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ABSTRACT 
A six degree of freedom (DOF) two-radii Gough-Stewart 

Platform (GSP) can be designed to be dynamically isotropic and 

has been proposed for micro-vibration isolation. In many 

applications, the torsional mode can be ignored, and a 5-DOF 

dynamically isotropic, parallel manipulator capable of 

attenuating three translational (3T) and two rotational (2R) 

modes are sufficient. In this work, we present the design of a 

novel two radii, 5-DOF dynamically isotropic parallel 

manipulator, which can be used for vibration isolation purposes 

where the torsion mode can be ignored. We present closed-form 

solutions in their explicit form to this design problem, and these 

are obtained using a geometry-based approach. The first design 

is based on a modification to the two radii GSP and provides 

enhanced design flexibility and feasibility. The second design of 

a decoupled 5-DOF GSP is based on superposing two 3-DOF 

dynamically isotropic or decoupled parallel manipulators, 

which are the well-known 3-3 RPS parallel manipulators. The 

closed-form solutions for these 3-DOF isotropic designs are 

obtained. It is shown that the 5-DOF decoupled design have two 

translational modes, namely the (X, Y) modes, which are 

decoupled from two rotational modes (Rot(X), Rot(Y)) and are 

controlled by two different sets of three struts. This feature can 

lead to simpler control and less power requirements if active 

vibration control is chosen. The designs presented in this work 

include the effect of asymmetricity and payload’s centre of mass 

variation in the moving platform. The dynamically isotropic and 

decoupled designs obtained were successfully validated using 

the finite element software ANSYS®. 

 

Keywords: Dynamic isotropy, Decoupling, Gough-Stewart 

Platform, Natural frequency matrix, Degree of freedom 

 

1. INTRODUCTION 
Precise micro-motion parallel manipulators (PM) are a 

current topic of interest for industries due to their wide range of 

applications, including chip assembly in the semiconductor 

industries, vibration isolation for space applications, small parts 

precision machining, cell manipulation in biotechnology, and 

precise surgery [1-4]. These micro-motion PMs offer several 

advantages over their serial counterparts, such as lower inertia, 

improved dynamic behaviour, better payload capacity, greater 

stiffness, high speed, and increased reliability and repeatability 

[1]. The major disadvantage of a general PM includes limited 

workspace and complex control algorithm [1]. Precise micro-

motion PMs do not suffer from this drawback owing to their low 

workspace requirements. On the other hand, the use of a 

dynamically isotropic or a decoupled configuration simplifies 

control, and a decoupled control strategy can be used as a multi-

input-multi-output (MIMO) system is ideally converted into 

several single-input-single-output (SISO) systems [5]. 

Additionally, dynamic isotropy implies that the first six natural 

frequencies are ideally the same, which is a primary design 

consideration for designing a micro-vibration isolator [2-4]. In 

such an ideal design, the region of isolation corresponding to a 

particular DOF (degree of freedom) will not be affected by the 

peak associated with the cross DOFs in the amplitude vs. 

frequency curve. Moreover, it is easy to tune a damper for a 

particular bandwidth, given all resonance peaks lie close to each 

other [3,4]. An isotropic manipulator is superior in kinematic 

accuracy and does not have singular configurations [6]. 

Most of the previous works on decoupling or dynamic 

isotropy configuration have been confined to 6-DOF 6-6 Gough- 

Stewart platforms (GSPs) [2,3,4,5,7-11]. Literature states that a 

conventional GSP cannot give static isotropy [11] and it also fails 

to give dynamic isotropy. However, dynamic isotropy can be 
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achieved using a two radii GSP or a modified GSP (MGSP). It 

differs from the conventional 6-6 GSP with the anchor points 

described on two radii on each platform instead of one radius in 

a traditional GSP, as shown in Fig. 1. Along the same lines, 

researchers also proposed the dynamic isotropy concept in GSPs 

with more than six active legs [4,12]. However, there are many 

applications where the 6-DOF is not necessarily required 

[1,13,14]. For example, most machining operations require a 

maximum of 5 DOFs [1]. In the context of the micro-vibration 

isolation, the rotating or reciprocating component may induce 

disturbance only along some specific directions, indicating a 

requirement for less than 6-DOF isolators. Therefore, the study 

of dynamically isotropic conditions for limited DOF 

manipulators remains a novel area for research. These limited 

DOF manipulators are more economical due to the requirements 

of fewer actuators [13]. In space application, this would 

significantly reduce power consumption. Due to their simplified 

mechanical structure, the manufacturing cost will also be lower 

for manipulators with less DOF [13]. With the motivation of 

utilizing advantages associated with a limited DOF PM as well 

as with a decoupled/isotropic design, we investigated dynamic 

isotropy and decoupling in applications requiring three and five 

DOF precise micro-motion applications.  

Five DOF manipulators in terms of mobility can be 

classified as 3R2T [15,16] or 2R3T [14,17] type (R denotes a 

rotational DOF, and T denotes a translational DOF). Piccin et al. 

in [17] proposed a 5-DOF (2R3T) parallel mechanism for the 

diagnosis and therapy of tumors in the context of interventional 

radiology. Maurin et al. in [18] built a 5-DOF robotic device to 

help practitioners perform accurate needle insertion while 

preserving them from harmful intra-operative X-rays imaging 

devices. Along similar lines, this paper first presents a closed-

form solution for a 5-DOF (2R3T) dynamically isotropic design 

in a two radii GSP. The isotropic design and solutions are more 

straightforward and mechanically feasible than a 6-DOF 

isotropic two radii GSP design presented in our previous work 

[3,4]. Solutions to another class of novel decoupled 5-DOF GSPs 

are obtained by geometrical superposition of two 3-DOF 

isotropic and decoupled parallel manipulators containing rotary 

(R), prismatic (P), and spherical (S) joints; one with isotropy in 

three translational DOFs (3T) and the other with isotropy about 

the X, Y rotations and along the Z translation (2R1T). In these 

special 5-DOF designs, the two rotational DOFs (about X and Y) 

are uncoupled from two translational DOFs (along X and Y). 

This means that only three struts need to be actuated for motion 

along any of these uncoupled DOF while other struts remain 

passive. While all the previous literature has discussed only 6-6 

conventional GSP or two radii GSP, which have rotational 

symmetry (equal angular spacing of mounting points along the 

circumference, typically 120°), this paper extends to three and 

four radii GSPs which do not show rotational symmetry. To the 

best of our knowledge, closed-form solutions to such 

configurations are not available in literature for unsymmetrical 

GSPs. The variation of the payload's center of mass (COM) from 

the top platform is considered in all our formulations. 

To arrive at the above-mentioned superposed design, 

dynamic isotropy in 3-DOF PMs is first investigated in both 3T 

and 2R1T configurations. Despite being a commonly studied 

manipulator (see for example [19-21]), the application of 2R1T 

remains limited since it can have only two orientation and one 

translational degrees of freedom [20]. The 3-DOF, 3-3 RPS 

parallel manipulators, can also show pure translational motions 

for a specific point in an arrangement where all struts meet at the 

payload’s COM and the dynamic isotropy with this specific 

geometry is also examined in this work. These 3-DOF PMs with 

pure translational motion have a potentially wide range of 

applications [13]. This work is also extended to include 

asymmetric 3-3 RPS PMs to enhance the design flexibility. 

 
FIGURE 1: TWO RADII MODIFIED GOUGH-STEWART 

PLATFORM 

 

2. 5-DOF DYNAMICALLY ISOTROPIC TWO RADII 
GSP (MGSP) 
 
2.1 Nomenclature 
Two radii Gough-Stewart Platform (MGSP) is a parallel 

manipulator with a movable top platform (payload mounted on 

it), a fixed base, and six struts with a prismatic actuator between 

them, as shown in Fig. 1. The anchoring points are on two radii 

and there are two sets of struts with three struts of equal lengths 

in each set. These struts have rotational symmetry of 120° angle 

along the circumference. The variables 𝑅𝑏𝑖 and 𝑅𝑏𝑜 are used to 

denote the inner and outer radii of the bottom platform, 

respectively. Similarly, 𝑅𝑡𝑖 and 𝑅𝑡𝑜 represent the inner and outer 

radii of the top platform. The co-ordinates of a point on the base 

frame {𝐵} are represented by {𝑥𝑏 , 𝑦𝑏 , 𝑧𝑏} and on the top or 

moving frame {𝑃} are represented by {𝑥𝑝, 𝑦𝑝′  𝑧𝑝}. The 

vector 𝒐𝑩𝟏 (magnitude equal to 𝑅𝑏𝑜) is chosen along 𝑿𝒃. The 

angle 𝛼𝑏𝑖, 𝛼𝑡𝑜, 𝛼𝑡𝑖 are angles made by vectors 𝒐𝑩𝟒, 𝒄𝒐𝑨𝟏, 𝒄𝒐𝑨𝟒 

with 𝑿𝒃, respectively. The symbol 𝐻 denotes the height between 

the two platforms. The struts are assumed to have a prismatic 

actuator (joint) connected to the top platform through a spherical 
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joint and to the bottom platform through a spherical or a 

universal joint. 

 

2.2 Formulation 
The use of the Jacobian matrix [5,7,9,10,12] or a force 

transformation matrix [3,4,8] for GSPs at their neutral position 

is a reasonable assumption for precise micro motion PM, where 

the motion of the top platform is very small (e.g., micro-vibration 

isolation). The force transformation matrix ([𝐁]) is the transpose 

of the inverse Jacobian ([𝐉]) and is given by [𝐁] = ([𝐉]−1)𝑇. In 

this paper, we use the force transformation matrix to develop 

simple closed-form expressions for dynamic isotropy. Each 

platform is assumed to be a rigid body. All six struts are assumed 

to have an axial stiffness 𝑘 (joint space). Hence, the stiffness 

matrix [𝐊𝐓] in the task space is described as 

 

[𝐊𝐓] = 𝑘[𝐁][𝐁]𝑇 (1) 
 

Considering the payload’s COM variation in the loop 

closure equation for the loop OBAP as shown in Fig. 2, the force 

transformation matrix (dimension 6⨯6 for the MGSP) can be 

derived [3] as 

 

[𝐁]= (2) 

[
𝒔𝟏

( [𝐑]𝑃 
𝐵 ( 𝒑𝟏 

𝑷  −  𝑯𝐜 
𝑷 )) ⨯ 𝒔𝟏

| … |
𝒔𝟔

( [𝐑]𝑃 
𝐵 ( 𝒑𝟔 

𝑷  −  𝑯𝐜 
𝑷 )) ⨯ 𝒔𝟔

] 

 

           where, 𝒔𝒋 =
𝒕  

𝑩 + [𝐑]𝑃 
𝐵 𝒑𝒋 

𝑷  − 𝒃𝒋 
𝑩

𝑙𝑗
                for  j=1,…,6 

The vectors 𝒔𝒋 are unit vectors along each leg. The vector 𝒕 
𝑩  

is the vector joining the center of the top and bottom 

platforms, 𝑺𝒋 (= 𝑙𝑗𝒔𝒋) is a vector along the respective leg of an 

MGSP with length 𝑙𝑗, and 𝒑𝒋 
𝑷  and 𝒃𝒋 

𝑩  are vectors locating the 

connecting points on the top and base platform expressed in their 

respective frames. For the neutral position of an MGSP, [𝐑]P 
B =

[𝐈] and 𝒕 
𝑩 = [0 0 𝐻]𝑇  and 𝑯𝒄 

𝑷 = [0 0 𝑌]𝑇. The variable 𝑌 is the 

height of the payload’s COM from the top platform along 𝒁𝒑 

direction in Fig. 1. We are assuming that payload’s COM, the 

center of the top platform, and the center of the bottom platform 

lie on the same vertical line. Precise micro motion PM operates 

around this neutral point. At this neutral point, [𝐁] is a constant 

matrix. Given a Jacobian or force transformation matrix, the 

connection points on the payloads are not uniquely determined 

[4,10,11] and we can have an infinite number of 

configurations/solutions with the same [𝐉] or [𝐁] matrix. 

Let [𝐌] (dimension 6×6) be the payload’s mass/inertia 

matrix in the task space. A diagonal structure of the [𝐌] matrix 

can be obtained by choosing the coordinate system to coincide 

with the orientation of the principal axes of the payload. Hence, 

we can write: 

 

[𝐌] = diag([𝑚𝑝  𝑚𝑝  𝑚𝑝  𝐼𝑥𝑥   𝐼𝑦𝑦  𝐼𝑧𝑧]) (3) 
 

 
FIGURE 2 : A CLOSED LOOP FOR MGSP 

 

where, 𝑚𝑝 represents the payloads’ mass and 𝐼𝑥𝑥 ,  𝐼𝑦𝑦 , and 𝐼𝑧𝑧 

represents its moment of inertia along each direction with respect 

to its COM. From [𝐌] and [𝐊𝐓], and using Eq. (1), the natural 

frequency matrix [𝐆] in the task space [3,4,7,9,10] is given by 

 

[𝐆] =  [𝐌]−1[𝐊𝐓]  =  [𝐌]−1𝑘[𝐁][𝐁]𝑇 (4) 
 

For dynamic isotropy in the 5-DOF application (2R3T type 

with torsional mode ignored), the first five eigenvalues of the 

natural frequency matrix must be equal. Using Eqs. (2), (3), and 

(4), the [𝐆] matrix is obtained as: 

 

[𝐆] = |
𝐏 𝐓

𝐓𝑇 𝐔
| (5) 

 
[𝐏] = diag(𝜆1,  𝜆2,  𝜆3) , [𝐔] = diag(𝜆4, 𝜆5, 𝜆6) 

[𝐓] = [

𝜇11 −𝜇12 0
𝜇12 𝜇11 0
0 0 𝜇33

] 

 
The expressions for the λ’s and μ’s are given in Appendix 

section (see Eqs. (A1)).  

There are two sets of struts with lengths 𝑙1and 𝑙2 related to 

each other by a leg length ratio (𝑎) and expressed as: 

 

𝑙2 = 𝑎𝑙1 (6) 

 

where  

𝑙1 = |𝑺𝟏| = |𝑺𝟐| = |𝑺𝟑| = 

√𝑅𝑡𝑜
2 +  𝑅𝑏𝑜

2 − 2𝑅𝑡𝑜𝑅𝑏𝑜 cos(𝛼𝑡𝑜) + 𝐻2 

 

𝑙2 = |𝑺𝟒| = |𝑺𝟓| = |𝑺𝟔| =    

√𝑅𝑡𝑖
2 + 𝑅𝑏𝑖

2 − 2𝑅𝑡𝑖𝑅𝑏𝑖 cos(𝛼𝑏𝑖 − 𝛼𝑡𝑖) + 𝐻2 
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If 𝜔 denotes the natural frequency of the MGSP, then for 5-

DOF dynamic isotropy, the following conditions needs to be 

satisfied: 

             

𝜆1 = 𝜆2 = 𝜆3 = 𝜆4 = 𝜆5 = ω2   
𝜆6 = 0 

𝜇11 = 𝜇12 = 𝜇33= 0 
(7) 

The variables 𝜆1,  𝜆2, and 𝜆3 correspond to X, Y,and Z 

translational DOF and 𝜆4, 𝜆5, and 𝜆6 correspond to X, Y, and Z 

rotational DOF, respectively. 
 
2.3 Design of MGSP. 
We used a geometry-based approach in our previous work 

[3,4] to obtain a closed-form expression for unknowns in 6-DOF 

dynamic isotropy for an MGSP. The unknows are 𝑅𝑏𝑜, 𝑅𝑡𝑜, 𝑅𝑏𝑖, 

𝑅𝑡𝑖, 𝛼𝑡𝑜, (𝛼𝑏𝑖 − 𝛼𝑡𝑖), 𝑎, 𝑌, and 𝐻. We will extend the same 

geometry-based approach for 5-DOF dynamic isotropy for an 

MGSP. We start with one of the dynamic isotropy conditions in 

Eq. (7), i.e., 𝜆1 = 𝜆2 or 𝜆1 = 𝜆3, and using Eq. (6), we get: 

 

𝑏2 = 𝑅𝑡𝑖
2 + 𝑅𝑏𝑖

2 − 2𝑅𝑡𝑖𝑅𝑏𝑖 cos(𝛼𝑏𝑖 − 𝛼𝑡𝑖) (8) 

 

where, 𝑏2 =
𝐻2(3𝑎2+1)

2
. The above equation can be seen to follow 

the law of cosine in a triangle with sides 𝑏, 𝑅𝑡𝑖, and 𝑅𝑏𝑖, as shown 

in Fig. 3(a). Using the geometrical relationship for this triangle, 

the closed-form solutions to a 6-DOF isotropic MGSP were 

derived [3]. Using this approach, the solution of a 3-dimensional 

MGSP was reduced to a 2-dimensional geometry problem. To 

extend this to 5-DOF dynamically isotropy MGSP, the condition 

𝜆6 = 0 (torsion mode) must be satisfied. From the expression of 

𝜆6 in Eqs. (5) and (A1), the possible solution is: 

 

𝛼𝑏𝑖 − 𝛼𝑡𝑖 = 0 and 𝛼𝑡𝑜 = 0 (9) 
 

This means that there is no relative angle between the end 

joints of each strut in Fig. 1. Hence, Eq. (8) reduces to 

 

𝑅𝑡𝑖 − 𝑅𝑏𝑖 = ±𝐻√
(3𝑎2 + 1)

2
= ±𝑏 (10) 

 

The above equation also implies that the triangle Δoc𝑞1 in 

Fig. 3(a) is now reduced to a line 𝑜𝑞1𝑐̅̅ ̅̅ ̅̅ , as shown in Fig. 3(b). 

Ignoring one DOF (torsion) in MGSP simplified our geometry-

based problem from 2D (triangle) to 1D (line). 

Similar to Eq. (10), we can derive: 

 

𝑅𝑡𝑜 − 𝑅𝑏𝑜 = ±
𝐻

𝑎
√

(𝑎2 + 3)

2
 (11) 

 

 

 
FIGURE 3: a) GEOMETRY-BASED APPROACH FOR 6-DOF 

DYNAMICALLY ISOTROPIC MGSP [3], b) EXTENTION TO 5-

DOF DYNAMICALLY ISOTROPIC MGSP 

 

There are four possible cases due to the ± signs in Eqs. (10) 

and (11). Solving transcendental equations generated using Eq. 

(7) for one of the cases, i.e., 𝑅𝑡𝑜˂𝑅𝑏𝑜 and 𝑅𝑡𝑖˂𝑅𝑏𝑖, we get  
 

𝐾1𝑅𝑡𝑜
2 + 𝐾2𝑅𝑡𝑜𝑌 + 𝐾3𝑌2 − 𝑄 = 0   (12) 

where, 

𝐾1 =
2𝑎2

(3𝑎2+1)
, 𝐾2 = −

4𝑎

(3𝑎2+1)
√

(𝑎2+3)

2
 and 𝐾3 =

(𝑎2+3)

(3𝑎2+1)
 

 

The determinant of the above quadratic equation is always 

greater than zero, indicating a real solution. However, the 

feasibility is ensured only when the value of the radius variable 

is positive. The variable 𝑄 given by 𝑄 = 𝐼𝑥𝑥/𝑚𝑝 is the ratio of 

payload’s property and is known to us. For symmetrical payloads 

𝐼𝑥𝑥= 𝐼𝑦𝑦. The solution to this equation gives two values of 𝑅𝑡𝑜 

shown below: 

𝑅𝑡𝑜 =
𝑌

𝑎
√

(𝑎2 + 3)

2
 ±

√𝑄

𝑎
√

(3𝑎2 + 1)

2
 

 

(13) 

Considering the positive sign in the above equation, we get 

𝑅𝑡𝑖 = 𝑌√
(3𝑎2 + 1)

2
− √𝑄√

(𝑎2 + 3)

2
 (14) 

 

Considering the negative sign in the above equation, we get  

 

𝑅𝑡𝑖 = 𝑌√
(3𝑎2 + 1)

2
+ √𝑄√

(𝑎2 + 3)

2
 (15) 

 

From the above formulation of 𝑅𝑡𝑖 and 𝑅𝑡𝑜, an important 

observation can be made that the top radii depend only on the 

payload’s COM height (𝑌), payload properties (𝑄), and leg 

length ratio (𝑎). These parameters are either known to us or can 



 

 5 © 2022 by ASME 

be taken as inputs. The design procedure of a 5-DOF 

dynamically isotropic MGSP involves: 

• Select/input 𝑎, 𝑌, and 𝑄 to find 𝑅𝑡𝑜 and 𝑅𝑡𝑖 from Eqs. 

(13), and (14)/(15). 

• Using the values of variable from the above step, we 

can obtain 𝑅𝑏𝑖 and 𝑅𝑏𝑜 from Eqs. (10) and (11) 

respectively for the case 𝑅𝑡𝑜˂𝑅𝑏𝑜 and 𝑅𝑡𝑖˂𝑅𝑏𝑖. The 

variable 𝐻 (height) here can be chosen freely depending 

on space constraints. 

 

The above two solutions for 𝑅𝑡𝑜 or 𝑅𝑡𝑖 were for the case of 

𝑅𝑡𝑜˂𝑅𝑏𝑜 and 𝑅𝑡𝑖˂𝑅𝑏𝑖. The other cases with their two solutions 

are summarized in Table 1 below. It may be noted that if any of 

the radius variables are negative, the solution becomes 

infeasible. Moreover, Table 1 is obtained for 𝑌 > 0, meaning the 

payload’s COM is above the top platform (more practical case 

than 𝑌 < 0).  

    

TABLE 1: SOLUTIONS FOR EACH POSSIBLE CASE 

 

Additionally, Eq. (12) can also be seen as a pair of two 

parallel straight lines with 𝑅𝑡𝑜 and 𝑌 as a 2-D standard basis 

given by  

𝑅𝑡𝑜 −  
1

𝑎
√

(𝑎2+3)

2
 𝑌 ±

√𝑄

𝑎
√

(3𝑎2+1)

2
= 0  

The slope for the given parallel lines, 
𝑑𝑌

𝑑𝑅𝑡𝑜
=

𝑎√2

√(𝑎2+3)
 

 

2.4 Observation 
In this subsection, we present results related to 5-DOF 

dynamically isotropic MGSP. 

Parameter’s variation 
The variation of radii parameters with respect to leg length 

ratio for a typical payload (𝑄 = 5.089*10-3 𝑚2, 𝑚𝑝 = 5 Kg, 𝑌= 

75 mm), spring constant 𝑘= 105 N/m, and height 𝐻= 50 mm is 

shown in Fig. 4 for one of the feasible cases. 

 
FIGURE 4. a) VARIATION OF MGSP PARAMETERS FOR 𝑅𝑡𝑜 <
𝑅𝑏𝑜, 𝑅𝑡𝑖 < 𝑅𝑏𝑖. b) LOG PLOT FOR THE SAME 

 

Concept of transition points (𝑎∗1and 𝑎∗2). 

There are two unique points denoted by 𝑎∗1and 𝑎∗2. At 𝑎∗1, 

both the bottom radii become equal while at 𝑎∗2, both the top 

radii become equal as shown in Fig. 4. These are named as points 

of transition because there is a transition from outer-to-outer 

radius (or inner-to-inner radius) connections to outer to inner 

radius connections (cross leg type) and vice versa at these points. 

By outer-to-outer radius connection, we mean that the outer 

radius of the top platform is connected to the outer radius of the 

bottom platform. While in the cross-leg type, the outer radius of 

the top platform is connected to the inner radius of the bottom 

platform and vice versa. This phenomenon can be visualized 

from Fig. 5 for the same case as in Fig. 4. The following 

observation can be made from Fig. 5. 

 

o (𝑎 = 1.732) < 𝑎∗1 → There is an outer-to-outer 

radius connection (or inner to inner). 

o 𝑎 = 𝑎∗1= 2.17 → Both the bottom radii merge to 

a single radius. 

o 𝑎∗1< (𝑎 = 2.60) < 𝑎∗2 → Transition to cross leg 

type connection. 

o 𝑎 = 𝑎∗2= 3.89 → Both the top radii merge to a 

single radius. 

o (𝑎 = 4.20) > 𝑎∗2 → Transition to outer-to-outer 

radius connection. 

CASE Condition 
Sign in Eq. (12) 

(Quadratic equation) 

Solutions  

(𝑌 > 0) 

I 
𝑅𝑡𝑜 < 𝑅𝑏𝑜  

𝑅𝑡𝑖 < 𝑅𝑏𝑖 
𝐾2 < 0 

1) Feasible* 

2) Feasible* 

II 
𝑅𝑡𝑜 > 𝑅𝑏𝑜 

𝑅𝑡𝑖 <  𝑅𝑏𝑖 
𝐾2 > 0 

1) Feasible* 

2) Infeasible 

III 
𝑅𝑡𝑜 < 𝑅𝑏𝑜 

𝑅𝑡𝑖 > 𝑅𝑏𝑖 
𝐾2 < 0 

1) Feasible* 

2) Infeasible 

IV 
𝑅𝑡𝑜 > 𝑅𝑏𝑜  

𝑅𝑡𝑖 > 𝑅𝑏𝑖 
𝐾2 > 0 

1) Infeasible 

2) Infeasible 

*Feasibility does not mean always feasible. It depends on value of 

payload properties and free variables (input being chosen). 
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FIGURE 5: VARIOUS 5-DOF DYNAMICALLY ISOTROPIC 

MGSP CONFIGURATION (WITH TOP VIEWS)  

Mechanical feasibility 
For these configurations to be mechanically feasible, the 

following conditions are necessary: 

o The design parameters (radius and total height) 

should be within our permissible limit 

(constraints).  

o The struts do not interfere in the 3D space.  

In this 5-DOF MGSP case, we have more design flexibility 

and control over our design than in a 6-DOF MGSP [3]. With the 

same payload, we can meet our design constraints in the current 

5-DOF case which was not possible in 6-DOF MGSP. Moreover, 

there is only one possibility that the struts intersect in the 3D 

space in a 5-DOF case. The condition implies that there must be 

a cross-leg type connection and angle 𝛼𝑏𝑖 = 𝛼𝑡𝑖= 0, as shown in 

Fig. 6. For any other value of  𝛼𝑏𝑖 = 𝛼𝑡𝑖 = α ≠ 0, the struts do 

not intersect. In a 6-DOF dynamically isotropy MGSP, legs are 

at angles (𝛼𝑏𝑖 ≠ 𝛼𝑡𝑖 and 𝛼𝑡𝑜 ≠ 0 ) making it more prone for 

interference. Therefore, a 5-DOF dynamically isotropic MGSP 

has more design flexibility and is more mechanically feasible 

than 6-DOF dynamically isotropic MGSP. 

 
FIGURE 6: MECHANICALLY INFEASIBLE CONFIGURATION 

FOR 5-DOF MGSP  

 
Natural frequency 
The dynamically isotropic natural frequency will depend 

only on 𝑘 and 𝑚𝑝. For the dynamic isotropy 

 𝜔1 = 𝜔2 = 𝜔3 = 𝜔4 = 𝜔5 = √2𝑘/𝑚𝑝.  (16) 

Hence the [𝐆] matrix in Eq. (4) will be a diagonal matrix for 

every solution with five diagonal values as 2𝑘/𝑚𝑝 and last 

torsional term as zero. The dynamically isotropic natural 

frequency of a 5-DOF MGSP is the same as for 6-DOF [3]. 

 

2.5 Validation 
Validation of the closed-form solutions is presented in detail 

in Table 3 (refer to Section 5). The first five natural frequencies 

obtained using the FE model are very close to 31.83 Hz as 

obtained theoretically using √2𝑘/𝑚𝑝 which validates our 

design.  

 

3. 3-DOF dynamically isotropic RPS PM. 
In this section, closed-form solutions to two 3-DOF 

dynamically isotropic 3-3 RPS (revolute prismatic and spherical) 

PM is presented, one 3T (translation along X, Y, and Z) type and 

other 2R1T (translation along Z and rotation about X, Y) type. 

These configurations will later be superposed to generate a novel 

decoupled 5-DOF MGSP. 

 

3.1 3T type 3-DOF dynamically isotropic 3-3 RPS 
A typical 3-3 RPS PM has three struts with a prismatic joint 

connected to the bottom (fixed) platform through a revolute joint 

and to the top through a spherical joint as shown in Fig. 7. The 

variables 𝑅𝑡1 and 𝑅𝑏1 are the radius of the top and bottom 

platform, respectively. The variables 𝐻′ and 𝑌′ are the platform 

height and payload’s COM height, respectively. The angle 𝛼𝑡1
′  is 

the angle between vectors 𝒄𝑨𝟏 and 𝒐𝑩𝟏. 

The same expression for [𝐁] matrix as in Eq. (2) is valid 

here. However, 𝑗 will now vary from 1 to 3. The new [𝐁] matrix 

will be a 3×6 matrix. The new [𝐆] matrix will still be a 6×6 

matrix of the same form as in Eq. (5) due to the symmetricity of 

120° in this case. The expressions for the new λ’s and μ’s (say 𝜆′ 
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and 𝜇′) can be referred from the appendix section at the end of 

this paper (see Eq. (A3)). Hence, the condition of dynamic 

isotropy for 3T type PM will be: 

          
FIGURE 7: THE 3-3 RPS PARALLEL MANIPULATOR 

 

𝜆1
′ = 𝜆2

′ = 𝜆3
′  

𝜆4
′ = 𝜆5

′ = 𝜆6
′ = 0 and  𝜇11

′ = 𝜇12
′ = 𝜇13

′ = 0 
(17) 

 

 Closed-form Solutions to this for 𝑌′>0 is given as 

𝑅𝑏1

(𝐻′ + 𝑌′)
=

𝑅𝑡1

𝑌′
= √2 

and 𝛼𝑡1
′ = 0 

(18) 

 

Hence, for dynamic isotropy, three struts will virtually 

intersect at the payload COM and with angle β= 54.74°, as shown 

in Fig. 8(a). We can achieve a 3T motion only at this specific 

arrangement of the struts. The two platform radii can lie 

anywhere on a cone with a semi cone angle of β= 54.74° in 3D. 

 
FIGURE 8: a) SIDE VIEW OF DESIGN CONE b) TOP VIEW OF 3 

RPS WITHOUT ROTATIONAL SYMMETRY 
 
3.2 3T type 3-DOF dynamically isotropic 3-3 RPS 

without rotational symmetry. 
We consider the connection points to be on two radii on each 

platform for this case. The variable 𝑅𝑡1 and 𝑅𝑡2 are two radii of 

the top platform while 𝑅𝑏1 and 𝑅𝑏2 are two radii of the bottom 

platform, as shown in Fig. 8 (b). There is no rotational symmetry 

now and there will be many non-zero terms in the new [𝐆] 
matrix. However, extending our observations made in section 3.1 

and using the fact that the first three diagonal terms (translational 

modes) become equal, and the rest of the terms go to zero, for 

dynamic isotropy, we get            

 
𝑅𝑏1

(𝐻′+𝑌′)
=

𝑅𝑡1

𝑌′ = 𝜌 and  
𝑅𝑏2

(𝐻′+𝑌′)
=

𝑅𝑡2

𝑌′ = 𝜎 

𝜎2 =  
(2+𝜌2)

𝜌2 
  and   cos(𝜃𝑜

′ ) =  
1

√(2+𝜌2)
 

(19) 

where 𝜎 and 𝜌 are ratios (constant). The plots for this case 

are shown in Fig. 9. At 𝜃𝑜
′  = 60° (previous case), 𝜌 = 𝜎 = √2 

and both the transition points lie at this point (i.e., 𝑅𝑏1=𝑅𝑏2 and 

𝑅𝑡1=𝑅𝑡2). Therefore, there is only an outer-to-outer radius 

connection, as shown in Fig. 10. The trend of parameters vs. 𝜌 

will look similar with respect to leg length ratio (𝑎) since 𝑎 =

𝜌/√2. 

 
FIGURE 9: VARIATION OF PARAMETERS FOR 3T TYPE RPS 

 
FIGURE 10: VARIOUS CONFIGURATIONS FOR 3T TYPE RPS 

 

The [𝐆] matrix and natural frequencies (𝜔′) for dynamic 

isotropy in the cases discussed in Section 3.1 and 3.2 is given by:  

[𝐆] = diag (𝑘/𝑚𝑝, 𝑘/𝑚𝑝, 𝑘/𝑚𝑝, 0, 0, 0) 

𝜔1
′ = 𝜔2

′ = 𝜔3
′ = √𝑘/𝑚𝑝 

(20) 
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3.3 2R1T type 3-DOF dynamically isotropic 3-3 RPS 
with rotational symmetry. 

For this case, the formulation remains the same as before, 

and terms have their usual meanings with a double prime symbol 

instead of a single prime for 2R1T type. The radii are now 

denoted as 𝑅𝑡3 and 𝑅𝑏3 and the condition of dynamic isotropy 

for the 2R1T type PM will be 𝜆3
′′ = 𝜆4

′′ = 𝜆5
′′ and other terms 

go to zero. For any value of 𝐻′′and 𝑌′′, dynamic isotropy is 
given by: 

𝑅𝑡3 = 𝑅𝑏3 = √2𝑄 = √2𝐼𝑥𝑥/𝑚𝑝  and 𝛼𝑡3= 0 (21) 
 

Therefore, the new [𝐆] matrix and natural frequencies (𝜔′′) 

for dynamic isotropy is given by 

[𝐆] = diag (0, 0, 3𝑘/𝑚𝑝, 3𝑘/𝑚𝑝, 3𝑘/𝑚𝑝, 0) 

𝜔3
′′ = 𝜔4

′′ = 𝜔5
′′ = √3𝑘/𝑚𝑝 

(22) 

 

3.4 2R1T type 3-DOF decoupled 3-3 RPS without 
rotational symmetry. 

There are two radii on each platform denoted by 𝑅𝑡3, 𝑅𝑏3, 

𝑅𝑡4 and 𝑅𝑏4 as in section 3.2. In this case, it is not possible to get 

a dynamic isotropic configuration except when the two radii 

merge to give the case with rotational symmetry (section 3.3 

above). However, the new [𝐆] matrix corresponding to 

translation Z, Rot(X), and Rot(Y) can be decoupled if the 

following conditions are satisfied.  

𝑅𝑡3 = 𝑅𝑏3 and 𝑅𝑡4 = 𝑅𝑏4 

cos(𝜃𝑜
′′) =  

𝑅𝑡3

2𝑅𝑡4
  

(23) 

 

The variable 𝜃𝑜
′′ holds the same meaning as 𝜃𝑜

′  in Fig. 8(b). 

The effect of varying 𝜃𝑜
′′ is shown in Fig. 11.  The new [𝐆] matrix 

for decoupled configuration is given by 

[𝐆] = diag (0, 0, 3𝑘/𝑚𝑝,
2𝑅𝑡4

2 −
𝑅𝑡3

2

2

𝐼𝑥𝑥
,

3𝑅𝑡3
2

2𝐼𝑦𝑦
, 0) (24) 

 
FIGURE 11: VARIOUS CONFIGURATIONS FOR 2R1T TYPE 

RPS 

 

 

4. NOVEL 5-DOF DECOUPLED GSP. 
The two 3-DOF dynamically isotropic/decoupled 

configurations (3T and 2R1T), as discussed in Section 3 can be 

geometrically superposed to obtain different decoupled 5-DOF 

GSP configurations. All the cases (symmetrical or 

unsymmetrical) satisfy analytical formulations, and the obtained 
[𝐆] matrix is diagonal. However, a dynamically isotropic GSP 

(all diagonal terms of [𝐆] equal) cannot be obtained by 

geometrical superposition. It is important to note that the height 

of the platform and payload’s COM height in both the parent 

configurations must be the same. The possible combinations are 

presented in Table 2 where S and US represent rotational 

symmetric and unsymmetric configurations, respectively. When 

these configurations are superposed, they can be rotated with 

respect to each other by an angle φ about the Z-axis depending 

on the parent configurations.  If 𝒑𝒒
′  and 𝒑𝒒

′′ are co-ordinates of 

anchor points of two parent configurations (3T and 2R1T), then 

their co-ordinate in the resulting configuration can be given by 

𝒑𝒒
′  and ([Ro (Z, φ)] 𝒑𝒒

′′).  Here [Ro (Z, φ)] is the rotation matrix 

about the Z axis. There can be two possible cases: 
 

o The angle φ can hold any value→ In this case, both the 

parent configuration should have isotropies in X and Y 

as well as Rot(X) and Rot(Y). Any configuration 

obtained using dynamically isotropic 3T (S), 3T (US), 

and 2R1T (S) allow relative rotation about the Z-axis. 

This seen be seen in Table 2 and Fig. 12. 
o Angle φ=0 or [Ro (Z, φ)] = [I] → Here, we cannot rotate 

the configurations as in the case of 2R1T (US) because 
it is not isotropic in Rot(X) and Rot(Y), which can be 

seen from [𝐆] matrix in Eq. (24). Four radii GSP as 

shown in Fig. 13(a), is an e.g., for this case. 

TABLE 2: POSSIBLE 5-DOF GSPs BY SUPERPOSITION 

 
Configur

ation 1 

Configurat

ion 2 

Resulting 

Configuration 

Relative 

rotation 

1 3T (S)  2R1T (S) 
Two radii GSP 

(S) 

Possible 

2 3T (US) 2R1T (S) 
Three radii GSP 

(US) 

Possible 

3 3T (S) 2R1T (US) 
Three radii GSP 

(US) 

Not 

possible 

4 3T (US) 2R1T (US) 
Four radii GSP 

(US) 

Not 

possible 

 

Only the 3T type RPS PM contribute to translational X and 

Y modes, while only the 2R1T type contributes to Rot(X) and 

Rot(Y) modes. Therefore, only three struts can be actuated and 

switched accordingly for the movement required along/about 

any of these directions. The other three struts can remain passive. 

In other GSPs, all six struts need to be actuated to achieve any 

particular motion. This will significantly reduce power 

requirements, especially in spacecraft where the significance of 

power savings multiplies. 
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In these configurations upto four modes can be made equal 

in Case 1 and 2 in Table 2. The condition is 𝑅𝑡3 = 𝑅𝑏3 =

√2𝑄/3. This gives the following decoupled natural frequencies. 

 

𝜔𝑜1 = 𝜔𝑜2 = 𝜔𝑜4 = 𝜔𝑜5 = √𝑘/𝑚𝑝 

𝜔𝑜3 = √4𝑘/𝑚𝑝 
(25) 

One of these configurations is shown in Fig. 13(b) and 

validated in Section 5. 

 
FIGURE 12: RELATIVE ROTATION B/W 3T AND 2R1T TYPE 
 

 

 
FIGURE 13: GSPs WITHOUT ROTATIONAL SYMMETRY 

 

5. VALIDATION THROUGH ANSYS® 
Simulations were performed in ANSYS® with top and 

bottom platforms treated as rigid bodies and struts as ideal 

springs to validate the closed-form solutions in each design. The 

closed form solutions are compared with the Finite Element (FE) 

results for a typical payload with, 𝑚𝑝 = 5 Kg, 𝑄 = 5.089*10-

3 𝑚2, and 𝑘= 105 N/m and are summarized in Table 3. It is to be 

noted that the order of natural frequencies in Table 3 is 

translation along X, Y, and Z axis followed by rotation about X, 

Y, and Z axis, respectively. In each case, the closed-form 

solutions closely match the FE solutions for each mode which 

validates all the different designs presented in this paper. Any 

deviation from dynamically isotropic or decoupled 

configurations tends to deviate the natural frequency solutions 

from each other. 

 

TABLE 3: COMPARISON OF RESULTS OBTAINED USING FE 

AND CLOSED-FORM SOLUTION 

PM Type  
Natural frequencies 

(Hz) 

5-DOF MGSP in 

Section 2 

(isotropic) 

FE 
31.61, 31.64, 31.79, 

31.80, 31.83, ≈ 0* 

Closed form 
31.83, 31.83, 31.83, 

31.83, 31.83, 0 

3-DOF (3T Type) 

in Section 3.2 

(isotropic) 

FE 
22.50, 22.50, 22.52, 

≈ 0,  ≈ 0,  ≈ 0 

Closed form 
22.51, 22.51, 22.51, 

0,   0,   0 

3-DOF (2R1T 

Type) in Section 

3.3 (isotropic) 

FE 
≈ 0,  ≈ 0, 38.60, 

38.63, 38.96, ≈ 0 

Closed form 
0,   0 , 38.98, 

38.98. 38.98. 0 

5-DOF GSP in 

Section 4 

(decoupled) 

FE 
22.44, ,22.46, 45.01, 

22.50, 22.52, ≈ 0 

Closed form 
22.50, 22.50, 45.01, 

22.50, 22.50, 0 

* ≈ 0 denotes of the order 10-3 Hz 

 

6. CONCLUSION 
The use of the Gough-Stewart platform (GSP) as a 5-DOF 

dynamically isotropic device offer straightforward solutions, 

flexible design, and is more mechanical feasibility than a 6-DOF 

dynamically isotropic design. These features can be useful for 

micromotion applications where torsion or rotation about Z-axis 

is not required. The closed-form solutions to all the geometrical 

parameters were developed, and points of configuration 

transitions were studied.  The variation of the center of mass 

(COM) of the payload was incorporated in all our designs 

considering practicality. A novel 5-DOF decoupled GSP is 

developed using geometrical superposition of two different 

dynamically isotropic and decoupled 3-DOF parallel devices. 

Such a device does not require all six struts to be actuated for 

every motion and will save power and offer simpler control. 

Several three and five DOF asymmetrical designs without 

rotational symmetry were explored after extending our 

knowledge gained from the study of symmetrical designs. All the 

presented designs were validated using finite element software.  

 
APPENDIX 
 
For Section 2 

The value of all λ’s and μ’s in Eq. (5) are given as: 

 

𝜆1 =
3𝑘 (𝑙1

2𝛹1+𝑙2
2𝛹2)

2𝑚𝑝𝑙1
2𝑙2

2  ,   𝜆2 =
3𝑘 (𝑙1

2𝛹1+𝑙2
2𝛹2)

2𝑚𝑝𝑙1
2𝑙2

2   ,   𝜆3 =
3𝑘𝐻2(𝑙1

2+ 𝑙2
2)

𝑚𝑝𝑙1
2𝑙2

2 , 

𝜆4 =
3𝑘𝑌2( 𝑙2

2𝛹2+𝑙1
2𝛹1)+6𝐻𝑘𝑌 (𝛹3𝑙1

2+𝛹4𝑙2
2)  + 3𝑘𝛹5𝐻2 

2𝐼𝑥𝑥𝑙1
2𝑙2

2  ,  𝜆5 = 𝜆4
𝐼𝑥𝑥

𝐼𝑦𝑦
 , 
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𝜆6 =
3𝑘(𝛹6

2𝑙1
2+ 𝛹7

2𝑙2
2)

𝐼𝑧𝑧𝑙1
2𝑙2

2   ,   𝜇11 =
−3𝑘𝐻(−𝛹6𝑙1

2+ 𝛹7𝑙2
2)

2𝑙1
2𝑙2

2 , 

  𝜇33 =
3𝑘𝐻(−𝛹6𝑙1

2+ 𝛹7𝑙2
2)

𝑙1
2𝑙2

2  ,  𝜇12 =
3𝑘𝐻(𝛹3𝑙1

2+𝛹4𝑙2
2)+3𝑘𝑌(𝑙1

2𝛹1+𝑙2
2𝛹2)

2𝑙1
2𝑙2

2     

(A1)                                                              

where, 

𝛹1 = 𝑅𝑡𝑖
2 +  𝑅𝑏𝑖

2 − 2𝑅𝑡𝑖𝑅𝑏𝑖 cos(𝛼𝑏𝑖 − 𝛼𝑡𝑖) 

𝛹2 = 𝑅𝑡𝑜
2 + 𝑅𝑏𝑜

2 − 2𝑅𝑡𝑜𝑅𝑏𝑜 cos(𝛼𝑡𝑜) 

𝛹3 = 𝑅𝑡𝑖
2 − 𝑅𝑡𝑖𝑅𝑏𝑖 cos(𝛼𝑏𝑖 − 𝛼𝑡𝑖) 

𝛹4 = 𝑅𝑡𝑜
2 − 𝑅𝑡𝑜𝑅𝑏𝑜 cos(𝛼𝑡𝑜) 

𝛹5 = 𝑅𝑡𝑖
2 𝑙1

2 + 𝑅𝑡𝑜
2 𝑙2

2 

𝛹6 = 𝑅𝑡𝑖𝑅𝑏𝑖 sin(𝛼𝑏𝑖 − 𝛼𝑡𝑖) 

𝛹7 = 𝑅𝑡𝑜𝑅𝑏𝑜 sin(𝛼𝑡𝑜)         

(A2) 

 

For Section 3 
 

𝜆1
′ =

3𝑘𝛹1
′

2𝑚𝑝𝑙1
′2 ,  𝜆2

′ =
3𝑘𝛹1

′

2𝑚𝑝𝑙1
′2 , 𝜆3

′ =
3𝑘𝐻′2

𝑚𝑝𝑙1
′2 

𝜆4
′ =

3𝑘𝛹1
′𝑌′2+6𝑘𝛹3

′𝑌′𝐻′ + 3𝑘𝐻′2𝑅𝑡1
2    

2𝐼𝑥𝑥𝑙1
′2  ,  𝜆5

′ = 𝜆4
′ 𝐼𝑥𝑥

𝐼𝑦𝑦
 ,  𝜆6

′ =
3𝑘𝛹2

′2

𝐼𝑧𝑧𝑙1
′2  

𝜇11
′ =

−3𝑘𝐻′𝛹2
′

2𝑙1
′2 ,  𝜇33

′ =
3𝑘𝐻′𝛹2

′

𝑙1
′2 ,  𝜇12

′ =
3𝑘𝐻′𝛹3

′+3𝑘𝑌′𝛹1
′

2𝑙1
′2  

    (A3)                                                         

where 

𝛹1
′ = 𝑅𝑡1

2 + 𝑅𝑏1
2 − 2𝑅𝑡1𝑅𝑏1 cos(𝛼𝑡1

′ ) 

𝛹3
′ = 𝑅𝑡1

2 − 𝑅𝑡1𝑅𝑏1 cos(𝛼𝑡1
′ ) 

𝛹2
′ = 𝑅𝑡1𝑅𝑏1 sin(𝛼𝑡1

′ ) 

(A4)                                                         
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