜕𝜃0

𝜕𝜃0,𝑖
] + 𝜆1𝐿𝑖cos𝜃0,𝑖 − 𝜆2 ∑𝑁

𝑗=1 𝐿𝑗sin𝜃2,𝑗
𝜕𝜃2,𝑗

𝜕𝜃0,𝑖
+ 𝜆2𝐿𝑖sin𝜃0,𝑖 (24) 

The expressions of 
𝜕𝜃𝑘

𝜕𝜃0,𝑖
,
𝜕𝜃𝑘

𝜕𝐾𝑖
, 𝑘 = 0,1,2 are given in Appendix I. 

For the two link system without 𝐾3, for a small deflection, we get from equations (22)  

 

 𝐾𝑚 = [
𝐾1 + 𝐾2 −𝐾2

−𝐾2 𝐾2
] (25) 

  

Δ𝜃𝑘 = [

𝐾1 + 𝐾2 −𝐾2 𝐿1cos𝜃0,1

−𝐾2 𝐾2 𝐿2cos𝜃0,2

𝐿1cos𝜃0,1 𝐿2cos𝜃0,2 0
]

−1

[

𝑃𝑌,2𝐿1cos𝜃0,1 − 𝑃𝑋,3𝐿1sin𝜃0,1

𝑃𝑋,3𝐿2sin𝜃0,2

−𝐿1sin𝜃0,1 − 𝐿2sin𝜃0,2

] (26) 

 

where, 𝑘 =1 if 𝑃𝑋,3 =0, 𝑘 =0 if 𝑃𝑋,3 =0 & 𝑃𝑌,2 =0 and 𝑘 =2 if 𝑃𝑋,3 & 𝑃𝑌,2 are non-zero. For 

small deflection,  

 sin𝜃𝑗,𝑖 = sin𝜃0,𝑖 + cos𝜃0,𝑖Δ𝜃𝑗,𝑖; cos𝜃𝑗,𝑖 = cos𝜃0,𝑖 − sin𝜃0,𝑖Δ𝜃𝑗,𝑖 

 

The gradient with respect to 𝐾 is given as 

 

 
𝜕ℒ

𝜕𝐾1
=

1

2
Δ𝜃1,1

2 + Λ1
𝜕Φ1

𝜕𝐾1
+ Λ2

𝜕Φ2

𝜕𝐾1
; (27) 

 
𝜕ℒ

𝜕𝐾2
=

1

2
(Δ𝜃1,1 − Δ𝜃1,2)

2 + Λ1
𝜕Φ1

𝜕𝐾2
+ Λ2

𝜕Φ2

𝜕𝐾2
; (28) 

 

and the gradient with respect to 𝜃0,𝑖 is given as  

 

𝜕ℒ

𝜕𝜃10
= 𝛥𝜃𝑇𝐾𝑚

𝜕𝜃1

𝜕𝜃10
− 𝛥𝜃1

𝑇𝐾𝑚 [
1
0
] + 𝛬1

𝜕𝛷1

𝜕𝜃0,1
+ 𝛬2

𝜕𝛷2

𝜕𝜃0,1
; (29) 

𝜕ℒ

𝜕𝜃20
= 𝛥𝜃1

𝑇𝐾𝑚
𝜕𝜃1

𝜕𝜃20
− 𝛥𝜃1

𝑇𝐾𝑚 [
0
1
] + 𝛬1

𝜕𝛷1

𝜕𝜃0,2
+ 𝛬2

𝜕𝛷2

𝜕𝜃0,2
; (30) 

 

where,  
𝜕Φ2

𝜕𝜃2,1
= −𝐿1sin𝜃2,1;

𝜕Φ1

𝜕𝜃0,1
= 𝐿1cos𝜃0,1;

𝜕Φ2

𝜕𝜃2,2
= −𝐿2sin𝜃2,2;

𝜕Φ1

𝜕𝜃0,2
= 𝐿2cos𝜃0,2;

𝜕Φ2

𝜕𝜆
= 0;

𝜕Φ1

𝜕𝜆
= 0;

 

 

To be an optimal solution the equations (27) to (30) must be equal zero. To normalize the effects 

of change in stiffness and the shape, we introduce a modified stiffness 𝐾𝑑𝑖 . The relationship 

between 𝐾𝑑𝑖 and 𝐾𝑖 is given by  
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𝜕ℒ

𝜕𝐾𝑑1
= 𝐶𝐾

𝜕ℒ

𝜕𝐾1
,

𝜕ℒ

𝜕𝐾𝑑2
= 𝐶𝐾

𝜕ℒ

𝜕𝐾2
 

  

where, 𝐶𝐾  equal to 1 implies there is almost no participation of stiffness in the optimization 

scheme (for a large number of links) and a large 𝐶𝐾 such as 1000 indicate that there is a significant 

effect of stiffness. The 𝐶𝐾 scales the gradients to a comparable values. This allows the two type 

of variables to change simultaneously. 

 

 

 

4  Optimization problems 

For a multi-link system, there are no closed-form solutions just from the equilibrium equation and 

constraint equations. To generate an unique solution, we formulate an optimization problem. We 

follow the the structural optimization approach as shown in Haftka & Gurdal (2012) and choose 

an objective function. We assume that the flexible structure must first support its own weight. 

To be able to withstand its own weight, the internal strain energy (𝑃𝐸) stored should be 

minimum due to passive loading, 𝒫1(𝜃). We can write the internal energy stored as follows:  

 

 𝑃𝐸 = ∑
1

2
𝐾𝑖(𝜃1,𝑖−1 − 𝜃0,𝑖−1 − 𝜃1,𝑖 + 𝜃0,𝑖)

2
𝑁+1

𝑖=1
 (31) 

 

 To achieve the desired flexibility we introduce a local constraint under active loading, 𝒫2(𝜃), as  

  

 ∑ 𝐿𝑖(cos(𝜃2,𝑖) − cos(𝜃0,𝑖))
𝑁
𝑖=1 − 𝛿𝑑 = 0. (32) 

 

The above equation describes the end-point deflection to be 𝛿𝑑 if the loading condition on the 

structure is 𝒫2(𝜃). However, the loading condition 𝒫2 need not be constant with time and it could 

be a periodic function (as in running). We address this by considering first a constant loading 

condition and second a periodic loading where, the force changes as a function of time. Against a 

constant force we solve for the shape and stiffness under statics condition and the time response 

under dynamic condition. For periodic forces, we solve these two simultaneously. 

 

 

4.1  Optimization problem: Static deflection 

The general form for an optimization problem for an arbitrary number of segments can be posed 

as follows: 

 

min
𝜃0,𝐾𝑖

𝒥 =
1

2
∑𝑁+1

𝑖=1 𝐾𝑖(Δ𝜃1,𝑖 − Δ𝜃1,𝑖−1)
2

Subjected to: 𝐾𝑚(𝜃1 − 𝜃0) − 𝒫(𝜃1) = 0

𝐾𝑚(𝜃2 − 𝜃0) − 𝒫(𝜃2) = 0

∑𝑁
𝑖=1 𝐿𝑖sin𝜃𝑗,𝑖 = 0; 𝑗 = 0,1,2

∑𝑁
𝑖=1 𝐿𝑖(cos(𝜃2,𝑖) − cos(𝜃0,𝑖)) − 𝛿𝑑 = 0

Data: (𝐾𝑖𝑛𝑖𝑡𝑖𝑎𝑙, 𝜃𝑖𝑛𝑖𝑡𝑖𝑎𝑙 , 𝐾𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 , 𝐿𝑥, 𝛿𝑑)

 (33) 
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In the above, 𝐾𝑖  are spring stiffness at the joints, 𝒫(𝜃𝑖) denote the loading, 𝐿𝑖  are the link 

lengths, 𝛿𝑑 is the desired end-point deflection along the axial direction and 𝜃𝑖 is the vector of 

joint angles at 𝑖𝑡ℎ  loading condition. The constraints and ranges on 𝜃0  and 𝐾  are based on 

informed guess-work as there no data available for these type of problem from a biological system 

or a robot (see also Section 5). 

In Section 3 to study the relative effect of stiffness (𝐾) and orientation (𝜃0), we had 

introduced a factor 𝐶𝐾. In terms of this factor, we can frame the optimization problem as  

 

 
min

𝜃0,𝐶𝐾
−1𝐾𝑖

𝒥 =
1

2
∑𝑁+1

𝑖=1 𝐾𝑖(Δ𝜃𝑖 − Δ𝜃𝑖−1)
2

 (34) 

where, 𝐶𝐾 is the factor that equalizes stiffness magnitude to the radians. This allows the system 

to change both the stiffness and orientation simultaneously. In Section 5, we use a gradient based 

technique to solve the aforementioned optimization problem. 

 

4.2  Optimization problem: Dynamic response time 

For the dynamic case, we assume a constant actuation at the endpoint and determine the response 

time of the structure. To remove oscillations within the structure we ensure the structure to be 

over-damped by adjusting the lower limit of the damping coefficient. To control the time response 

against the constant loading, we introduce the square of the damping coefficient to be the objective 

function. 

Under large dissipative forces in the system, the end-point motion behavior is similar to 

the equation of (1 − 𝑒−𝛼𝑡) . To control the rise time, we consider a cutoff value 1  from the 

equilibrium value – we have assumed Δ𝑐𝑢𝑡𝑜𝑓𝑓 as 0.9 times the deflection value at equilibrium, 

𝛿𝑑. The optimization problem for the dynamic case can be framed as  

 

min
𝐶𝑣

Λ

2
𝐶𝑣

𝑇
𝐶𝑣

Subjectedto 𝑀(𝜃)𝜃̈ + 𝐶𝑟(𝜃, 𝜃̇)𝜃̇ + C 𝜃̇ + 𝐾(𝜃 − 𝜃0) − 𝒫(𝜃) = 0
1

2
(𝑡𝑒𝑛𝑑 − 𝑇𝑑)2 = 0

Data: 𝐶𝑖𝑛𝑖𝑡𝑖𝑎𝑙, 𝐶𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 , 𝑇𝑑

 (35 

 

In the above, 𝐶𝑣 denotes the damping and as in the static optimization, we assume a reasonable 

range for damping – in our simulation we have assumed 1 ≤ 𝐶𝑣,𝑖 ≤ 103. 𝐶𝑟 contains the Coriolis 

force terms, 𝐶 contains the damping terms, 𝐾 contains all the stiffness terms. The optimization 

problem in equation (35) is solvable because there exists a direct closed-form relationship between 

the constraints (cut-off time and end-point deflection). The end-point deflection is given by  

 

 𝛿𝑥(𝑡) = 𝛿𝑑(1 − 𝑒−𝜏𝑡) (36) 

 where 𝜏 = −
1

𝑇𝑑
ln (

𝛥𝑐𝑢𝑡𝑜𝑓𝑓

𝛿𝑑
) 

 

Here, 𝛿𝑥(𝑡)  is the end-point deflection with time, Δ𝑐𝑢𝑡𝑜𝑓𝑓  is the magnitude deflection 

                                                 
1 We use 𝑒𝑣𝑒𝑛𝑡𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 is Matlab (MATLAB, 2012) during numerical simulations. 
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corresponding to time 𝑇𝑑. Δ𝑐𝑢𝑡𝑜𝑓𝑓 and 𝑇𝑑 are two user prescribed values determine the response 

time of the end-point motion against a constant loading. The lower limit of the nodal damping is 

set, through trial and error, to ensure the end-point motion will be always a second order over 

damped motion. To simplify our approach we directly assume the motion to be a 1  𝑠𝑡  order 

motion and make predictions about the response. This assumptions are backed by numerical results 

described in Section 5. 

In a combined static and dynamic optimization case, we consider the forcing function to 

be periodic with a frequency of 
Ω

2𝜋
 Hz. Our objective is to generate a set of parameters of the 𝑁 

link system that will satisfy our demand for a maximum deflection of 𝛿𝑑  while maintaining 

minimum strain energy under passive loading. The optimization problem can be stated as follows:  

 

min
𝐾

1

2
∑𝑁+1

𝑖=1 𝐾𝑖(Δ𝜃1,𝑖 − Δ𝜃1,𝑖−1)
2

Subjected to 𝐾(𝜃1 − 𝜃0) − 𝒫(𝜃1) = 0

ℳ(𝜃2)𝜃̈2 + 𝒞(𝜃2, 𝜃̇2)𝜃̇2 + 𝐾 (𝜃2 − 𝜃0) + C 𝜃2̇  − 𝒫(𝜃2, Ω𝑡) = 0

min(∑𝑁
𝑖=1 𝐿𝑖(cos(𝜃2,𝑖) − cos(𝜃0,𝑖))) − 𝛿𝑑 = 0

Data: (𝐾𝑖𝑛𝑖𝑡𝑖𝑎𝑙, 𝜃𝑖𝑛𝑖𝑡𝑖𝑎𝑙 , 𝐾𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦)

 (37) 

 

It can be observed that the above combined optimization problem involves a differential equation 

(equation of motion) as a constraint. In addition, a constraint involving a minimum is also present. 

A gradient-based optimization might not yield results if the constraints contain a maximum or 

minimum value from a series of data and a genetic algorithm or pattern search yields more effective 

results (Deb, 1999). We have used genetic algorithm to generate the solution for the combined 

dynamic problem.  

 

5  Numerical methods and results 

The optimization problems in equations (33) and (35) were solved in Matlab (MATLAB, 2012) 

using 𝑓𝑚𝑖𝑛𝑐𝑜𝑛 which is a gradient based optimization procedure. However the optimization 

problem in equation (37) could not be solved using 𝑓𝑚𝑖𝑛𝑐𝑜𝑛 and we have used genetic algorithm 

and pattern search. We have used Matlab (MATLAB, 2012) library function 𝑔𝑎  and 

𝑝𝑎𝑡𝑡𝑒𝑟𝑛𝑠𝑒𝑎𝑟𝑐ℎ for implementing genetic algorithm and pattern search. The length of each link 

along 𝑋-axis are assumed to be equal and given by 𝐿𝑥/𝑁 m with 𝐿𝑥 as the total length of the 

flexible spine and 𝑁 is the number of links. Apart from the constraints described earlier, we list 

below additional constraints and choices made for the numerical simulations which make the 

solutions more reasonable.  

 

Geometrical and stiffness values 

We have used the following constraints and ranges for the geometrical and stiffness variables in 

all the numerical simulations.   

    • Length constraint: 𝐿𝑖 =
𝐿𝑋,𝑖

cos𝜃0,𝑖
  

    • Angle constraint: −
𝜋

6
≤ 𝜃𝑖0 ≤

𝜋

6
  

    • Relative angle constraint: −
𝜋

6
≤ 𝜃0,𝑖 − 𝜃0,𝑖+1 ≤

𝜋

6
  

    • Stiffness limit: 102 ≤ 𝐾𝑖 ≤ 104  
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    • Geometric upper and lower limit: 0.01 ≤ 𝑌0,𝑖 ≤ 0.25𝐿𝑥  

 

The upper and lower bound of the nodal stiffness is based on the study done by Lavaste and Mazel 

(Lavaste et al., 1992). They state the average approximate torsional stiffness against flexon to be 

3 𝑁 − 𝑚/𝑑𝑒𝑔 or 172 𝑁 − 𝑚/𝑟𝑎𝑑 for spine motion segment. We have used 100 N-m/rad as the 

lower bounds and 1000 N-m/rad as the upper bound for the stiffness value at the joints. The upper 

limit of 𝑌0,𝑖 is an user prescribed criteria as no such number is available in literature. Like wise 

the choice lower limit of 𝑌0,𝑖 is also arbitrary. The only constraint on the lower limit is to ensure 

that the 𝑌 value is not negative. The initial orientation, 𝜃0,𝑖, is constrained to ensure link length 

dimension 𝐿𝑙𝑖𝑛𝑘 =
𝐿𝑋,𝑖

cos𝜃0,𝑖
 is reasonable. If 𝜃0,𝑖 is large then the link length can be come very large 

and we have constrained 𝜃0,𝑖  to be between ±𝜋/6 . The local orientation, (𝜃0,𝑖 − 𝜃0,𝑖−1) , 

constraint prohibits the structure from generating sharp changes in rotation between two links or 

form knots when there is a large number of links.  

 

Applied force value selection 

To the best of our knowledge there are no estimates for the applied axial force in a moving 

quadruped robot and likewise in the muscles of a fast moving animal. It is known in literature 

(Sanchis-Moysi et al., 2010) that for an active young adult male tennis player, the volume of the 

muscle is approximately 480 c𝑚3 and in a study done by Akagi and Fukunaga (Akagi, et al., 

2009), it is mentioned that a 350 c𝑚3 muscle generates approximately 76 N-m of torque. Dividing 

this number with the arm length, the force generated by the muscle, at it’s peak, is about 310 N of 

force. In our simulations, we have assumed the axial force, 𝑃𝑋,2(𝑁 + 1,1) as - 400 N. However, 

any other value could also be used. 

 

5.1  Static optimization 

The solutions to the optimization for different static loading and different number of rigid segments 

is presented here. As stated in Section 4, the initial angles and the nodal stiffness are considered 

as the design variables. We solve for the optimal values for 5 and 10 rigid segments. The simulation 

is conducted under an uniform vertical loading of -10 N/node for 5 segment system and -5 N/node 

for the 10 segment system. The horizontal force applied at the end node is -400 N. The initial 

solution provided for the optimization problem, for 5 link system, is {
𝜋

5
,0,0,0,-

𝜋

5
,10000,250,250,250,250,0}. The results of the static optimization problem described in equation 

(12) are shown in figure 3. 
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(a) 

 
(b) 

 

 

 
(c) 

 

 
(d) 

Figure  3: (a) Undeformed and deformed structure of a 10 segment system, (b) The nodal stiffness 

of the structure, (c) Undeformed and deformed structure of a 5 segment system, (d) The nodal 

stiffness of the structure.  

 

   Next, we demonstrate the localized stiffening of the structure and end-point motion 

indifference to the variation of localized loading. The number of rigid segments chosen is 10. 

The vertical loading at every node from 1 to 5 is -20 N and all other nodes loading force is -5 N. 

While the horizontal axial loading is -400 N at the end node. The results described in Fig. 3 and 

Fig. 4 are for similar conditions, except in Fig. 4, the vertical loading is same at all nodes.  
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(a) 

 
(b) 

 

 

 
(c) 

 

(d) 

Figure 4: (a,b) Node 1 to Node 5, -20 N per node, rest -5 N per node and (c,d) Uniformly loaded 

with -5 N per node 

 

   From the results displayed in figure 4, it can be seen by changing the orientation of links 

of the loaded region the effect of the extra load is mitigated and end effector motion remains 

unchanged. This validates our claim of "localized stiffening of the structure and end-point motion 

indifference to the variation of localized loading''. In Fig. 5, the shape and stiffness of the structure 

for various loads at the nodes are shown. 
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(a) 

 
(b) 

Figure  5: (a) Variation of design variable 𝜃0 under various loading condition and (b) Variation 

of design variable K under various loading condition 

   

The factor 𝐶𝐾  in the optimization problem changes the gradient with respect to the 

modified nodal stiffness. This is similar to putting a cost on the design parameters. A very high 

𝐶𝐾 means the cost of changing stiffness is high compared to the cost of changing orientation and 

vice versa. This idea can be verified by the variation of shape (Fig: 6 to 8) and variation of stiffness 

(Fig: 6 to 8). As the 𝐶𝐾 is increased the stiffness variation between the nodes increases where as 

the change in orientation of the links is less apparent.  

  

 

Figure 6:  𝐶𝐾=1, Transverse loading -5N per node, Link no. 10, Axial loading -400 N 
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Figure 7:  𝐶𝐾=102, Transverse loading -5N per node, Link no. 10, Axial loading -400 N 

 
 

 

Figure 8: 𝐶𝐾=104, Transverse loading -5N per node, Link no. 10, Axial loading -400 N  
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( a ) 

 
( b ) 

 
( c ) 

 
( d ) 

 
( e ) 

 
( f ) 

Figure  9: (a) End-point response of structure with 10 link, (c) Nodal damping of the 10 link 

system, (e) Undeformed and deformed structure of a 10 link system, (b) End-point response of 

structure with 5 link, (d) Nodal damping of the 5 link system, (f) Undeformed and deformed 

structure of a 5 link system  

 

5.2  Dynamics 
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In this section we describe the results related to the response of the structure for constant and 

periodic loading. We consider the structures obtained from the static optimization process under 

the prescribed static loading condition and attempt to control their response time by parameter 

optimization. Towards the end of this section we show that a structure obtained from static 

optimization process can also be used with periodic loading if the response time of the structure is 

fast enough.  

 

5.2.1 Case 1: Application of constant force 

In real world scenario the structure deforms over a certain amount of time before it attains 

equilibrium for a constant force. By adjusting the nodal damping we can predict the response of 

the structure. The results, figure 9, describe the response of a 5-link and a 10-link structure, fixed 

at one end and free at the other, when actuated by a constant force. As it can be seen from equation 

(36) one can predict the response of the structure quite accurately. The time constant of the 

structure is obtained as 𝜏 = 11.5 s𝑒𝑐−1.  

   

5.2.2 Case 2: Application of periodic force 

We optimize the structure for a periodic end force to simulate rapid and periodic movement of the 

end-point. The number of links chosen for this simulation is 7 and we use a genetic algorithm for 

optimization in this case. The vertical loading on each node is assumed to be -50 N and from node 

2 to 4 it is assumed as -100 N. The horizontal loading is chosen to be -4000 N. We assume the 

nodal damping as 50 N-m/(rad/s) and mass of the links as 0.5 kg. The results from optimization 

are shown in figure 10. It can be seen that the end-point reaches the desired 𝛿 in 0.5 seconds. 

However, when the load is removed the structure returns to its original state in about 0.25 seconds. 

This result indicates that the release of stored energy is much faster. 
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Figure 10: 7 link structure Nodal stiffness optimization under dynamic loading 

    

 

 

5.2.2  Fast responsive constant load solution 

Figure 11 shows the response of the 10-link structure obtained using gradient-based optimization 

algorithms. Comparing this result with that obtained by genetic algorithm shows that for a fast 

. responsive structure, the response at the end-point is similar. The gradient-based approach is 

however much faster for simulation. 

 

 
(a) 

 

 
(b) 

Figure  11: (a) Pulsating oscillation and it’s corresponding end-point motion, (b) Structure 

responding to the oscillation. 
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(a) 

 
(b) 

 
(c) 

 

Figure 12: (a) Response time 0.2s for 90% of the maximum deflection, (b) Response time 0.1s for 

90% of the maximum deflection, (c) Response time 0.05s for 90% of the maximum deflection.  

 

   As can be seen. from Fig. 11 and Fig 12., fast responsive structure can generate motion as 

per our requirement even if the actuating force is not constant. This approach is valid only for 

loading patterns with lower frequency. With a small modification in the actuating force application 

we can achieve structure supporting fast locomotion with static optimization. 

It has been observed from extensive simulations that the general optimization problem, 

equation (33), is non-convex . Thus, there are many solutions. Secondly, in all the numerical 

simulations we have used a chosen set of parameter values based on informed guess-work and 

literature. The gradient based or the genetic algorithm based solution procedure is in no way 

limited by these choices and can be used for other parameter values. 

 

6  Conclusions 

This paper deals with modeling and numerical simulation of flexible one-dimensional structures 

subjected to transverse loading and with a prescribed axial displacement. This work is motivated 

by the need to model and analyze flexible spines in animals and in quadruped robots as this gives 

increased speed and agility. The flexible structure is modeled as a series of rigid segments with 
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springs and dampers at the joints. For such a system of rigid segments subjected to transverse and 

axial loading, the structure can take up an infinite number of configurations and the joint variables 

are not unique. We solve the problem by posing it as an optimization problem. For the static 

loading, we minimize an objective function related to the strain energy of the system. For the 

constant dynamic loading, we minimize an objective function involving the damping at the joints, 

which in turn determines the response time of the system. The first two optimization problem are 

solved using a gradient based approach. The periodic case is solved using genetic algorithm and 

pattern search. Numerical results are obtained to illustrate the optimization problems. The main 

results are a) the change in orientation is preferred to change in stiffness at the joints and b) the 

change is more pronounced near the point of end-point load. For the simulations, we have used 

numerical values and ranges on the data based on informed guess-work as data on animals and 

robots are not readily available. The formulations and approach developed in this paper can be, 

however, applied for any data sets. This work deals with planar structures and for future work, we 

intend to extend the approach to model and analyze 3D motion of structures.  

  

 

Appendix I: Gradients 

In this Appendix, the details of the mathematics for the case of large deflection case are presented.  

The internal energy stored due to the passive loading is 𝒥 . This and the constraints, 

Φ1 Φ2 are given as  

 𝒥 =
1

2
Δ𝜃1

𝑇𝐾𝑚Δ𝜃1. (38) 

 Φ1 = ∑𝑁
𝑖=1 𝐿𝑖sin𝜃0,𝑖 (39) 

 Φ2 = ∑𝑁
𝑖=1 𝐿𝑖(cos𝜃2,𝑖 − cos𝜃0,𝑖) (40) 

 

where, 𝜃0 is the vector of initial undeformed angles, Δ𝜃1 is the vectors of the angular deflection 

due to the passive loading 𝒫(𝜃1), 𝜃2 is the vectors of the final state of the angles due to the 

passive and active loading combined, 𝒫(𝜃2). Combining all the constraints and objective function 

we generate the Lagrangian. It is given by  

 

 ℒ = 𝒥 + Λ1Φ1 + Λ2Φ2 (41) 

 

 where, Λ1, Λ2 are Lagrange multipliers. Now we compute the gradients of the Lagrangian with 

respect to the design variables (𝐾, 𝜃0). Here 𝐾 is a (𝑁 + 1 × 1) vector, and 𝜃0  in a (𝑁 × 1) 

vector. 𝐾𝑖, 𝜃0,𝑖 are the 𝑖𝑡ℎ element of the vectors. The gradient with respect to individual elements 

are as followed.  
𝜕ℒ

𝜕𝐾𝑖
=

𝜕𝒥

𝜕𝐾𝑖
+ Λ1

𝜕Φ1

𝜕𝐾𝑖
+ Λ2

𝜕Φ2

𝜕𝐾𝑖
 (42) 

 =
𝜕𝒥

𝜕𝐾𝑖
− Λ2 ∑𝑁

𝑗=1 𝐿𝑗sin𝜃2,𝑗
𝜕𝜃2,𝑗

𝜕𝐾𝑖
 (43) 

 =
1

2
Δ𝜃1

𝑇 𝜕𝐾𝑚

𝜕𝐾𝑖
Δ𝜃1 + Δ𝜃1

𝑇𝐾𝑚
𝜕𝜃1

𝜕𝐾𝑖
− Λ2 ∑𝑁

𝑗=1 𝐿𝑗sin𝜃2,𝑗
𝜕𝜃2,𝑗

𝜕𝐾𝑖
 

 
𝜕ℒ

𝜕𝜃0,𝑖
=

𝜕𝒥

𝜕𝜃0,𝑖
+ Λ1

𝜕Φ1

𝜕𝜃0,𝑖
+ Λ2

𝜕Φ2

𝜕𝜃0,𝑖
 

=
𝜕𝒥

𝜕𝜃0,𝑖
+ Λ1𝐿𝑖cos𝜃0,𝑖 − Λ2 ∑𝑁

𝑗=1 𝐿𝑗sin𝜃2,𝑗
𝜕𝜃2,𝑗

𝜕𝜃0,𝑖
+ Λ2𝐿𝑖sin𝜃0,𝑖 (44) 

= Δ𝜃1
𝑇𝐾𝑚 [

𝜕𝜃1

𝜕𝜃0,𝑖
−

𝜕𝜃0

𝜕𝜃0,𝑖
] + Λ1𝐿𝑖cos𝜃0,𝑖 − Λ2 ∑𝑁

𝑗=1 𝐿𝑗sin𝜃2,𝑗
𝜕𝜃2,𝑗

𝜕𝜃0,𝑖
+ Λ2𝐿𝑖sin𝜃0,𝑖 (45) 
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 (

𝜕𝜃2

𝜕𝐾𝑖

𝜕𝜆

𝜕𝐾𝑖

) = [
𝐾𝑚 − ∇𝜃2

𝒫(𝜃2) −
𝜕𝒫(𝜃2)

𝜕𝜆

∇𝜃2
Φ3

𝑇 0
]

−1

(
−

𝜕𝐾𝑚

𝜕𝐾𝑖
Δ𝜃2

0
) (46) 

 (

𝜕𝜃2

𝜕𝜃0,𝑖

𝜕𝜆

𝜕𝜃0,𝑖

) = [
𝐾𝑚 −

𝜕𝒫(𝜃2)

𝜕𝜃2
−

𝜕𝒫(𝜃2)

𝜕𝜆

∇𝜃2
Φ3

𝑇 0
]

−1

(
𝐾𝑚

𝜕𝜃0

𝜕𝜃0,𝑖

0
). 

 where, 𝐾𝑚  is the stiffness matrix used in equilibrium equation. The form of 𝐾𝑚  is given as 

follows:  

𝐾𝑚 =

[
 
 
 
 
 
 
𝐾1 + 𝐾2 −𝐾2 . . 0 0
−𝐾2 𝐾2 + 𝐾3 −𝐾3 . . 0
. . . . . .
. . −𝐾𝑖 𝐾𝑖 + 𝐾𝑖+1 −𝐾𝑖+1 .
. . . . . .
0 . . −𝐾𝑁−1 𝐾𝑁−1 + 𝐾𝑁 −𝐾𝑁

0 0 . . −𝐾𝑁 𝐾𝑁 + 𝐾𝑁+1]
 
 
 
 
 
 

 (47) 

here, 𝜆 represents the Lagrange multiplier introduced for the constraint, equation (33), to generate 

the equilibrium equations. The Λ𝑖  and 𝜆  are of generated from two different optimization 

problems. The constraint for the large deflection, Φ3,  

 Φ3 = ∑𝑁
𝑖=1 𝐿𝑖sin𝜃𝑖 . 

 ∇𝜃Φ3 =

(

 
 
 

.

.

.
𝐿𝑗cos𝜃𝑗

.

.

. )

 
 
 

 

 𝑃𝑋 and 𝑃𝑌 are vectors containing the forces applied at the nodes along X-axis and Y-axis. For 

the problem discussed, other than 𝑃𝑋,𝑁+1  all other 𝑃𝑋,𝑖  are zeros. The load vector for the 

equilibrium equation for large deflection is as followed.  

 𝒫(𝜃) = ℒ𝒞𝒜𝑃𝑌 − ℒ𝒮𝒜𝑃𝑋 + 𝜆∇𝜃Φ3; (48) 

 
𝜕𝒫

𝜕𝜃𝑖
=

𝜕ℒ𝒞

𝜕𝜃𝑖
𝒜𝑃𝑌 −

𝜕ℒ𝒮

𝜕𝜃𝑖
𝒜𝑃𝑋 + 𝜆

𝜕∇𝜃Φ3

𝜕𝜃𝑖
; 

 =
𝜕ℒ𝒞

𝜕𝜃𝑖

[
 
 
 

.

.
∑𝑁+1

𝑗=𝑘 𝑃𝑌,𝑗

.

. ]
 
 
 

−
𝜕ℒ𝒮

𝜕𝜃𝑖

[
 
 
 

.

.
∑𝑁+1

𝑗=𝑘 𝑃𝑋,𝑗

.

. ]
 
 
 

− 𝜆

(

 
 

0
.

𝐿𝑖sin𝜃𝑖

.
0 )

 
 

; 

 = −

[
 
 
 
 
 
 

0
.
.

∑𝑁+1
𝑗=𝑖 (𝑃𝑌,𝑗𝐿𝑖sin𝜃𝑖 + 𝐿𝑖cos𝜃𝑖𝑃𝑋,𝑗) + 𝜆𝐿𝑖sin𝜃𝑖

.

.
0 ]

 
 
 
 
 
 

 (49) 

 
𝜕𝒫

𝜕𝜆
= ∇𝜃Φ3. (50) 
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 where,  

ℒ𝒞 =

[
 
 
 
 
 
𝐿1cos𝜃1 0 . . 0 0
0 𝐿2cos𝜃2 0 . . 0
. 0 𝐿3cos𝜃3 0 . .
. . 0 𝐿𝑖cos𝜃𝑖 0 .
0 . . 0 𝐿𝑁−1cos𝜃𝑁−1 0
0 0 . . 0 𝐿𝑁cos𝜃𝑁]

 
 
 
 
 

 (51) 

  

ℒ𝒮 =

[
 
 
 
 
 
𝐿1sin𝜃1 0 . . 0 0
0 𝐿2sin𝜃2 0 . . 0
. 0 𝐿3sin𝜃3 0 . .
. . 0 𝐿𝑖sin𝜃𝑖 0 .
0 . . 0 𝐿𝑁−1sin𝜃𝑁−1 0
0 0 . . 0 𝐿𝑁sin𝜃𝑁]

 
 
 
 
 

 (52) 

  

 𝒜 =

[
 
 
 
 
 
1 1 . . 1 1
0 1 1 . . 1
0 0 1 . . 1
. . . . . .
0 . . 0 1 1
0 0 . . 0 1]

 
 
 
 
 

 (53) 

   

Appendix II: Gradients of Equation (33): 

In the equation (33) we describe the optimization problem under static loading. The Lagrangian 

is written as  

𝓛 = 𝓙 + 𝚲𝟏𝑪𝟏 + 𝚲𝟐𝑪𝟐 + 𝚲𝟑𝑪𝟑 + 𝚲𝟒𝑪𝟒 

Where, 

𝒥 =
1

2
∑𝐾𝑖(Δ𝜃1,𝑖 − Δ𝜃1,𝑖−1)

2
𝑁

𝑖=1

 

𝐶1 = 𝕂𝑚Δ𝜃1 − ℙ(𝜃1), 𝐶2 = 𝕂𝑚Δ𝜃2 − ℙ(𝜃2) 

𝐶3 =

(

 
 
 
 
 
 

∑𝐿𝑖 sin 𝜃𝑖,0

𝑁

𝑖=1

 ∑𝐿𝑖 sin 𝜃1,𝑖

𝑁

𝑖=1

 

∑𝐿𝑖 sin 𝜃2,𝑖

𝑁

𝑖=1 )

 
 
 
 
 
 

 

𝐶4 = ∑𝐿𝑖 (cos 𝜃2 −

𝑁

𝑖=1

cos 𝜃0) − 𝛿 

The gradients of the Lagrangian, ℒ, determines the optimization process. When 
𝜕ℒ

𝜕𝐾𝑖
  and 

𝜕ℒ

𝜕𝜃0,𝑖
 

reaches zero the optimization process provides the result 
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𝜕ℒ

𝜕𝐾𝑖
=

𝜕𝒥

𝜕𝐾
+ ∑ Λ𝑗

𝑇
𝜕𝐶𝑗

𝜕𝐾𝑖

4

𝑗=1

 

𝜕ℒ

𝜕𝜃0,𝑖
=

𝜕𝒥

𝜕𝜃0,𝑖
+ ∑Λ𝑗

𝑇
𝜕𝐶𝑗

𝜕𝜃0,𝑖

4

𝑗=1

 

where,  

 

 

Combining all the terms of the gradient due to 𝐾𝑖, we get the following, 

𝜕ℒ

𝜕𝐾𝑖
=

𝜕𝒥

𝜕𝐾𝑖
+ Λ1

𝑇
𝜕𝕂𝑚

𝜕𝐾𝑖
Δ𝜃1 + Λ2

𝑇
𝜕𝕂𝑚

𝜕𝐾𝑖
Δ𝜃2 + ∑(

𝜕𝒥

𝜕𝜃1,𝑗
+ Λ1

𝑇𝒻1 + Λ3,2𝐿𝑗 cos 𝜃1,𝑗)

𝑁

𝑗=1

𝜕𝜃1,𝑗

𝜕𝐾𝑖

+ ∑(Λ2
𝑇𝒻2 + Λ3,3𝐿𝑗 cos 𝜃2,𝑗  + Λ4𝐿𝑗 sin 𝜃2,𝑗)

𝜕𝜃2,𝑗

𝜕𝐾𝑖

𝑁

𝑗=1

 

where,  

𝒻1 = −

[
 
 
 
 
 
 

° 
° 

 ∑ 𝑃𝑌,𝑗

𝑁+1

𝑗=𝑘

𝐿𝑘 𝑠𝑖𝑛 𝜃1,𝑘

𝜕𝜃1,𝑘

𝜕𝐾𝑖
 

 ° 
° ]

 
 
 
 
 
 

 

𝜕𝒥

𝜕𝐾𝑖
=

𝜕𝒥

𝜕𝐾𝑖
+ ∑

𝜕𝒥

𝜕𝜃1,𝑗

𝜕𝜃1,𝑗

𝜕𝐾𝑖

𝑁

𝑗=1

 
𝜕𝒥

𝜕𝜃0,𝑖
=

𝜕𝒥

𝜕𝜃0,𝑖
+ ∑

𝜕𝒥

𝜕𝜃1,𝑗

𝜕𝜃1,𝑗

𝜕𝜃0,𝑖

𝑁

𝑗=1

 

𝜕𝐶1

𝜕𝐾𝑖
=

𝜕𝕂𝑚

𝜕𝐾𝑖
Δ𝜃1 + 𝕂

𝜕Δ𝜃1

𝜕𝐾𝑖
−

𝜕ℙ(𝜃1)

𝜕𝐾𝑖
 

𝜕𝐶1

𝜕𝜃0,𝑖
= 𝕂𝑚 (

𝜕θ1

𝜕𝜃0,𝑖
− 1) −

𝜕ℙ(𝜃1)

𝜕𝜃0,𝑖
 

𝜕𝐶2

𝜕𝐾𝑖
=

𝜕𝕂𝑚

𝜕𝐾𝑖
Δ𝜃2 + 𝕂

𝜕Δ𝜃2

𝜕𝐾𝑖
−

𝜕ℙ(𝜃2)

𝜕𝐾𝑖
  

𝜕𝐶2

𝜕𝜃0,𝑖
= 𝕂𝑚 (

𝜕θ2

𝜕𝜃0,𝑖
− 1) −

𝜕ℙ(𝜃2)

𝜕𝜃0,𝑖
 

𝜕𝐶3

𝜕𝐾𝑖
 =

(

 
 
 
 

0

∑𝐿𝑗 cos 𝜃1,𝑗

𝑁

𝑗=1

𝜕𝜃1,𝑗

𝜕𝐾𝑖

∑𝐿𝑗 cos 𝜃2,𝑗  
𝜕𝜃2,𝑖

𝜕𝐾𝑖

𝑁

𝑗=1 )

 
 
 
 

 
𝜕𝐶3

𝜕𝜃0,𝑖
=

(

 
 
 
 
 
 
 

∑𝐿𝑗 cos 𝜃0,𝑗

𝑁

𝑗=1

∑𝐿𝑗 cos 𝜃1,𝑗

𝑁

𝑗=1

𝜕𝜃1,𝑗

𝜕𝜃0,𝑖

∑𝐿𝑗 cos 𝜃2,𝑗  
𝜕𝜃2,𝑖

𝜕𝜃0,𝑖

𝑁

𝑗=1 )

 
 
 
 
 
 
 

 

𝜕𝐶4

𝜕𝐾𝑖
 = −∑𝐿𝑗 sin 𝜃2,𝑗

𝜕𝜃2,𝑗

𝜕𝐾𝑖

𝑁

𝑗=1

 
𝜕𝐶4

𝜕𝜃0,𝑖
 = −∑𝐿𝑗 sin 𝜃2,𝑗

𝜕𝜃2,𝑗

𝜕𝜃0,𝑖
+ 𝐿𝑖 sin 𝜃0,𝑖

𝑁

𝑗=1
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𝒻2 =  −

[
 
 
 
 
 
 

° 
° 

 ∑ 𝐿𝑘 (𝑃𝑌,𝑗 𝑠𝑖𝑛 𝜃2,𝑘 + 𝑃𝑋,𝑗 𝑐𝑜𝑠 𝜃2,𝑘)
𝜕𝜃2,𝑘

𝜕𝐾𝑖

𝑁+1

𝑗=𝑘

 

 ° 
° ]

 
 
 
 
 
 

 

Similarly, combining all the terms of the gradient with respect to the initial orientation we get the 

following, 

𝜕ℒ

𝜕𝜃0,𝑖
=

𝜕𝒥

𝜕𝜃0,𝑖 
+ ∑(

𝜕𝒥

𝜕𝜃1,𝑗
+ Λ1

𝑇ℊ1 + Λ3,2𝐿𝑗 cos 𝜃1,𝑗)

𝑁

𝑗=1

𝜕𝜃1,𝑗

𝜕𝜃0,𝑖

+ ∑(Λ2
𝑇ℊ2 + Λ3,3𝐿𝑗 cos 𝜃2,𝑗  + Λ4𝐿𝑗 sin 𝜃2,𝑗)

𝜕𝜃2,𝑗

𝜕𝜃0,𝑖

𝑁

𝑗=1

 

where,  

ℊ1 = −

[
 
 
 
 
 
 

° 
° 

 ∑ 𝑃𝑌,𝑗

𝑁+1

𝑗=𝑘

𝐿𝑘 𝑠𝑖𝑛 𝜃1,𝑘

𝜕𝜃1,𝑘

𝜕𝜃0,𝑖
 

  ° 
° ]

 
 
 
 
 
 

 

ℊ2 =  −

[
 
 
 
 
 
 

° 
° 

 ∑ 𝐿𝑘  (𝑃𝑌,𝑗 𝑠𝑖𝑛 𝜃2,𝑘 + 𝑃𝑋,𝑗 𝑐𝑜𝑠 𝜃2,𝑘)
𝜕𝜃2,𝑘

𝜕𝜃0,𝑖

𝑁+1

𝑗=𝑘

 

 ° 
° ]

 
 
 
 
 
 

 

 

The above equations provide the optimal solution for the problem when the gradients of the 

gradient of the Lagrangian reaches 0. We choose the values of Λ in such a way that eliminates 

our requirement to calculate 
𝜕𝜃1,𝑗

𝜕𝐾𝑖
 and 

𝜕𝜃1,𝑗

𝜕𝜃0,𝑖
.  

Using a similar procedure, we can obtain the gradients for equation (35).  
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