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Abstract—Real-time simulation of deformable solids is essential 

for some applications such as biological organ simulations for 

surgical simulators. In this work, deformable solids are 

approximated to be linear elastic, and an easy and straight 

forward numerical technique, the Finite Point Method (FPM), 

is used to model three dimensional linear elastostatics. 

Graphics Processing Unit (GPU) is used to accelerate 

computations. Results show that the Finite Point Method, 

together with GPU, can compute three dimensional linear 

elastostatic responses of solids at rates suitable for real-time 

graphics, for solids represented by reasonable number of 

points. 
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I.  INTRODUCTION 

Many virtual reality systems require the realistic and real-
time graphical simulation of three dimensional deformable 
solids, e.g., a surgical simulator capable of simulating 
laparoscopic surgery needs a realistic simulation of liver. 
The quality of these simulations depend on how close the 
geometry of the solid is to the actual geometry, how closely 
the chosen material model represents the actual material, and 
how accurate is the numerical technique used for 
computations. Computations have to be made in real time 
and since, for real-time graphics, around 30 computations 
have to be completed in one second [1], real-time 
computations can take a maximum of only around 0.03 
seconds to complete. One cannot compromise on speed but 
to achieve that speed one often has to compromise on the 
geometric description and/or material model and/or 
numerical technique. The following few paragraphs of this 
section give information on these approximations related to 
the present work. Of course, through the approximations, one 
effectively sacrifices a bit of realism for real-time 
performance. 

Representing a three dimensional solid by a finite set of 
points belonging to the solid is a very simple way of 
representing the solid. This does not require any connectivity 
information and the representation allows the use of 
meshfree numerical techniques for discretization. In the 
present work, solids are represented by just points (or nodes). 

As far as material models are concerned, physically 
based models such as those based on continuum mechanics 
are preferred for better realism [2]. Three dimensional linear 

elastostatics is the most basic of all three dimensional 
deformable solid idealizations. In many cases (e.g., 
simulating a machining process), this model alone may give 
acceptable accuracy since in many cases of modeling cutting,  
material to be cut is assumed linear elastic (e.g., [3]). But for 
some other applications (e.g., simulating a laparoscopic 
surgery), one has to at least consider geometric nonlinearity, 
as has been done in [4]. However, even in these cases, 
adopting the 3D linear elastostatic model is the first step 
towards realistic simulations, and many a times, this may 
provide a better realism when compared to a model which is 
not physically based. The 3D linear elastostatic model is 
used in the present work. Adopting this model has made it 
possible to perform the computations in real-time. 

Many numerical techniques are available for solving 
three dimensional linear elastostatics of solids, the Finite 
Element Method (FEM) being the most popular. FEM needs 
a meshing of the solution domain and meshes need 
connectivity information. The connectivity creates 
bottlenecks while parallelizing computations, but parallel 
computing is required to achieve high performance 
demanded by real-time systems. Hence, meshfree methods 
[5, 6], which do not need any mesh, are more appropriate for 
real-time systems. Out of many meshfree methods found in 
the literatute, some are slow but very accurate (e.g., Element 
Free Galerkin Method (EFG), Reproducing Kernel Particle 
Method (RKPM)), others being faster but less accurate (e.g., 
Smoothed Particle Hydrodynamics (SPH), Finite Point 
Method (FPM)). The Finite Point Method (FPM) [7] is 
chosen for the present work because it is inherently fast. For 
many applications, including delicate applications like 
laparoscopic surgery simulation, accuracy is not too 
important, since humans cannot sense very small errors in 
real-time responses of solids [8]. The FPM has already been 
used to solve 3D elastostatics [7], but the present work 
shows that the method, accelerated with Graphics Processing 
Unit (GPU), is suitable for simulating real-time 3D linear 
elastostatics. 

II. THREE DIMENSIONAL LINEAR ELASTOSTATICS 

The governing differential equations for 3D linear 
elastostatics are given by [9]: 
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                                                                         (3) 
 
where    
 

  
Here, ux, uy and uz  are the displacements along x, y and  z 

directions; E is the Young’s modulus and ν is the Poisson’s 
ratio.  

III. THE FINITE POINT METHOD FOR THREE 

DIMENSIONAL LINEAR ELASTOSTATICS 

A brief summary of the method that is explained in detail 
in [7], is given here. Displacements ux, uy and uz in the 
governing equations are approximated by:  

 
                     (4) 

 
                       where      
 
Assuming the base interpolating functions to be 

quadratic, p is given by:  
               

                  

      Hence, m=10 (total number of elements of p). 

  

      To find α, a set of neighboring nodes (total number = n) 

is considered. In FPM, n should be greater than m. Function 

u(x) is sampled at n points giving:  

                                                                                                                                                                                  

 

                                                                                     

        (5)             

 

Since, n > m, approximation cannot fit nodal values. This 
problem is overcome by determining the u(x) values by 
minimizing the sum of the square distances, with respect to 
the α parameters, of the error at each point weighted with a 
function φ as:   

                                                                                        (6) 
The weight function φ is taken as: 
 
 
 
 
 where  

      rmax= distance to the farthest node, out of n nodes 

      r = distance to nodes (contained in n)  
Standard minimization of (6) gives α. 

IV. TEST PROBLEMS AND RESULTS 

The test solid is a square prism which is 99 millimeters 
long and has (4 millimeters x 4 millimeters) cross section. 
Young's modulus is taken as 200000 N/mm

2
 and the 

Poisson's ratio is taken as 0.33 (These values are the same as 
those for steel). In the present work, FPM is used to 
discretize the 3D domain itself; domain is not idealized as a 
1D or 2D domain. It is a standard practice in such cases to 
have at least 4 points along each dimension, to properly 
describe the domain in 3D. Domain discretization for the 
present work uses (5 x 5) points to describe the cross section, 
and uses 100 points along the length direction. Thus the solid 
is represented by (5 x 5 x 100) = 2500 points. Even 
complicated geometries such as a liver may satisfactorily be 
described by 2500 points. 

Now, three sets of boundary condition are applied on the 
solid, giving rise to three different problems to be solved. For 
the first problem (Problem 1), one end of the prism shaped 
solid is fixed and the other end is given a known lateral 
displacement of 5 mm. For the second problem (Problem 2), 
both the ends are fixed and a 5 mm lateral displacement is 
given to a point that is located at exactly half the length of 
the beam and that is also located on the neutral axis. As a 
third problem (Problem 3), one end is fixed and the other end 
is given an axial displacement of 5 mm. One can see that the 
thickness to length ratio for the solid considered is around 
1/25, and hence, one can use the standard analytical formulae 
applicable to beams and bars [10] to get approximate 
analytical solutions for all the three problems considered, 
and one can compare the solutions from FPM with these 
analytical solutions. All the three test problems contain only 
Dirichlet boundary conditions, since this is the case with 
graphical simulations; even in simulations with haptic 
feedback, forces are calculated from displacement fields, not 
vice versa. In the present work, MATLAB [11] is used to 
develop FPM codes. 

Fig. 1, Fig. 2 and Fig. 3 show the displacements along the 
neutral axis of the solid for Problem 1, Problem 2 and 
Problem 3 respectively. Vertical axes represent 
displacements. Horizontal axes represent length of the prism 
shaped solid. Horizontal and vertical axis has different 
scales. Numbers on the horizontal axis just represent 
numbers corresponding to the global degrees of freedoms 
and do not have any significance in figures. 

For Problem 1 and Problem 2, solution is calculated 
using FPM for both n=50 (plotted with dotted lines) and 
n=250 (plotted with dashed lines). It can be observed that the 
solutions are almost the same irrespective of the value of n, 
thus confirming that n (number of neighbors) does not have 
much effect on solutions over a range. Analytical (or 
theoretical) solutions are also plotted (with solid lines) along 
with the solutions from FPM. 

For Problem 3, analytical solution is just a straight line 
and has not been plotted (only solution from FPM is plotted 
using solid line). 
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Figure 1.   Displacement along neutral axis for Problem 1 

 
 
 
 
 

 
 

 
 

Figure 2.   Displacement along neutral axis for Problem 2 
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Figure 3.   Displacement along neutral axis for Problem 3 
 
 

From figures, analytical solutions and the solutions from 
FPM agree very well except in Fig. 2. The slight deviation in 
Fig. 2 is because, using FPM makes only the displacements 
at the two ends of the solid zero, while the analytical solution 
makes the slopes at the two ends also equal to zero. 

Coming to solution times, a GPU is used to accelerate 
computations. The GPU used is NVIDIA GeForce GTX 460. 
GPU is used from within MATLAB using GPUmat [12], a 
GPU toolbox for MATLAB. Table 1 shows the solution time 
with only CPU and with only GPU. Table also gives the time 
for data transfer from CPU to GPU and back from GPU to 
CPU. Solution times are the same for all three problems 
considered (all have exactly the same number of degrees of 
freedom). 

One can see that with a GPU, one can get real-time 
performance (i.e., 50 computations per second, as against the 
required 30 computations per second). But one can observe 
that, if one considers the data transfer from CPU to GPU and 
vice versa, GPU needs more time than the CPU. 

V. CONCLUDING REMARKS 

Results show that, for applications which can manage 
with the 3D linear elastostatic idealization of solids, the 
Finite Point Method, accelerated with GPU, can simulate 
solids at real-time. The accuracy is seen to be satisfactory. 

Present work attempts to simulate only real-time graphics 
(which needs around 30 computations per second). But for 
some applications, simulating haptic feedback (which needs  
 

 

TABLE I.  SOLUTION TIMES  

Solution Time (seconds)  

Data Transfer 

Time (seconds) CPU only GPU only 

0.066 0.020 

 

0.194 

 
 
around 1000 computations per second [1]) may also be 
desirable to make the simulations more realistic. 
Computational speed achieved in the present work is not 
sufficient for simulating real-time haptics. One can also 
observe that the time required to transfer the data from CPU 
to GPU and vice versa is a bottleneck while using GPUs, and 
in a real implementation, one has to be careful to implement 
a proper GPU algorithm which minimizes this transfer. 

Future work aims to include geometric nonlinearity and 
nonlinear material models. Aim is to design and implement 
customized GPU algorithms which can simulate nonlinear 
solids at rates suitable for real-time haptics. 
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