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Abstract
This paper deals with the modeling, simulation, and experimental valida-

tion of a modified Gough-Stewart platform (MGSP) for vibration isolation,
where the first six natural frequencies corresponding to the first six degree-
of-freedom are nearly the same, enabling effective attenuation of the first
six modes. The configuration is termed as dynamically isotropic and this
work presents a geometry-based analytical approach to obtain the design
parameters of the MGSP at its neutral position. The approach accommo-
dates various payload configurations, including variable center of mass and
mass/inertia properties. The validation of the design is demonstrated using
a finite element software ANSYS®, and the model is further refined to in-
corporate flexural joints and structural damping. A prototype of the MGSP
featuring flexural joints was tested, and it yielded experimental outcomes in
close agreement with the finite element analysis results – the first six natu-
ral frequencies were close to the expected 29 Hz and vibration isolation of
about 22 dB/octave. The close agreement among analytical, finite element,
and experimental outcomes underscores the efficacy of our design approach
and the suitability of an MGSP for micro-vibration isolation applications in
spacecraft.
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1. Introduction

Rotating elements in reaction wheels, momentum wheels, and gimbal
antennas, as well as reciprocating subsystems in cryocoolers, induce vibra-
tion on spacecraft during on-orbit operations [1]. These in-orbit low am-
plitude micro-vibrations, occurring within a bandwidth of 250 Hz, adversely
affect the performance of optical payloads such as imagers/cameras and inter-
satellite communication links mounted on the spacecraft bus [1, 2, 3]. To mit-
igate these disturbances, isolators can be integrated between the spacecraft
and the noise sources. Furthermore, spacecraft experience intense vibrations
and shock environments during launch, with frequencies below 100 Hz and a
high quasi-static load of around 10g [1, 4]. This demands an isolation system
capable of handling both low-amplitude, multi-directional vibrations during
orbit and high-amplitude vibrations during launch.

Typically, the first six modes (three translation and three rotational) con-
tain most of the vibrational energy, and an effective vibration isolation sys-
tem needs to attenuate all six modes corresponding to the first six degrees of
freedom (DOF) equally. Numerous studies have investigated cubic configu-
ration [5, 6, 7] and other variants of Gough-Stewart Platform (GSP) [8] based
vibration isolators to achieve the desired vibration isolation. Consequently,
researchers have proposed decoupled and isotropic measures to enhance per-
formance [9, 10]. In recent years, significant research efforts have gone into
design and control of aspects of GSPs, such as orthogonality [10, 11], kine-
matic isotropy [12, 13], stiffness isotropy [14] and static isotropy [15, 16].
Most research on vibration isolation using GSPs has focused on employing
active control within a cubic architecture [5, 6, 7]. This preference arises be-
cause the cubic architecture possess the attractive decoupling characteristics.
However, in these designs, the different natural frequency peaks of first six
DOF modes could affect isolator performance due to coupling of the cross
DOFs as depicted schematically in Fig. 1a [17] – the vibration isolation region
for the X mode (beyond

√
2ω) is affected by the natural frequency peaks

of the Z and the Rot (X) modes. As a result, effective vibration isolation
for the three modes depicted in Fig.1a cannot be achieved. Similar challenge
arises in designing GSPs, with different natural frequencies, for vibration iso-
lation purposes. While kinematic or static isotropy in GSPs is effective for
precise pointing applications [9], it is not ideal for passive vibration isolation
because the resonance peaks are not aligned – the kinematic isotropic GSP
designed in [9] for precise pointing applications has six natural frequencies:
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80.4, 80.4, 80.4, 50.8, 50.8, and 35.9 Hz. This configuration implies that
the isolation region associated with the mode at 35.9 Hz is impacted by the
resonance peaks of the other modes.

Dynamic isotropy, with the first six natural frequencies corresponding to
the first six DOFs nearly equal, is a crucial design consideration [18, 19, 20],
and it ensures that resonance peaks are aligned. The benefits of dynamic
isotropy over other types of isotropies (stiffness, force, and velocity isotropies)
stem from its dependence on the payload’s mass center and inertia proper-
ties, along with geometric and stiffness parameters. The dynamic isotropy
configuration can simplify damper tuning in passive vibration control and
identical dampers can be used in the legs of the GSP [21]. From an active con-
trol perspective, a multi-input-multi-output (MIMO) system can be treated
as several single-input-single-output (SISO) systems, allowing for a decou-
pled control strategy in an isotropic design [9, 21, 22] – in a non-isotropic
and coupled design, the coupling among all six DOFs of the GSP compli-
cates controller design, leading to a reduction in control accuracy [9]. Active
control systems possess the capability to fulfill both fundamental vibration
control requirements: low amplification at resonances and a high roll-off rate
in the isolation region. However, active control systems necessitate electronic
systems for signal processing and significant computational capacity for real-
time computation, resulting in increased spacecraft mass and power require-
ments. Therefore, designing a passive vibration isolation system based on a
dynamically isotropic GSP is advantageous. This approach provides uniform
damping while addressing the critical considerations of mass and power re-
quirements in spacecraft applications. Furthermore, a dynamically isotropic
GSP also provides stability information, as the lowest natural frequency sig-
nificantly influences dynamic stability [23]. Ensuring nearly equal natural
frequencies also maximizes the lowest natural frequency, which is favorable
for stability. Additionally, an isotropic manipulator excels in kinematic ac-
curacy and avoids singular configurations [12].

Previous research on decoupling or achieving dynamic isotropy has pri-
marily focused on a 6-6 Gough Stewart Platforms (GSP) [8, 18, 21, 22]. The
literature highlights that a conventional GSP or standard GSP (SGSP) lacks
static isotropy [15] and dynamic isotropy [18]. Achieving dynamic isotropy
with an SGSP is practically challenging due to restrictions in meeting inertia
conditions. Specifically, the Z component of inertia (IZZ) needs to be four
times the X and Y components (IXX = IY Y ) [18]. Dynamic isotropy can be
attained using a two-radii GSP or a modified GSP (MGSP) [20, 24, 25]. As
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Figure 1: a) Transmissibility curve for a non-isotropic design, b) Modified Gough Stewart
platform (MGSP)

the name implies, unlike in the conventional 6-6 GSP where anchor points
lie on a single radius, in the two-radii GSP or MGSP, the anchor points are
distributed on two radii on each platform, as illustrated in Fig. 1b. The ad-
ditional design variables (two radius and two angles) in an MGSP, compared
to a conventional GSP, provide greater design flexibility and enables a design
for dynamic isotropy.

Yi et al. [10] developed techniques for generating locally orthogonal and
isotropic classes of modified GSPs. However, these designs do not address dy-
namic isotropy, which is crucial for effective vibration isolation design. Tong
et al. [24] attempted to streamline analytical solutions to accommodate vari-
ous mass center requirements and employed particle swarm optimizations to
ensure optimal outcomes, but the solutions weren’t expressed in straightfor-
ward explicit forms, which could complicate their practical implementation.
Jiang et al. [25] utilized a pair of circular hyperboloids to characterize a mod-
ified GSP (MGSP), exploring the correlation between dynamic isotropy and
the geometric parameters of the hyperboloids. However, the study didn’t
provide general closed-form solutions, which limited their applicability to a
wider range of scenarios. The designing of dynamically isotropic MGSPs
from previous studies remains challenging as solutions are often implicit or
intertwined, lacking flexibility and feasibility regarding space constraints or

4



leg intersections in 3D space. In an earlier work [26], a partially dynamic
isotropic design, ignoring the torsional mode, was presented for an MGSP.

In this work, we derive the analytical solution for the design parameters
of a dynamically isotropic MGSP in closed-form. The 3-dimensional dy-
namically isotropic MGSP problem was transformed into a two-dimensional
geometry problem involving a pair of triangles with certain geometrical re-
lationships, and closed-form expressions involving the design variables were
obtained. While many existing works overlook the variation in the center of
mass (COM) from the mobile platform, our geometry-based design approach
takes into account the practicality of incorporating the general case of COM
variation. The results obtained from the geometry-based approach are vali-
dated using a finite element (FE) model in ANSYS®, revealing uniform nat-
ural frequencies across all the first six modes. Subsequently, we enhanced the
model to incorporate damping and flexural joints to address issues related to
friction, backlash errors, and lubrication associated with conventional joints,
which is especially pertinent in spacecraft applications [5, 7, 9]. The FE
model with flexural joints are in reasonable agreement with the analytical
formulation’s results – the difference is mainly due to the introduction of
parasitic stiffness at the flexural joints. An MGSP with flexural joints was
developed at the Indian Space Research Organization (ISRO), and exper-
imental findings are closely aligned with the FEM and analytical results.
The analytical formulation is modified to include damping in the legs of an
MGSP, and the damping values obtained from FE and experimental meth-
ods are used to validate our approach and assess the dynamic performance
of the dynamically isotropic MGSP. To the best of our knowledge, for the
first time, this work presents a detailed methodology for designing a dynamic
isotropic MGSP tailored to specific applications. Furthermore, none of the
previous studies have experimentally demonstrated dynamic isotropy in an
MGSP.

This paper is organized as follows: in Section 2, we present the analytical
formulation to obtain the design parameters of the MGSP. Section 3 presents
the design methodology for a desired requirement, Section 4 presents a valida-
tion of the analytical formulation using an FE model, and Section 5 presents
the experimental setup on MGSP for vibration isolation. Section 6 presents
the results of the experiments and a discussion on the comparison of the re-
sults obtained from the analytical, finite element model and experiments. An
analytical damping model consistent with our FE and experimental results
is developed. Finally, Section 7 presents the conclusion and scope for future
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work in this area.

2. Analytical Formulation

A Modified Gough-Stewart Platform (MGSP) is a 6-DOF parallel ma-
nipulator consisting of a mobile platform, a fixed base, and six legs with
prismatic joints connecting these two platforms, as shown in Fig. 1b. Each
leg of MGSP is connected to the mobile platform through a spherical joint
and to the base platform through a spherical or universal joint. The anchor
points A1 to A6 are located on two radii represented by variables Rti (inner)
and Rto (outer) with center Co. Similarly, the points B1 to B6 are located
on two radii on the base platform represented by Rbi (inner) and Rbo (outer)
with center O. There are two different sets of three identical legs with equal
angular spacing of 120◦ along the circumference of each radius. The variable
H denotes the height between the two platforms in its neutral configuration
where both platforms are parallel to each other. The variable Y denotes the
height of the payload’s COM from the movable platform. The coordinates of
any point expressed in the base frame {B} are represented by {xb, yb, zb} and
on the moving frame {P} are represented by {xp, yp, zp}. The vector OB1,
with magnitude equal to Rbo, is chosen along Xb. The variable αbi, αto, and
αti denote angles made by vectors OB4, CoA1, and CoA4 with vector Xb,
respectively (see Fig. 1b).

The analytical formulation for the dynamic isotropy in MGSP was derived
using the force transformation matrix ( [B] ) [5, 26, 27], which maps joint
space forces to the task space. All legs are assumed to have an equal axial
stiffness k in their joint space. Therefore, the stiffness matrix [KT ] in the
task space [5, 28] is given by

[KT ] = k[B][B]T (1)
The force transformation matrix ([B]) for MGSP is given by

[B]6×6 =

[
s1 ... s6

(B[R]P (
Pp1 − PHc))× s1 ... (B[R]P (

Pp6 − PHc))× s6

]
(2)

where sj =
Bt+B [R]P

Ppj −B bj
lj

, j = 1, . . . , 6. The vector Sj (= ljsj) is

directed along the respective leg of an MGSP with length lj while Bt is a
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vector from centre of the base platform to the centre of the mobile platform.
The symbols Ppj and Bbj represent the coordinates of an anchor point on the
mobile and base platform expressed in their respective frames. The vector
PHc represents the location of the combined COM of the mobile plate and
the payload with respect to the mobile platform.

The analytical formulation for MGSP assumes that the MGSP it is at
its neutral position. This is a reasonable assumption for a micro-vibration
isolation and control application, as there will not be a large motion of the
mobile platform. In this neutral configuration, both platforms are parallel
(implying B[R]P = [I]), and the payload’s COM, the centre of the mobile
platform, and the centre of the fixed base lie on the same vertical line (im-
plying Bt = [ 0 0 H ]T and PHc = [ 0 0 Y ]T ). The matrix [B] is constant
at this neutral position, and for a given [B], the connection points are not
uniquely determined [10, 18]. This results in different design configurations
as presented in Section 3 on the design of dynamically isotropic MGSPs.

The mass matrix [M]6×6 will have a diagonal form if the orientation of the
principal axes of the payload is chosen to coincide with the global coordinate
system and is given by:

[M] = diag[mp, mp, mp, Ixx, Iyy, Izz] (3)
where mp represents the mass of the payload (including the mass of the mobile
platform) and Ixx, Iyy, and Izz denotes its principal moment of inertia along
X, Y , and Z directions with respect to its COM. The mass and inertia of
the legs are neglected as they are expected to be significantly smaller than
the total payload mass being manipulated.

From Eqs. (1), (2) and (3), the natural frequency matrix [G] in task
space [18, 24, 25] can be expressed as

[G] = [M]−1[KT] = [M]−1k[B][B]T =

[
P T
TT U

]
(4)

with [P] = diag(λ1, λ2, λ3), [U] = diag(λ4, λ5, λ6), [T] =

µ11 −µ12 0
µ12 µ11 0
0 0 µ33


The appearance of zero terms in the above matrix [G] is due to symme-

tries arising from the equal angular spacing of 120◦ among the same type of
legs. The expressions for λi and µij in the above equations are given in the
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Appendix. The leg length ratio, a, is a variable that relates the lengths of
two sets/types of legs by

lo2 = a lo1 (5)
where, for the first set of legs, lo1 = |S1| = |S2| = |S3| and similarly,
lo2 = |S4| = |S5| = |S6| (detailed expression are given in Appendix).

The obtained matrix [G] is a function of all the design variables for an
MGSP, i.e., Rbo, Rto, Rbi, Rti, H, Y, αto, and (αbi − αti). These design
parameters can be obtained by solving the coupled transcendental equations
generated by equating the six natural frequencies. The matrix [G] will be-
come a diagonal matrix if the off-diagonal terms of the matrix [G] (i.e., [T])
are set to zero, and then the diagonal terms of the [G] matrix will represent
its eigenvalues. For dynamic isotropy of the MGSP at its neutral position,
the following condition must be satisfied:

λ1 = λ2 = λ3 = λ4 = λ5 = λ6 = ω2 and µ11 = µ12 = µ33 = 0 (6)
where, ω is the natural frequency of the MGSP and λ1 to λ6 are the eigen-
values of the matrix [G]. It can be observed from Eq. (4) that the variable
λ1, λ2 and λ3 corresponds to X, Y and Z DOFs, while variable λ4, λ5 and
λ6 corresponds to Rot(X), Rot(Y ) and Rot(Z) DOFs, respectively.

3. Design of Dynamically Isotropic MGSP

The design of a dynamically isotropic MGSP involves finding unknown
parameters from the known given parameters and free/input variables. In
the intended application, the payload properties, such it’s mass (mp), inertia
(Ixx, Iyy, Izz), and centre of mass (COM) height (Y ) are known to us. For
an axisymmetric wheel-like payload, Ixx = Iyy implying λ4 = λ5 in Eq. (6).
For ease of understanding, we will first consider the case when there is no
COM variation (Y =0) and then extend our formulation to the practical case
of Y ̸= 0.

3.1. COM on the mobile platform (Y = 0)
All the dynamic isotropic conditions mentioned in Eq. (6) were simplified,

and results are listed in the second column of Table 1. Figure 2a presents
a geometrical interpretation of the simplified results in the second column
of Table 1. It can be seen that the 3D MGSP design problem reduces to a
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Table 1: Geometrical interpretations of a dynamically isotropic MGSP with Y = 0

Case Condition
used

Simplified Equation Geometrical Inter-
pretation in Fig. 2a

1 λ1 = λ3 and
Eq. (5)

b1
2 = R2

ti +R2
bi −

2RtiRbi cos (αbi − αti)
∆QoP1R1 :triangle
with sides Rbi, Rti and
b1 (cosine rule)

2 λ1 = λ3 and
Eq. (5)

b2
2 = R2

to +R2
bo −

2RtoRbo cos (αto)
∆QoP2R2 :triangle
with sides Rbo, Rto

and b2
3 µ11 = 0 RtiRbi sin (αbi − αti)= a2

RtoRbo sin (αto)
Area of ∆QoP1R1

= a2 × (Area of
∆QoP2R2 )

4 µ12 = 0 Rti(Rti −
Rbi cos (αbi − αti)) = a2

Rto(Rbo cos (αto)−Rto)

(QoR1)Pg1 = a2

(QoR2)Pg2

5 λ4 = λ3 and
λ4 = λ6

a2R
2
to

a2 + 1
+

R2
ti

a2 + 1
= 2Q

P3R3 is a constant
magnitude line treat-
ing Rto and Rti as per-
pendicular basis.

6 µ12 = 0 and
µ11 = 0

tan θ1 = tan θ2 ∠QoR1P1 = 180◦ −
∠QoR2P2 =⇒ θ1 =
θ2 = θ

where b1 = H
√
C1, b2 =

H
√
C2

a
, C1 =

(
3a2+1

2

)
, C2=

(
a2+3
2

)
set of two triangles in 2D space, as shown in Fig. 2a, and the geometrical
interpretations are as listed in the third column of Table 1. The geomet-
rical interpretations greatly simplifies the process of developing closed-form
solutions to all the design variables. It is to be noted that the payload prop-
erties are expressed in terms of ratios in our expressions as K(= Ixx/Izz) and
Q(= Ixx/mp) while leg length ratio a (refer to Eq. (5)) is taken as free/input
variable. The design variable obtained by satisfying the geometrical condi-
tions in Table 1 will represent a dynamically isotropic configuration in MGSP.
There can be many such triangle pairs implying multiple solutions, and the
choice of triangle pair will be governed by space constraints or dimension
requirements. It is, however, challenging to construct a general triangle pair
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(a) (b)

Figure 2: a) Geometrical interpretation of Table 1, b) General triangle obtained using
the corresponding right-angled triangle.

(∆QoP1R1 and ∆QoP2R2 in Fig. 2a) with geometrical relations that can yield
the desired design variables (dimensions) of MGSP. To solve for a general tri-
angle, the corresponding right angle (∆QoP1,rR1 in Fig. 2b) can be deduced
by making use of the Pythagoras theorem. All the parameters denoted by
subscript ‘r’ correspond to the right angle triangle case for a particular tri-
angle pair. It is to be noted that this right-angle triangle (∆QoP1,rR1) and
its triangle pair (∆QoP2,rR2) also represent one of the dynamical isotropic
configuration.

The use of Pythagoras theorem in a right angle triangle (∆QoP1,rR1)
in our previous work (refer to [28]) yielded a set of solutions by solving
expression analytically in Eq. (6). Hence, the variables corresponding to this
right-angle case are given by:
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Rti,r =
√
QC2, Rto,r =

√
QC1

a
,Hr =

√
Q(KC1C2 − a2)

KC2
1

,

θ = arctan

(
a√

KC1C2 − a2

)
and (αbi,r − αti,r) = 90◦ − θ

Rbi,r =

√
Qa2

KC1

, Rbo,r =

√
QC1

a2
+

Q(KC1C2 − a2)(2C1 + C2)

KC2
1a

2

αto,r = arctan

(
b2r sin(θ)

Rto + b2r cos(θ)

)
(7)

The in-depth analytical development of these expressions for right angle case
can be referred to from previous work [28] where C1 and C2 are functions of
a as in Table 1.The geometry for this case, i.e., ∆QoP1,rR1 and ∆QoP2,rR2

can be constructed from the known results in Eq. (7). We can extend this
specific case study to generate a general solution set using our geometry-
based approach, as shown in Fig. 2b.

Any perturbations (scaling) along the line P1,rR1 keeps the leg length
ratio a constant. This implies that scaling of P1,rR1 to generate P1R1 (hence
∆QoP1R1) will keep design variables such as Rti(= Rti,r), Rto(= Rto,r) and
θ1\θ2 = θ the same/common as in the right angle triangle case given in
Eq. (7). To incorporate this scaling, another free/input scaling variable f is
introduced, and the new height of MGSP in any general triangle (∆QoP1R1)
can be given as:

H = fHr = f

√
Q(KC1C2 − a2)

KC2
1

(8)

This can be seen in Fig. 2b, where P1R1 = f P1,rR1 and their lengths are
directly proportional to H. The scaling variable f can be varied to generate
different dynamic isotropic configurations with variable a constant. Each of
the a values corresponds to a different triangle pair over which the variable f
can vary depending on the expected design parameters’ values for an MGSP.
In each triangle pair, f = 1 corresponds to the right angle triangle case.

The new triangle pairs obtained due to scaling (∆QoP1R1 and ∆QoP2R2)
also satisfy all the isotropic/geometric conditions in Table 1 and represents a
dynamically isotropic design. All other design variables for the general case
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Table 2: General closed-form solution for design variables (Y = 0) in their explicit form

Variable Rti(= QoR1) Rto(= QoR2) H (∝ P1R1 or ∝ P2R2)

Solution Same as Eq. (7) Same as Eq. (7) =fHr (see Eq. (8))

Variable Rbi(= QoP1) Rbo(= QoP2)

Solution See Eq. (9)

√
QC1

a2
+

fQ(KC1C2 − a2)(2C1 + fC2)

KC2
1a

2

Variable tan(αbi − αti) (= ∠R1QoP1) tanαto (= ∠R2QoP2)

Solution
(

fa
√

(KC1C2 − a2)

KC1C2 − f(KC1C2 − a2)

) (
b2 sin(θ2)

Rto + b2 cos(θ2)

)

(Rbo, αto, Rbi, αbi − αti) can be obtained in their explicit closed-forms by
using geometrical relations in Fig. 2b and known variables in Eqs. (7) and (8).
For, example,the variable Rbi can written as

√
(Rti − b1 cos θ1)

2 + (b1 sin θ1)
2

from the geometry in Fig. 2b, and we get

Rbi =

√
QKC1C2 + fQ(KC1C2 − a2)(f − 2)

KC1

(9)

Similarly, using geometry, the unknown variables can be deduced from known
variables, and the general solutions for each parameter are summarized in Ta-
ble 2 in their explicit form. These solutions can be used for a straightforward
design of a dynamically isotropic MGSP.

Observations.

3.1.1. Design parameter variation
The variation of design parameters of a dynamically isotropic MGSP with

respect to free variables a and f will facilitate arriving at a suitable design
respecting space and physical constraints. Figure 3 represents variation of
parameters for a typical payload with mp = 10 kg, Ixx = 0.0663 kg m2,
Iyy = 0.0663 kg m2, and Izz = 0.1230 kg m2 for two values of f , i.e., 1 and
2.5. Any value of a in the case of f = 1 (refer to Figs. 3a and 3b) represents
a right angle triangle (∆QoP1,rR1) in Fig. 2b. The height H of the platform
is scaled up by 2.5 times when f = 2.5 (refer to Fig. 3c), in consistency with
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(a) For f = 1 (Right angle triangle solution set) (b) For f = 1 (Right angle triangle solution set)

(c) For f = 2.5 (d) For f = 2.5

Figure 3: Variation of parameters for a dynamically isotropic MGSP (Y = 0)

Eq. (8) (i.e. H = fHr). It can also be observed that upon scaling (changing
f), the variables Rti(= Rti,r) and Rto(= Rto,r) do not change – consistent
with our geometry based approach, and can be observed in Fig. 2b.

Another interesting observation is that at a = 1, the two radii on the
mobile platform become equal, i.e., Rto = Rti (irrespective of f). This is a
point of configuration transition (a∗) where there is a transition of MGSP
configuration from outer-outer (inner-inner) type leg connections (a < 1) to
outer-inner (cross leg) type leg connections (a > 1) (see Figs. 3a and 3c).
Outer-to-outer or inner-to-inner type leg connections imply that the outer
radius of the mobile platform is connected to the outer radius of the base
platform (Rto > Rti or Rbo > Rbi ). In the case of Y = 0 (COM on the mobile
platform), a∗ is always equal to one, and the value of radius at this point is
equal to

√
2Q (Rti = Rto =

√
2Q). All choices of MGSP design with a < 1
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will ensure mechanical feasibility, as legs can never interfere in 3D space in
these configurations. However, an investigation of feasibility is needed for
design with a > 1.

3.1.2. Dynamically isotropic natural frequency
The design variables obtained in Table 2 can be substituted in Eqs. (4)

and (6) to obtain equal first six natural frequencies given in terms of the
mass of payload and axial stiffness of legs as:

λ1 = λ2 = λ3 = λ4 = λ5 = λ6 = ω2

and ω =
√

2k/mp

(10)

The total stiffness in all six legs, i.e., 6k, will be uniformly distributed along
the three independent axes in a dynamically isotropic MGSP (2k in each di-
rection) due to stiffness isotropy achieved along the translational directions
and can be observed from Eq. (1). Hence, the dynamically isotropic natural
frequency will be

√
2k/mp , consistent with Eq. (10). This also implies that

the absolute maximum of the lowest eigenfrequency is the same as dynami-
cally isotropic natural frequency [19].

3.1.3. Invariant line with constant magnitude
There is an invariant line (P3R3) in Fig. 2a whose length remains constant

(=
√
2Q) irrespective of variable a (any triangle). However, the inclination

of this line varies with a and is given as ϕ (= arctan(
√

C1/C2)).

3.1.4. Non-isotropy of Traditional GSP
The well-known fact that a traditional GSP does not have a dynamically

isotropic configuration can also be verified by this geometry-based approach.
To attain the necessary condition of Rbi = Rbo and Rto = Rti for a traditional
GSP, ∆QoP1R1 and ∆QoP2R2 in Fig. 2a must be congruent requiring angle
θ2 to be obtuse. This violated the dynamic isotropy condition in Table 2,
i.e., tan θ1 = tan θ2.

3.2. COM not on the mobile platform (Y ̸= 0)
In practice, the centre of mass (COM) of the MGSP is not on the mobile

platform but varies with a payload mounted on the mobile platform. The in-
sight gained from the case of Y =0 can now be extended to develop a general
case considering the variation of the centre of mass. Simplifying the Eqs. (4),
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(6) and Appendix, we can develop a similar geometry-based approach as in
Section 3.1. The overall dynamic isotropy problem is reduced to a pair of
triangles, but the value of each side now incorporates the variable Y , as seen
in Fig. 4a. The major difference with respect to the previous case is that
here θ1 ̸= θ2 and similar to Section 3.1, a general triangle ∆QoP1R1 can be
obtained by scaling side P1,rR1 of right angle triangle ∆QoP1,rR1 in Fig. 4b.
Using Pythagoras theorem in ∆QoP1,rR1 and solving all the conditions an-
alytically in Eq. (6) (refer to [28] for detailed analytical development), we
get all the variables for the right-angle triangle case as a function of payload
properties and variable a given as:

Hr =

√
Q(KC1C2 − a2)

KC2
1

− Y = Ho − Y,

Rti,r =
√

QC2 + C1Y 2 − 2Y Ho C1

Rbi,r =

√
Qa2

KC1

(αbi,r − αti,r) = atan
(
C1

√
K(−Y +Ho)

a
√
Q

)
θ1 = 90◦ − (αbi,r − αti,r)

Rto,r =

√
QC1 + 2Y Ho C1 + C2Y 2

a2

Rbo,r =

√
QC1 + (2C1 + C2)Ho

2

a2

θ2 = acos
(
Rti,r

√
C1 cos (θ1) + 2Y (a2 + 1)

aRto,r

√
C2

)
αto,r = asin

(
Rbi,rRti,r sin (αbi,r − αti,r)

a2Rbo,rRto,r

)

(11)

where Ho =

√
Q(KC1C2 − a2)

KC2
1

is a variable denoting the height of the plat-

form in Eq. (8) ( right angle triangle case for Y = 0 in the previous section).
Interestingly, the height Hr (right-angle triangle case) in Fig. 4b is Ho − Y ,
and the total height from the base platform to COM will hence be Ho in both
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(a) (b)

Figure 4: a) Geometrical interpretation of a dynamically isotropic MGSP (Y ̸= 0) b)
General triangle obtained using a corresponding right-angled triangle for Y ̸= 0

the cases, i.e., when Y = 0 and Y ̸= 0. For this reason, the dimension of the
base platform variable (Rbo,r and Rbi,r) supporting the same COM heights
from the base is the same as in Eq. (7) and Eq. (11).

Similar to Section 3.1, ∆QoP1,rR1 and ∆QoP2,rR2 can be constructed
from Eq. (11) and then scaling is done along the line P1,rR1 to generate
P1R1 such that P1R1 = f P1,rR1 (hence ∆QoP1R1 is generated). All other
design variables for Y ̸= 0 case apart from common variables (like Rti(=
Rti,r), Rto(= Rto,r), θ1, θ2) can be derived using general trigonometry and
geometry as:

H = f(Ho − Y )

Rbi =

√
(Rti − b1 cos θ1)

2 + (b1 sin θ1)
2

Rbo =

√
(Rto + b2 cos θ2)

2 + (b2 sin θ2)
2

αbi − αti = arctan

(
b1 sin(θ1)

Rti − b1 cos(θ1)

)
αto = arctan

(
b2 sin(θ2)

Rto + b2 cos(θ2)

)
(12)

where values of b1 and b2 are given in Table 1. Hence, all the desired dy-
namically isotropic design variables can be obtained from this approach with
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(a) For f = 9.9 and Y = 0.045 m (b) For f = 9.9 and Y = 0.045 m

(c) For f = 9.9 and Y = 0.02 m (d) For f = 5 and Y = 0.02 m

Figure 5: Variation of parameters for a dynamically isotropic MGSP with COM variation

input variables (a and f) and known payload variables Q, K, and Y .

Observations
The same set of observations as in the previous case can be seen when the

COM is varied; However, COM variation (Y ) affects the pattern of variation
of parameters. Figures 5a and 5b show the parameters’ variation of a dynami-
cally isotropic MGSP for a typical payload of 10 kg (properties: mp = 10 kg,
Ixx = 0.0663 kg m2, Iyy = 0.0663 kg m2, and Izz = 0.1230 kg m2) with
Y = 45 mm and f = 9.9. Here, no configuration transition point (a∗ where
Rto = Rti) can be observed, implying only outer-outer ( or inner-inner) type
radius connections. The pattern of parameter variation changes when COM
is changed from Y = 45 mm to Y = 20 mm in Fig. 5c. The point of config-

17



Table 3: DII in FE simulation for various cases

Case Natural frequencies DII
1 Analytically

as in Sec-
tion 3.2

30.46, 30.46, 30.46, 30.46, 30.46,
30.46

1.00

2 Conventional
joint (sec-
tion 4.1)

29.76, 30.26, 30.28, 30.57, 30.58,
30.60

1.028

3 Flexural joint
in Fig. 6b

29.41, 29.46, 30.59, 30.06, 30.52,
30.55

1.039

4 Flexural joint
in Fig. 6c

29.49, 29.51, 29.65, 30.17, 30.70,
30.71

1.041

uration transition (a∗) now occurs at point a∗ = a = 2.2 and is in general,
a function of variable Y . On the other hand, there is no change in a∗ when
variable f is varied to 5 in Fig. 5d. This is also evident from Fig. 4b, where
variables Rto and Rti remain the same on scaling P1R1 (using variable f) for
a given a. It is crucial to select the parameters with consideration of space
constraints, particularly in spacecraft applications where space is extremely
limited. The parameters H+2Y and max(Rbi, Rti, Rbo, Rto) define the overall
volume occupied by the setup.

Along similar lines, the dynamically isotropic natural frequency remains
the same as in Eq. (10) (ω1 = ω2 = ... = ω6 =

√
2k/mp)

4. Validation through simulation in ANSYS

Simulations were done on ANSYS® before arriving at the final design.
The initial FEM considers using conventional joints and other assumptions
(no damping) adopted during the analytical formulation. The FE model is
later extended to flexural joints and including damping.

4.1. FEM validating analytical formulation
The mobile and base platforms are treated as rigid bodies and modeled

using Shell 181 elements, while each leg is treated as an ideal spring (Link 180
element). The legs have no mass and inertia, while the payload is treated
as a lumped mass. The multi-point constraint (MPC) beam was used to
fix the payload (lumped mass) with the mobile platform. The leg stiffness
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(a) Dynamically isotropic MGSP model in ANSYS

(b) (c) (d)

Figure 6: MGSP with various flexural joints

was chosen to be k = 1.9 × 105 N/m without any damping to bear the
launch loads. For a typical spacecraft wheel of 10 kg with properties listed in
Section 3.2 and Y = 45 mm, a model was built satisfying all space constraints
with variable a = 1.4 and f = 9.9 giving height H = 73 mm. The joints
resemble conventional joints as in the analytical formulation, and all the
parameters for FEM are taken using the geometry-based approach discussed
in the previous section. All six natural frequencies were found very close to
each other, validating analytical formulation (refer to Case 2 in Table 3) with
DII=1.028. Dynamic isotropy index (DII) quantifies the frequency spread,
representing the ratio of the largest to the smallest natural frequency among
the first six modes. Our results in all configurations are very close to the
ideal dynamically isotropic MGSP with the same natural frequencies (DII=1,
refer to Case 1, Table 3). The natural frequencies obtained are very close to
analytical natural frequency (ω1 = ω2 = ... = ω6 =

√
2k/mp).

4.2. FE Analysis with flexural joints based MGSP considering damping
The use of conventional joints for the application of vibration isolation in

spacecraft can induce backlash error, friction, and lubrication issues. There-
fore, using flexural joints instead of conventional joints in MGSP is a viable
solution for this application at the expense of additional parasitic stiffness,
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as shown in Fig. 6a. Ideally, a flexural joint for this application should have
low bending stiffness, high axial stiffness, high shear stiffness, and low tor-
sional stiffness [5, 7, 9]. High axial stiffness ensures passing on the control
load to the mobile platform in an active vibration isolation system. This also
ensures the safe distribution of the launch loads across the legs. The local
modes of the legs should occur at higher frequencies, demanding a higher
shear stiffness flexural joint design to avoid interference in the working range
of the MGSP (i.e., the required isolation region). The spread of the nat-
ural frequency can be minimized to a narrow bandwidth with low bending
and torsional stiffness design. Various flexural joints depicted in Figs. 6b, 6c
and 6d in a dynamically isotropic MGSP design were explored along these
lines, and the results listed in Cases 3 and 4 in Table 3 confirms its effec-
tiveness for use in vibration isolation applications. The inclusion of bending
stiffness due to flexural joints, [Kb], in the analytical model [5] alters the
overall stiffness matrix in Eq. (1) as follows:

[KT ] = k[B][B]T + [Kb] (13)
Nonetheless, the influence of the [Kb] term is minimal, as indicated by the
negligible difference in the DII values between conventional joints and flex-
ural joints in Table 3. Therefore, it is reasonable to disregard the bending
stiffness effect for the flexural joints in the analytical formulations employed
in this study. All the parts are made of Aluminum alloy 2024 and possess an
inherent structural damping. Hence, the leg assemblies are given equivalent
viscous damping of around ζ = 2 % (in their joint space) within the standard
range, being treated as continuous metal structures with flexural joints. The
damping model is incorporated in our analytical formulations in Section 6.2
after the study of experimental damping values.

4.2.1. Frequency Response Function (FRF) of the MGSP
The FRF of the dynamically isotropic MGSP can be seen in Fig. 7a where

the three modes (i.e., X, Y and Z) are observed to overlap each other per-
fectly. The steady-state dynamics of the MGSP were studied by exciting the
base with unit displacement in all DOFs (rotations and translations one by
one), respectively. The FRF curves define the relations between the response
of COM of the payload and inputs given to the base platform. The overlap-
ping of curves indicates that the damping is uniformly distributed across the
three axes, and their values are calculated using the half-power bandwidth
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(a) FRF of the X, Y and Z modes (b) FRF : when only Z mode is excited

Figure 7: FEM results

method as listed in Table 5. FEM results indicate that MGSP will have an
overall equivalent viscous damping of nearly 4% in all the modes. The com-
parison with the experimental and analytical results will later be discussed
in Section 6. Another important observation from this analysis was the min-
imal or negligible interference of the cross-DOF modes when a particular
DOF mode is excited. For e.g., Fig. 7b shows FRF in the log scale when the
translational mode along the Z is excited and all cross-mode responses are
seen to have relatively negligible value, which is a required characteristic for
our application.

4.2.2. Mode shapes of the MGSP
The MGSP mode shapes show pure bending, bounce, and torsion mode

with a small amount of mixing of other modes, as shown in Fig. 8, while
shear dominant mode exists with a mixture of bending modes. The first
two modes are shear dominant bending type and similar in nature along the
perpendicular axis X and Y (refer to Fig. 8a). The center of the mobile
platform has significant displacement in the shear case, contrary to the pure
bending case in Fig. 8d, where it has negligible displacement at the center.
The last two modes are pure bending modes (refer to Fig. 8d) about X and
Y axis. The third and fourth modes are pure bounce and torsion mode, as
evident from Fig. 8b and 8c.

4.2.3. Final model and prototype
The CAD model, as shown in Fig. 9a, was finalized after considering

all the constraints and gaining experience from the development process of
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Figure 8: a) Shear dominant plus bending mode (first two) b) Bounce/Plunge mode c)
Torsion mode d) Bending mode (last two modes)

MGSP design. The mobile platform, along with fixed boundary conditions
at the anchorage points, has a sufficiently high natural frequency (order of ∼
700 Hz), preventing its interference in the isolation region. The triangle shape
of the mobile platform is designed to save mass; however, it does affect the
overall asymmetricity property of the payload (mobile platform plus wheel).
A dummy wheel, as shown in Fig. 9b with approximately similar inertia
properties to the 10 kg reaction wheel (refer to Section 3.2), was used for
testing purposes.

5. Experimental Setup

The actual MGSP prototype, as shown in Fig. 10, was fabricated and
tested with the dummy wheel payload at the ISRO vibration test facility. The
flexural joints shown in Fig. 10a were realized through the electrical discharge
machining method. All six modes of MGSP (rotational and translational)
were extracted using different methods.

The lateral modes (X and Y modes) were obtained by mounting the fixed
base on the slip table as shown in Fig. 10a and exciting the base platform
with an acceleration sine sweep of 0.5 g constant amplitude sweeping from 5-
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(a) Final dynamically isotropic MGSP CAD model (b) Dummy payload wheel

Figure 9: Final Design

(a) Slip table for X and Y modes (b) Longitudinal electro-dynamic shaker for Z mode

Figure 10: Dynamically isotropic MGSP Prototype with test setups

500 Hz. The response was captured using tri-axial accelerometers (Make: B
& K, Model: 4517-002, sensitivity: approximately 10 mV/g) mounted on the
center of the payload wheel and fixed platform. The acceleration data were
acquired at 1 kHz, and the corner frequencies of the MGSP were extracted
from the FRF data. The longitudinal Z mode was obtained by mounting
the platform on a 4-ton rating electro-dynamic shaker (Make: Ling Dynamic
System, LDS, Model: 953 VIBRATOR TC.MPS 32) with the same excitation
signal used for the lateral modal test (refer to Fig. 10b). The total payload
mass (wheel and the mobile platform) was 10.37 kg, while the stiffness of the
legs was the same as k = 1.9× 105N/m.

The rotational modes were obtained using the impact hammer test, where
two accelerometers were mounted on the diametrically opposite ends of the
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Table 4: Comparison of natural frequencies of MGSP obtained via analytical solution,
FEM, and Experiment in Hz

Modes X Y Z Rot X Rot Y Rot Z
Analytical 30.46 30.46 30.46 30.46 30.46 30.46
FEM 29.49 29.51 29.65 30.70 30.71 30.17
Experiment 28.75 29.00 29.25 29.49 29.58 29.10

Table 5: Comparison of damping (in %) in MGSP obtained via FEM and Experiment

Modes X Y Z Rot X Rot Y Rot Z
FEM 4.23 4.23 4.00 3.30 3.60 3.50
Experiment ∼ 5.90 ∼ 4.90 ∼ 6.30 ∼ 3.41 ∼ 3.43 ∼3.05

payload, similar to Fig. 9b. The time domain data were acquired for each
axis using the combination of data from these two sensors. Therefore, the
damping for rotational modes was calculated using the logarithmic decre-
ment method (time domain), while the damping for translation mode was
calculated using the half-power bandwidth method (frequency domain).

6. Results and discussion

The analytical, FEM, and experimental results for natural frequency and
damping are shown in Tables 4 and 5. It can be concluded that the natural
frequencies for all the modes are close to FE and analytical method results.
The damping related to the Quality factor of the FRF curve is almost equal in
all three translation modes, similar to the FE result discussed in Section 4.2.1.
The damping results for rotational modes obtained via time domain data also
closely resemble each other in Table 5. The FRF curves for X, Y and Z
modes obtained experimentally can be seen in Fig. 11a, and the comparison of
the curves with FE results for each axis can be seen in Figs. 11b, 11c and 11d.
The equivalence of vital parameters like damping and natural frequencies was
confirmed through these curves, even though peak amplitude differs slightly
between the experiment and the FE simulation. The difference in peak can be
justified as the exact value of damping is difficult to predict in the assemblies.
Additionally, the MGSP base was mounted to the test setup via bolted joints
during experimentation, while the inputs were directly given to the base plate
in case of FE analysis. The friction at the joints in the prototype was not
taken into account in the computations. The roll-off after resonance for X,
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(a) FRF curves (Experiment) for translation modes (b) For X mode

(c) For Y mode (d) For Z mode

Figure 11: Experimental result for translation modes (i.e, X, Y and Z modes)

Y , and Z modes is approximately 29 dB/octave, both in simulation and
experimental results. Furthermore, the slopes in the region of isolation are
approximately 17-22 dB/octave (after the corner frequencies).

The performance of our isolators is superior or comparable in all aspects
to the well-known isolator developed at ULB, based on cubic GSP and voice
coil actuation [7]. From the transmissibility curve in [7], it is observed that
the slope in the isolation region without control is 14 dB/octave, and the
slope after incorporating active control is around 12 dB/octave. The peak is
reduced from about 23 dB (without control) to about 5 dB/octave (with ac-
tive control) in this work. Hence, our dynamically isotropic MGSP as a pas-
sive isolator performs well while also saving mass, power, and computational
resources compared to the active control cubic GSP. Ideally, there should be
no overshoot in active vibration isolation, but an overshoot of around 5 dB
is observed in [7] due to the relatively high frequency spread with a DII of
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(a) For Rot(X) mode (b) For Rot(Y ) mode

(c) For Rot(Z) mode (d) Impact hammer force data

Figure 12: Experimental result for Rotational modes (one data set of impact hammer test)

2.2, reflecting its non-dynamic isotropic design. This overshoot is also com-
parable to our passive dynamically isotropic MGSP, demonstrating that our
isolator performs reasonably well in the low-frequency amplification region
despite being passive-based. In the future, incorporating active damping
with a dynamically isotropic configuration in our work can further reduce
the overshoot to around the ideal case of 0 dB (transmissibility of one) in
the amplification region. Therefore, our dynamically isotropic-based isolator
performs well in both the amplification and isolation regions compared to
existing GSPs, highlighting the value of achieving dynamic isotropy.

A similar observation can be seen for rotational mode in Tables 4 with
natural frequencies equal to each other and also to the three translational
modes. Damping in rotational modes (refer to Table 5) can be seen as equal
to each other and quite close to the translational modes. Hence, it can be con-
cluded that dynamic isotropic configuration distributes damping uniformly
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(a) Standard deviation for natural frequency (b) Standard deviation for damping

Figure 13: Result for Rotational modes (Five experiment sets)

in rotational modes (like in translational modes), given identical damping in
leg assemblies. The time domain data (from accelerometers) used for cal-
culating natural frequency and damping parameters for Rot(X), Rot(Y ),
and Rot(Z) is shown in Fig. 12. The two accelerometer’s data for Rot(X)
and Rot(Y ) DOFs have an opposite phase owing to their diametrically oppo-
site placements, and their difference would reflect the rotational parameters.
Five hammer tests were repeated for each rotation DOFs, and the standard
deviations from the mean results are depicted in Figs. 13a and 13b.

6.1. Analytical vs. FEM vs. Experimental Results
All forms of results for a dynamically isotropic MGSP have a close re-

semblance with minor discrepancies of approximately 0.5-1 Hz for natural
frequency and about 0.01 for damping. Such discrepancies arise primarily
due to various factors and underlying assumptions. Firstly, our analytical
formulations assume that the legs possess negligible mass and inertia, con-
trary to the prototype. However, these values are very small compared to
the actual mass of a 10.37 Kg payload (each leg is around 110-120 grams1).
The legs in the analytical formulation assume only axial stiffness in contrast
with real-world scenarios where bending and other stiffness come into play
with flexural joints instead of conventional joints. The FE and the proto-
type have damping, which slightly influences the resonance peak obtained
with respect to the case with no damping in the analytical formulation. An-
other important factor to be considered is the slight deviation in the mass

1Smaller legs are 110 grams with a radius of gyration 23.58 mm while longer legs are
120 grams with a radius of gyration of 33.02 mm
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and inertia properties of the payload (dummy mass and mobile platform).
The payload was assumed to be asymmetric, but incorporating a triangular
platform along with a dummy wheel slightly disrupts the symmetrical dis-
tribution of the properties along X and Y axis. For the same reason, the
mass/inertia matrix is not diagonal but it is still diagonal dominant. Prac-
tical challenges further affect precision – achieving the intended stiffness of
the legs (k = 1.9× 105N/m) with high accuracy is difficult to obtain due to
small material property variations. The error induced during the fast fourier
transform (FFT) overestimates the experimental damping for X, Y and Z
modes. Moreover, the FRF curve exhibits dynamic changes around the res-
onance frequency, and using a step size of 0.25 Hz for translational modes
will capture the properties only at intervals of 0.25 Hz. Determining exact
structural damping in legs with different lengths seems tedious, leading to
inevitable differences between practical and FEM results, especially when
assuming equal structural damping for all legs.

Despite these complexities, the final outcomes are promising, demonstrat-
ing uniform natural frequencies of approximately 29 Hz and effective isolation
beginning around 41 Hz. This isolator can be used to effectively isolate vi-
bration from the spacecraft bus, offering substantial reductions in amplitude
at the mobile platform of the MGSP. For instance, reductions of up to 23.60
dB, 21.28 dB, and 17.30 dB in X, Y , and Z axis, respectively, can be
achieved from the vibration resulting for a typical reaction wheel operating
at an average RPM of 4200 Hz.

6.2. Incorporating damping in the analytical formulation
As previously discussed, accurately predicting damping in the theoretical

model is challenging and can be determined experimentally. By obtaining
the damping through experimental methods, we can develop the most ap-
propriate model for damping. The dynamic equation for MGSP [9] in the
case of free vibration is given by:

Ẍ + [M]−1[CT ] Ẋ + [M]−1[KT ] X = 0 (14)
where X = [X;Y ;Z; Rot(X); Rot(Y ); Rot(Z)]. Similar to Eq. (1), the damp-
ing matrix [CT ] can be written in the task space as c[B][B]T with c being the
damping constant along each leg. For a linear hysteretic material subjected
primarily to uniaxial loading, the loss factor(η) remains independent of the
stress field and can be considered a material constant. For such a material,
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we can construct a single degree of freedom (Kelvin-Voigt model) with equiv-
alent viscous damping along each leg [29]. With excitation frequency as ωe,
the equivalent damping constant c can be given as:

c =
kη

ωe

(15)

In a dynamically isotropic design, Eq. (14) reduces to six identical single
DOF equations of the form:

ẍ+
η

ωe

ω2 ẋ+ ω2 x = 0 (16)

and a dynamically isotropic system uniformly distributes damping. At the
resonant frequency, the loss factor ηo and equivalent viscous damping of the
system ζo are related to the loss factor η in a single DOF leg subjected to
uniaxial load as:

ζo =
ηo
2

=
η

2
(17)

The theoretical FRF curve can be derived from Eq. (16), and its comparison
with FE and experimental results for Z translation mode FRFs is shown in
Fig. 14a. An approximate 2% damping is observed in the system using the
theoretical model with the highest peak at resonance – the amplitude of the
peaks from the FE model and experiments are smaller. This is because the
theoretical model assumes the legs are subjected only to uniaxial loads and
have conventional joints, while in the FE model with rigid connections, other
types of loads at the flexural joints in the legs are present. Additionally, the
FE model does not account for damping due to friction in the joints. The
experimental FRF shows the lowest peak among all, as it includes additional
frictional damping in all the components of the system. The FE and theo-
retical FRF curves overlap in the isolation region due to the dominance of
excitation frequency over the small values of the loss factor, while the exper-
imental curve (with nearly the same slope) is offset due to the dependence of
material properties on the stress field and excitation frequency in the actual
material, which is challenging to account in theoretical and FEM modeling.

A practical approach to address the assumption of considering only uni-
axial loading is to assign the leg assemblies in the theoretical model with
the same damping obtained from FE or experimental data. When equiva-
lent damping of 4% from the FE model is applied to the leg assembly in the
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(a) 2 % damping in the leg assemblies
(b) 4 % damping in the leg assemblies (value from
FE model)

Figure 14: FRF curve for Z mode including damping in the analytical formulation

(a) 2 % damping in the leg assemblies
(b) 3.4 % damping in the leg assemblies(value from
experiment)

Figure 15: Comparison of dynamic response for Rot(X) mode by including damping in
the analytical formulation

analytical model, the FRF curves obtained using analytical results and FE
closely match and can be seen in Fig. 14b. This validates the incorporation
of damping in our analytical model.

Similarly, for Rot(X) mode depicted in Fig. 15a, the amplitudes of the
dynamic responses exhibit variation when 2% damping is assigned to the leg
assemblies, which does not account for frictional damping or addresses the
challenge of uniaxial loading. However, when a damping of 3.4 % obtained
experimentally is applied to Eq. (16) at their resonant frequency, the dynamic
responses obtained using the analytical approach and experiment show close
resemblance, as observed in Fig. 15b. This validates our analytical approach
for accounting damping in our system.
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7. Conclusion
This work presents the development process of a dynamically isotropic

Modified Gough Stewart platform (MGSP) in detail. A novel geometry-based
approach, based on a pair of triangles, is used to derive the various design
parameters for a dynamically isotropic design with equal first six natural
frequencies corresponding to the first six degrees of freedom. The multiple
solutions offer flexibility in design, aiding in the selection of designs satis-
fying space constraints and other feasibility challenges. Simulations were
done in ANSYS® with the selected design for our intended application of
micro-vibration isolation. The MGSP design incorporating flexural joints
was explored to overcome the friction, lubrication, and backlash issues of
conventional joints. Damping was incorporated into the FE model and later
in the analytical formulation. A prototype of a dynamically isotropic MGSP
with flexural joints was built, and experiments revealed encouraging results
for its application in micro-vibration isolation in spacecraft. The study’s
findings, including the convergence of analytical, FEM, and experimental re-
sults, provide compelling support for this conclusion. The first six natural
frequencies in all the cases were nearly the same (around 29 Hz), and the
damping was found to be close in rotational and translational modes. The re-
gion of isolation begins around 41 Hz for our applications, providing isolation
of about 22 dB/octave. Using the general design methodology presented, a
dynamically isotropic MGSP can be designed for a payload in an application
requiring vibration isolation. Our findings demonstrate that our dynami-
cally isotropic-based isolator performs effectively in both amplification and
isolation regions compared to existing isolators.

In the future, we plan to explore integrating control mechanisms into our
analytical model. An active vibration control system is known to achieve
minimal amplification at resonance while facilitating substantial attenuation
in the high-frequency spectrum (the region of isolation). Active vibration
entails a mass penalty due to the inclusion of electronic and other compo-
nents and incurs power consumption, a critical consideration in many space
applications. These and other aspects of vibration isolation will be taken up
in the future.
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Appendix

For Section (3), the value of all λs and µs in Eq. (4) are given as:

λ1 =
3k (l2o1Ψ1+l2o2Ψ2)

(2mpl2o1l
2
o2)

, λ2 =
3k (l2o1Ψ1+l2o2Ψ2)

(2mpl2o1l
2
o2)

,

λ3 =
3kH2(l2o1+ l2o2)

(mpl2o1l
2
o2)

,

λ4 =
3kY 2( l2o2Ψ2+l2o1Ψ1)+6HkY (Ψ3l

2
o1+Ψ4l

2
o2) + 3kΨ5H

2

(2Ixxl2o1l
2
o2)

, λ5 = λ4
(Ixx)
(Iyy)

,

λ6 =
3k(Ψ2

6l
2
o1+ Ψ2

7l
2
o2)

(Izzl2o1l
2
o2)

,

µ11 =
−3kH(−Ψ6l

2
o1+ Ψ7l

2
o2)

(2l2o1l
2
o2)

, µ33 =
3kH(−Ψ6l

2
o1+ Ψ7l

2
o2)

(l2o1l
2
o2)

,

µ12 =
3kH(Ψ3l

2
o1+Ψ4l

2
o2)+3kY (l2o1Ψ1+l2o2Ψ2)
(2l2o1l

2
o2)

where,

Ψ1 = R2
ti + R2

bi − 2RtiRbi cos (αbi − αti)

Ψ2 = R2
to + R2

bo − 2RtoRbo cos (αto)

Ψ3 = R2
ti −RtiRbi cos (αbi − αti)

Ψ4 = R2
to −RtoRbo cos (αto)

Ψ5 = R2
til

2
o1 + R2

tol
2
o2

Ψ6 = RtiRbi sin (αbi − αti)

Ψ7 = RtoRbo sin (αto)

lo1 =
(√

R2
to +R2

bo − 2RtoRbo cos (αto) +H2
)
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lo2 =
(√

R2
ti +R2

bi − 2RtiRbi cos (αbi − αti) +H2
)
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