
Real-time Computer Simulation of Three Dimensional Elastostatics using the Finite

Point Method

Kirana Kumara P, Ashitava Ghosal

Centre for Product Design and Manufacturing

Indian Institute of Science

Bangalore – 560 012, India

e-mail: kiranakumarap@gmail.com

Abstract—Real-time simulation of deformable solids is essential

for some applications such as biological organ simulations for

surgical simulators. In this work, deformable solids are

approximated to be linear elastic, and an easy and straight

forward numerical technique, the Finite Point Method (FPM),

is used to model three dimensional linear elastostatics.

Graphics Processing Unit (GPU) is used to accelerate

computations. Results show that the Finite Point Method,

together with GPU, can compute three dimensional linear

elastostatic responses of solids at rates suitable for real-time

graphics, for solids represented by reasonable number of

points.

Keywords-real-time; simulation; elastostatics; solid; FPM

I. INTRODUCTION

Many virtual reality systems require the realistic and real-
time graphical simulation of three dimensional deformable
solids, e.g., a surgical simulator capable of simulating
laparoscopic surgery needs a realistic simulation of liver.
The quality of these simulations depend on how close the
geometry of the solid is to the actual geometry, how closely
the chosen material model represents the actual material, and
how accurate is the numerical technique used for
computations. Computations have to be made in real time
and since, for real-time graphics, around 30 computations
have to be completed in one second [1], real-time
computations can take a maximum of only around 0.03
seconds to complete. One cannot compromise on speed but
to achieve that speed one often has to compromise on the
geometric description and/or material model and/or
numerical technique. The following few paragraphs of this
section give information on these approximations related to
the present work. Of course, through the approximations, one
effectively sacrifices a bit of realism for real-time
performance.

Representing a three dimensional solid by a finite set of
points belonging to the solid is a very simple way of
representing the solid. This does not require any connectivity
information and the representation allows the use of
meshfree numerical techniques for discretization. In the
present work, solids are represented by just points (or nodes).

As far as material models are concerned, physically
based models such as those based on continuum mechanics
are preferred for better realism [2]. Three dimensional linear

elastostatics is the most basic of all three dimensional
deformable solid idealizations. In many cases (e.g.,
simulating a machining process), this model alone may give
acceptable accuracy since in many cases of modeling cutting,
material to be cut is assumed linear elastic (e.g., [3]). But for
some other applications (e.g., simulating a laparoscopic
surgery), one has to at least consider geometric nonlinearity,
as has been done in [4]. However, even in these cases,
adopting the 3D linear elastostatic model is the first step
towards realistic simulations, and many a times, this may
provide a better realism when compared to a model which is
not physically based. The 3D linear elastostatic model is
used in the present work. Adopting this model has made it
possible to perform the computations in real-time.

Many numerical techniques are available for solving
three dimensional linear elastostatics of solids, the Finite
Element Method (FEM) being the most popular. FEM needs
a meshing of the solution domain and meshes need
connectivity information. The connectivity creates
bottlenecks while parallelizing computations, but parallel
computing is required to achieve high performance
demanded by real-time systems. Hence, meshfree methods
[5, 6], which do not need any mesh, are more appropriate for
real-time systems. Out of many meshfree methods found in
the literatute, some are slow but very accurate (e.g., Element
Free Galerkin Method (EFG), Reproducing Kernel Particle
Method (RKPM)), others being faster but less accurate (e.g.,
Smoothed Particle Hydrodynamics (SPH), Finite Point
Method (FPM)). The Finite Point Method (FPM) [7] is
chosen for the present work because it is inherently fast. For
many applications, including delicate applications like
laparoscopic surgery simulation, accuracy is not too
important, since humans cannot sense very small errors in
real-time responses of solids [8]. The FPM has already been
used to solve 3D elastostatics [7], but the present work
shows that the method, accelerated with Graphics Processing
Unit (GPU), is suitable for simulating real-time 3D linear
elastostatics.

II. THREE DIMENSIONAL LINEAR ELASTOSTATICS

The governing differential equations for 3D linear
elastostatics are given by [9]:

 (1)

() 0
2

2

2

2

2

222

2

2

=

∂

∂
+

∂

∂
+

∂

∂
+

∂∂

∂
+

∂∂

∂
+

∂

∂
+

z

u

y

u

x

u

zx

u

yx

u

x

u xxxzyx µµλ

(2)

 (3)

where

Here, ux, uy and uz are the displacements along x, y and z

directions; E is the Young’s modulus and ν is the Poisson’s
ratio.

III. THE FINITE POINT METHOD FOR THREE

DIMENSIONAL LINEAR ELASTOSTATICS

A brief summary of the method that is explained in detail
in [7], is given here. Displacements ux, uy and uz in the
governing equations are approximated by:

 (4)

 where

Assuming the base interpolating functions to be

quadratic, p is given by:

 Hence, m=10 (total number of elements of p).

 To find α, a set of neighboring nodes (total number = n)

is considered. In FPM, n should be greater than m. Function

u(x) is sampled at n points giving:

 (5)

Since, n > m, approximation cannot fit nodal values. This
problem is overcome by determining the u(x) values by
minimizing the sum of the square distances, with respect to
the α parameters, of the error at each point weighted with a
function φ as:

 (6)
The weight function φ is taken as:

 where

 rmax= distance to the farthest node, out of n nodes

 r = distance to nodes (contained in n)
Standard minimization of (6) gives α.

IV. TEST PROBLEMS AND RESULTS

The test solid is a square prism which is 99 millimeters
long and has (4 millimeters x 4 millimeters) cross section.
Young's modulus is taken as 200000 N/mm

2
 and the

Poisson's ratio is taken as 0.33 (These values are the same as
those for steel). In the present work, FPM is used to
discretize the 3D domain itself; domain is not idealized as a
1D or 2D domain. It is a standard practice in such cases to
have at least 4 points along each dimension, to properly
describe the domain in 3D. Domain discretization for the
present work uses (5 x 5) points to describe the cross section,
and uses 100 points along the length direction. Thus the solid
is represented by (5 x 5 x 100) = 2500 points. Even
complicated geometries such as a liver may satisfactorily be
described by 2500 points.

Now, three sets of boundary condition are applied on the
solid, giving rise to three different problems to be solved. For
the first problem (Problem 1), one end of the prism shaped
solid is fixed and the other end is given a known lateral
displacement of 5 mm. For the second problem (Problem 2),
both the ends are fixed and a 5 mm lateral displacement is
given to a point that is located at exactly half the length of
the beam and that is also located on the neutral axis. As a
third problem (Problem 3), one end is fixed and the other end
is given an axial displacement of 5 mm. One can see that the
thickness to length ratio for the solid considered is around
1/25, and hence, one can use the standard analytical formulae
applicable to beams and bars [10] to get approximate
analytical solutions for all the three problems considered,
and one can compare the solutions from FPM with these
analytical solutions. All the three test problems contain only
Dirichlet boundary conditions, since this is the case with
graphical simulations; even in simulations with haptic
feedback, forces are calculated from displacement fields, not
vice versa. In the present work, MATLAB [11] is used to
develop FPM codes.

Fig. 1, Fig. 2 and Fig. 3 show the displacements along the
neutral axis of the solid for Problem 1, Problem 2 and
Problem 3 respectively. Vertical axes represent
displacements. Horizontal axes represent length of the prism
shaped solid. Horizontal and vertical axis has different
scales. Numbers on the horizontal axis just represent
numbers corresponding to the global degrees of freedoms
and do not have any significance in figures.

For Problem 1 and Problem 2, solution is calculated
using FPM for both n=50 (plotted with dotted lines) and
n=250 (plotted with dashed lines). It can be observed that the
solutions are almost the same irrespective of the value of n,
thus confirming that n (number of neighbors) does not have
much effect on solutions over a range. Analytical (or
theoretical) solutions are also plotted (with solid lines) along
with the solutions from FPM.

For Problem 3, analytical solution is just a straight line
and has not been plotted (only solution from FPM is plotted
using solid line).

() 0
2

2

2

2

2

222

2

2

=

∂

∂
+

∂

∂
+

∂

∂
+

∂∂

∂
+

∂∂

∂
+

∂

∂
+

z

u

y

u

x

u

zy

u

yx

u

y

u yyyzxy µµλ

() 0
2

2

2

2

2

222

2

2

=

∂

∂
+

∂

∂
+

∂

∂
+

∂∂

∂
+

∂∂

∂
+

∂

∂
+

z

u

y

u

x

u

zy

u

zx

u

z

u zzzyxz µµλ

)21)(1(νν

ν
λ

−+
=

E

)1(2 ν
µ

+
=

E

)/exp(1

)/exp()/exp(
)(

22

2222

cr

crcr
r

m

m

−−

−−−
=ϕ

max25.0 rc =
max2rrm =

∑
=

==≅
m

l

T

ll xxpxuxu
1

)()()(ˆ)(αpα

T

m],.....,[21 ααα=α

T
zyxzxyzxyzyx],,,,,,,,,1[222=p

C αα

p

p

p

u =

=

≅

=

T

n

T

T

n
h

n

h

h

h

u

u

u

u

u

u

MMM

2

1

2

1

2

1

ˆ

ˆ

ˆ

2

1 1

2))(())(ˆ)((αpT

j

n

j

n

j

h

jjj

h

jj uxxuuxJ −=−= ∑ ∑
= =

ϕϕ

Figure 1. Displacement along neutral axis for Problem 1

Figure 2. Displacement along neutral axis for Problem 2

 Length (of the solid)

 Length (of the solid)

D
is

p
la

ce
m

en
t

(m
il

li
m

et
er

s)

D
is

p
la

ce
m

en
t

(m
il

li
m

et
er

s)

Figure 3. Displacement along neutral axis for Problem 3

From figures, analytical solutions and the solutions from
FPM agree very well except in Fig. 2. The slight deviation in
Fig. 2 is because, using FPM makes only the displacements
at the two ends of the solid zero, while the analytical solution
makes the slopes at the two ends also equal to zero.

Coming to solution times, a GPU is used to accelerate
computations. The GPU used is NVIDIA GeForce GTX 460.
GPU is used from within MATLAB using GPUmat [12], a
GPU toolbox for MATLAB. Table 1 shows the solution time
with only CPU and with only GPU. Table also gives the time
for data transfer from CPU to GPU and back from GPU to
CPU. Solution times are the same for all three problems
considered (all have exactly the same number of degrees of
freedom).

One can see that with a GPU, one can get real-time
performance (i.e., 50 computations per second, as against the
required 30 computations per second). But one can observe
that, if one considers the data transfer from CPU to GPU and
vice versa, GPU needs more time than the CPU.

V. CONCLUDING REMARKS

Results show that, for applications which can manage
with the 3D linear elastostatic idealization of solids, the
Finite Point Method, accelerated with GPU, can simulate
solids at real-time. The accuracy is seen to be satisfactory.

Present work attempts to simulate only real-time graphics
(which needs around 30 computations per second). But for
some applications, simulating haptic feedback (which needs

TABLE I. SOLUTION TIMES

Solution Time (seconds)

Data Transfer

Time (seconds) CPU only GPU only

0.066 0.020

0.194

around 1000 computations per second [1]) may also be
desirable to make the simulations more realistic.
Computational speed achieved in the present work is not
sufficient for simulating real-time haptics. One can also
observe that the time required to transfer the data from CPU
to GPU and vice versa is a bottleneck while using GPUs, and
in a real implementation, one has to be careful to implement
a proper GPU algorithm which minimizes this transfer.

Future work aims to include geometric nonlinearity and
nonlinear material models. Aim is to design and implement
customized GPU algorithms which can simulate nonlinear
solids at rates suitable for real-time haptics.

REFERENCES

[1] OPENHAPTICS™ TOOLKIT version 2.0, PROGRAMMER’S
GUIDE, SensAble technologies, 2005

[2] U. Meier, O. Lopez, C. Monserrat, M. C. Juan, M. Alcaniz, “Real-
time deformable models for surgery simulation: a survey,” Computer
Methods and Programs in Biomedicine (2005) 77, 183-97

[3] Mohsen Mahvash and Vincent Hayward, “Haptic Rendering of
Cutting: A Fracture Mechanics Approach,” Vol. 2. No. 3., Haptics-e,
21-Nov-2001, http://www.haptics-e.org

[4] Yi-Je Lim, Suvranu De, “Real time simulation of nonlinear tissue
response in virtual surgery using the point collocation-based method
of finite spheres,” Comput. Methods Appl. Mech. Engrg. 196 (2007)
3011–3024

[5] Shaofan Li and Wing Kam Liu, “Meshfree and particle methods and
their applications," Appl Mech Rev vol 55, no 1, January 2002

[6] G R Liu and Y T Gu, An Introduction to Meshfree Methods and Their
Programming, Springer,2005

[7] E. Onate, F. Perazzo, J. Miquel, “A finite point method for elasticity
problems,” Computers and Structures 79 (2001) 2151-2163

[8] Ottensmeyer M, Salisbury K, “In Vivo Data Acquisition Instrument
for Solid Organ Mechanical Property Measurement,” MICCAI:
Medical Image Computing and Computer-Assisted Intervention 4th
International Conference, Utrecht, The Netherlands, 2001, Springer-
Verlag

[9] L S Srinath, Advanced Mechanics of Solids, Tata McGraw-Hill,
Third Edition, 2009

[10] K. Lingaiah, Design Data Hand Book, McGraw Hill, 2ndEd., 2003

[11] The MATLAB website, http://www.mathworks.com/

[12] GPUmat: GPU toolbox for MATLAB, http://gp-you.org/

 Length (of the solid)

D
is

p
la

ce
m

en
t

(m
il

li
m

et
er

s)

