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Abstract. Cable-driven continuum robots (CCR) with generally routed
cables are capable of achieving complex shapes, which a straight-routed
CCR with multiple sections cannot achieve. This paper presents an
optimization-based algorithm that can predict a routing and the amount
of cable actuation required to attain a prescribed desired final shape in
a CCR. The algorithm is based on discretizing the CCR with several
four-bar mechanisms and is purely geometry based. The actuation re-
quired to obtain the desired shape and to reach a desired position is a
length parameter rather than a force and is easy to visualize. The results
are compared with the previously known forward kinematics model and
show an RMS error of less than 2% of the total CCR length.
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1 Introduction

Continuum robots have a continuous flexible structure instead of the discrete
segments found in traditional robots. The main advantage of continuum robots
is their inherent compliance which allows them to better adapt to complex and
dynamic environments and makes them inherently safer. They also tend to be
lightweight and dexterous than traditional robots, making them ideal for tasks
that require flexibility. The CCR consists of a flexible backbone as the main
element. This backbone can be actuated by various means [1]. Among the most
widely utilized actuation methods, cable-driven continuum robots (CCR) are
favored because of their ease of construction, operation, and usage. Consequently,
CCRs find numerous applications in various fields [2,3], notably biomimetics,
medical devices, space applications, and search and rescue operations.

A flexible rod-like member known as the backbone forms the main member
of a CCR. Circular disks, evenly spaced along the backbone, are attached and
feature holes arranged in a circular pattern around the backbone’s periphery.
Through these holes, thin cables are routed from the base to the tip of the CCR
– Figure 1a depicts a CCR with a cable routed in a general manner. When the
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Fig. 1: Schematics of a CCR with a generally routed cable (a) before and (b)
after actuation

cable is loaded (actuated) below the base, the entire CCR bends into a new
shape that is determined by the routing of the cable. The resulting shape of the
CCR (in Fig. 1a) after actuation is shown in Fig. 1b.

Various models to predict the shapes of a CCR can be found in the literature.
A comprehensive review of such models can be found in [1,4,5,6]. Most of the
available literature focuses on the straight routed CCR and sometimes with mul-
tiple sections. These models range from simple constant curvature approaches [7]
to more detailed techniques such as finite element method (FEM) [8,9], Euler-
Bernoulli beam theory along with statics [10,11], Cosserat rod theory [12,13]
and pseudo-rigid body models [14] to mention a few. However, only a few mod-
els are available that can accurately model a generally routed CCR. Cosserat rod
theory-based models have been shown to accurately model such CCR. Recently a
geometry-based optimization method [15] has also shown to model such routing
with good accuracy. Although studies have been performed on dexterity [16] and
workspace [10] analysis on straight routed cables, it is still limiting as compared
to the more complex shapes and positions a generally routed CCR can attain. It
is thus necessary to develop an approach that can predict the routing of the cable
to attain a desired shape of the backbone. In this paper, we propose one such
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algorithm which can accomplish such a goal. We employ the optimization-based
forward kinematics model [15] which is purely geometry-based and is shown to
be accurate and faster [17] than models using the material parameters. We use
the geometry-based approach to develop an algorithm that can provide the cable
routing and the actuation details of a desired final shape of the CCR. By utiliz-
ing this algorithm, we aim to provide a tool for designing CCRs with complex
shapes which can then exhibit more complex trajectories.

The rest of the paper is organized as follows: In section 2, a brief explanation
of the optimization-based forward kinematics model along with the algorithm is
discussed which is further validated in section 3. Finally, in section 4, concluding
remarks and scopes of future work is discussed.

2 Methodology

In this section we present a brief description of the geometry-based optimization
method as discussed in [15] and then describe the algorithm to obtain the cable
routing for a CCR such that it can attain a desired shape on actuation.

2.1 Forwards kinematics of generally-routed CCR

The reference coordinate system is chosen to be at the base disk with the X-axis
pointing towards the cable, Z-axis pointing vertically upwards and, the Y-axis
obtained from the right-hand rule.

The disks are numbered 0 till n, starting from the base till the tip. In the
undeformed state, the location of the center of ith disk is given by Xi

0. The hole
through which the cable passes is at a distance a from Xi

0 and it’s location is
given by Xi

a. Please refer to the nomenclature presented at the end for more
details1.

Figure 2a shows the ith section of the undeformed CCR. In this section, we
consider two four bars (shown in red and green in Fig 2a). The first four bar
consists of the vertices Xi−1

0 , Xi−1
a , Xi

a and Xi
0. The second four bar consists of

vertices Xi−1
0 , X̄i−1

b , X̄i
b and Xi

0 (where X̄i
b is on the ith disk and ∠Xi

aX
i
0X̄

i
b =

π/2 rads). In these two imaginary four bars, Xi−1
0 Xi−1

a and Xi−1
0 X̄i−1

b are the
fixed linkages, Xi

0X
i
a and Xi

0X̄
i
b are the couplers and Xi−1

0 Xi
0 being the first

crank for both.
The geometry-based optimization algorithm is performed one section at a

time starting from the base till the tip. After actuation, in the ith section, the
points Xi

0, X
i
a and X̄i

b attains a new location given by, xi
0, x

i
a and x̄i

b which
changes the four bars as seen in Fig. 2b. The optimization, to obtain the pose of
the CCR, involves minimizing the coupler angle. It is mathematically given as:

argmin
xi
0,x

i
a

([
arccos

(
A

∥A∥ · B

∥B∥

)]2
+

[
arccos

(
C

∥C∥ · D

∥D∥

)]2)
(1)

1 Note that the superscripts represent the disk number and not exponents
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(a) (b)

Fig. 2: Nomenclature used for (a) ith undeformed section (b) two four-bars before
(lightly shaded) and after actuation (shaded dark).

where, A = Xi−1
0 −Xi−1

a , B = xi
0 − xi

a, C = Xi−1
0 − X̄i−1

b , D = xi
0 − x̄i

b

Subject to:∥∥xi
0 −Xi−1

0

∥∥ = l0,
∥∥xi

a −Xi−1
a

∥∥ = lia,
∥∥xi

0 − xi
a

∥∥ = a,

X̄i
b = a

(
Xi

a −Xi
0

)
×
(
Xi

0 −Xi−1
0

)∥∥(Xi
a −Xi

0

)
×
(
Xi

0 −Xi−1
0

)∥∥ (2)

Given data: Xi
0, X

i−1
0 , Xi

a, X
i−1
a , l0, l

i
a and a.

The solutions to this section, xi
0 and xi

a are then used as the base linkage
points for four bars in the next section – see [15,17] for more details.

The above optimization problem can be made as a function whose inputs are
ϕi, a, l0, l

i
a, X

i−1
0 , Xi−1

a and Xi
0. The outputs to this function are xi

0 and xi
a.

Symbolically this function is represented as fFK.

2.2 Algorithm to obtain routing of cable

To determine the routing of the cable, when the desired shape is given, we first
need to obtain the positions of the disks in the actuated position. If the desired
shape is given as a curve, first we need to suitably modify the curve such that
the starting point is [0, 0, 0]

T
. We also need to decide the distance between two

consecutive disks, l0. This length should be such that each section doesn’t have
a large variation of slope and curvature. Additionally, we set a distance a, the
distance of the cable from the disk’s center. The desired disk locations can then
be obtained by iteratively finding the intersection points between the given curve
and a sphere of radius l0, starting from the base of the CCR and progressing
towards the tip. We denote these desired positions of the backbone as xi

0d.
In the algorithm to find the routing, the forward kinematics function fFK as

mentioned in the previous section is used to minimize e, the error between the
output and the desired shape. This can be mathematically stated as:



General cable routing for CCR 5

min
ϕi

e =
∥∥xi

0 − xi
0d

∥∥ (3)

where xi
0 = fFK

(
ϕi, a, l0, l

i
a,X

i−1
0 ,Xi−1

a ,Xi
0

)
– the output xi

a is ignored here.
Subject to:

−π/4 ≤ ϕi ≤ π/4 (4)

Given data: l0, l
i
a, a, X

i−1
0 , Xi−1

a and Xi
0

It may be noted that Xi−1
0 , Xi−1

a are the outputs of the previous iteration (or

the positions on base disk for 1st iteration). For the first iteration,Xi
0 = [0, 0, l0]

T

and for the rest,

Xi
0 = Xi−1

0 + l0
Xi−1

0 −Xi−2
0∥∥Xi−1

0 −Xi−2
0

∥∥
Usually, ϕi is kept low as implemented in the constraint equation (4). This

makes sure that the cable does not collide with the backbone. The quantity lia
can be obtained from geometry as:

lia = δ
√
l20 + 2a2 − 2a2 cos (ϕi)

where, δ is the ratio of the cable inside the CCR after and before actuation.
Similar to the forward kinematics model, the optimization problem in equa-

tion (3) is solved one section at a time starting from the base till the tip, taking
the solutions of the previous section as the base for the next section.

Once ϕi is obtained from the optimization problem (given by equation (3)),
Xi

a can be obtained from geometry.

3 Results and discussions

3.1 Numerical simulations

For the purpose of validation, multiple cases were tried out, of which three cases
are discussed here. The desired coordinates of the final shape for the cases are
listed in Table 1. Values for all the parameters were chosen as: n = 9, a = 8 mm,
l0 = 20 mm. To solve the optimization problem given by equations (3) – (4),
fmincon function in MATLAB® was used. Interior-point algorithm – an inbuilt
algorithm in fmincon – is used and it takes an average of 23 seconds to simulate
in a PC with a processor clocked at 3.1 GHz with 16 GB RAM. The inequality
constraint (4) is implemented as upper and lower bounds on the optimization
variables in fmincon.

For the first section, ϕi is taken as 0 degrees – this can be achieved by suitably
rotating the whole curve about the Z-axis. While simulating, for the first section,
δ is also kept as an optimization variable and the same value is used for the rest
of the iterations. Initial guesses for i = 1 were chosen as ϕ = π/6 rads and
δ = 0.6 (chosen arbitrarily). For the subsequent sections, the result (ϕi) of the
previous iteration was provided as the initial guess.
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Table 1: Details of the various cases along with the results.
(DC = Desired coordinates, eR = RMS error (in mm))

Disk

No.

(i)

Case I Case II Case III

DC (in mm) ϕ

(deg)

DC (in mm) ϕ

(deg)

DC (in mm) ϕ

(deg)x y z x y z x y z

0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

1 2.54 -0.24 19.84 30.00 2.20 0.20 19.88 -30.00 1.89 0.06 19.91 -20.01

2 7.64 0.88 39.14 29.99 6.60 -0.78 39.36 -30.00 5.70 -0.58 39.53 3.36

3 14.20 4.46 57.69 30.03 12.32 -3.77 58.29 -13.10 11.15 -2.37 58.69 3.92

4 20.75 10.88 75.47 30.00 17.73 -9.64 76.63 -13.19 17.99 -5.39 77.24 3.90

5 25.54 20.03 92.59 -0.54 22.81 -17.86 94.14 -26.95 26.48 -9.20 94.95 -29.73

6 28.69 31.38 108.76 -3.25 27.47 -28.28 110.56 -27.04 36.72 -13.26 111.63 -29.53

7 30.12 44.68 123.63 -3.25 31.51 -40.53 125.85 29.11 48.65 -17.21 127.20 -11.33

8 29.81 59.65 136.88 -3.25 36.19 -54.50 139.38 22.78 62.12 -20.83 141.53 -19.25

9 27.75 75.98 148.25 -3.38 42.53 -69.34 151.19 5.83 76.99 -24.23 154.47 6.14

eR 0.64 2.41 3.56

δ 0.94 0.95 0.96

3.2 Results

The numerical results for the cases listed in Table 1, were simulated using the
forward kinematics model (section 2.1) to get the final shape of the CCR when
actuated. The corresponding RMS value of error at each disk (eR) is presented
in Table 1. The corresponding plots are presented in Figure 3. As seen from the
figures, the simulated shape closely follows the desired shape with a maximum
RMS error of 3.56 mm, which is about 2% of the total length of the CCR.
It should be noted that the same shape can be attained by other routing and
amount of cable actuation. This algorithm produces only one of those results.

As mentioned, the final desired shape needs to be smooth and continuous.
Additionally, the limitation of this algorithm includes the inability to modelling
of gravity effect, which may be significant in the case of large CCR. The friction
effects are also ignored in the modelling. Finally, the backbone cannot be very
flexible as in that case the material properties and non-linearities will start to
play a major role.

4 Conclusion

This paper presents a novel algorithm to obtain the routing of a generally-routed
CCR for achieving a prescribed final shape. The algorithm utilizes a geometry-
based optimization method for the forward kinematics model. The simulated
result attains the desired shape with RMS error of less than 2% of the total length
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Fig. 3: Comparison of the desired and actual backbone positions for (a) Case I,
(b) Case II and (c) Case III

of the backbone. The advantage of this method is that it is purely geometry-
based, eliminating the need for material properties. Additionally, the information
about the actuation – the amount of cable pull – is easier to visualize (or measure)
than the applied force traditionally used. This algorithm makes designing a CCR
that can achieve complex desired shapes and positions significantly easier.

Although this algorithm works well for the presented cases, a CCR cannot
reach all possible curves in 3D. Identification of the feasible curves is a work in
progress, along with the improvement of the algorithm with the implementation
of better initial conditions based on the shape of the curve. Addition of variation
of the distance of the cable from the center of the disk (variable a) and use of
multiple cables will also expand the feasibility of obtaining more complex shapes
and curves.
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