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ABSTRACT
The identification of principal twists of the end-effector of a

manipulator undergoing multi-degree-of-freedom motion is con-
sidered to be one of the central problems in kinematics. In this
paper, we use dual velocity vectors to parameterize se

�
3 � , the

space of twists, and define an inner product of two dual veloci-
ties as a dual number analog of a Riemannian metric on SE

�
3 � .

We show that the principal twists can be obtained from the solu-
tion of an eigenvalue problem associated with this dual metric. It
is shown that the computation of principal twists for any degree-
of-freedom of rigid-body motion, requires the solution of at most
a cubic dual characteristic equation. Furthermore, the special na-
ture of the coefficients yields simple analytical expressions for
the roots of the dual cubic, and this is turn leads to compact ana-
lytical expressions for the principle twists. We also show that the
method of computation allows us to separately identify the rota-
tional and translational degrees-of-freedom lost or gained at sin-
gular configurations. The theory is applicable to serial, parallel,
and hybrid manipulators, and is illustrated by obtaining the prin-
cipal twists and singular directions for a three-degree-of-freedom
parallel, and a hybrid six-degree-of-freedom manipulator.

Introduction
It is well known that rigid-body displacements in ℜ3 form a

6-dimensional smooth manifold, which is also a Lie group called
the Special Euclidean Group (denoted by SE

�
3 � ). The tangent

�
Address all correspondence to this author.

space to SE
�
3 � at its identity element forms the associated Lie

algebra (denoted by se
�
3 � ), which contains the linear and angu-

lar velocities of the rigid body [1]. The analysis of SE
�
3 � and

se
�
3 � is essential for kinematic analysis and synthesis of serial

and parallel manipulators and closed-loop mechanisms, analy-
sis of singularities and algorithmic motion planning. A central
problem of kinematics of manipulators is the determination of its
principal screws at a given configuration, which characterizes the
motion of an end-effector instantaneously. Ball [2] and Hunt [3]
have used geometric arguments to identify the principal screws
of rigid-body motion. More recently, Fang and Huang [4] have
presented an analytical approach for 3-degree-of-freedom mo-
tions based on theory of degenerate conic sections. In this paper,
we make use of the group structure of SE

�
3 � , and the dual-vector

representation of its Lie algebra elements. We reduce the prob-
lem of identification of principal twists to the solution of an eigen
problem of a dual matrix arising out of the dual inner-product of
the input screws. Dual vectors and matrices capture the semi-
direct product structure of SE

�
3 � ��� SO

�
3 ��� ℜ3 � naturally, hence

our results have the advantage of being very compact as well as
comprehensive. Following [5], we parameterize SE

�
3 � by dual

orthogonal matrices, and arrive at the corresponding parameter-
ization of se

�
3 � , the space of twists. Using the isomorphism of

twists and dual vectors, we define an inner product on se
�
3 � as

a dual number arising out of the scalar product of dual vectors.
Using analogous arguments presented in [6], the investigation of
the extremal values of the allowable twists under the unit speed
constraint leads to the eigen problem of a symmetric dual ma-
trix of inner products. We then present the solution of the dual
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eigen problem, which is new to our knowledge. The significant
advantages of the approach are:

1. The approach is exact, i.e., all the results are obtained in
closed, analytical form. This is possible since the dual
characteristic polynomial is at most a cubic irrespective the
degree-of-freedom of rigid-body motion considered (see Ap-
pendix A) which has exact solutions. It may be noted that
our method is consistent for degree-of-freedom greater than
3, and we do not use the concept of reciprocal screw sys-
tems.

2. Our treatment of rigid-body motion leads to the iden-
tification of the rotational and translational degrees-of-
freedom separately, which we term as degree-of-freedom-
partitioning. This, we believe, is a unique feature of our
approach, and has tremendous potential for applications in
the analysis and design of manipulators.

3. The formulation handles singularities in a natural way, and
analytical identification of the lost or gained twists at a sin-
gularity is possible.

4. The computation involved is of purely algebraic nature, and
hence fast and automated computer implementation is pos-
sible for serial, parallel or hybrid manipulator architectures.
We perform all our symbolic manipulations using the pack-
age Mathematica [7].

The paper is organized as follows: In section 1, we briefly
present the mathematical preliminaries related to the dual rep-
resentation of lines, screws and twists, and introduce the notion
of dual metric and its properties. In section 2, we present the
analytical expressions for the principal twists and the principal
singular directions. In section 3, we illustrate our method with
the help of parallel and hybrid manipulators. In the appendices,
we present details of the solution of the dual eigen value problem
and also show that our approach yields the classical equations of
the cylindroid and the pitch hyperboloid in the cases of two- and
three-degree-of-freedom motions respectively.

Mathematical Formulation
A dual number, â, has the form a � εa0, where a � a0 � ℜ and

ε stands for the dual unit, with the properties ε �� 0 � ε2 �
0 � The

properties of dual numbers are detailed in [8]. We note here only
that the dual numbers over the real field form a ring (denoted
by ∆ � , and dual n-vectors form a free module over this ring [9] ,
which is denoted by Dn. We can define an inner product on D3,
i.e., the space of 3-dimensional dual vectors, as follows:

�
x̂ � ŷ � �

x � y � ε
�
x � y0 � y � x0 � (1)

�	� 1
4

�
x̂ � ŷ � Killing � ε

�
x̂ � ŷ � Klein

where ‘ � ’ denotes the usual inner product in the Euclidean space,
x̂
�

x � εx0 � D3 and
� �
��� � Killing and

� �
��� � Klein are the Killing
and Klein forms on SE

�
3 � respectively [1]. Both these forms

are known to posses frame-invariance, and hence the dual inner
product is frame-invariant. The inner product is positive semi-
definite, as the Killing form is negative semi-definite. Using the
inner-product, we can define the norm �
� x̂ �� of x̂ as

�
x̂ � x̂ � 1 � 2 when

x �� 0. Then we obtain �� x̂ �� � �� x �
��� ε x � x0� �
x
� � ���� x ����� 0 A dual vector

x̂ with norm 1 � ε0 is called a dual unit vector and x̂ is a dual unit
vector iff following relations �� x �
� � 1 � x � x0

�
0 hold.

Lines and Screws as Dual Vectors
A line in ℜ3 can be described in terms of a dual vector as

L̂
�

Q � εQ0, where
�
Q;Q0 � is the Plücker vector associated with

the line1. There are four independent parameters in Q and Q0,
since ��Q �� = 1 and Q � Q0

�
0 and thus there is a one-to-one

correspondence between lines in ℜ3 and dual unit vectors. The
location of a line in space is uniquely determined by the the foot
of the perpendicular from the origin and is obtained as r0

�
Q �

Q0. The inner product of two lines follows from the properties
of dual vectors, and is given by

�
L̂1 � L̂2 � �

Q1 � Q2 � ε
�
Q1 � Q02 � Q2 � Q01 � (2)�

cosφ
�

εd sinφ
�

cos φ̂

where φ and d are the angle and the shortest distance between
the two lines respectively, and φ̂

�
φ � εd denotes the dual angle

between the lines.
A screw has five independent parameters and may be identi-

fied with a line (which is called the axis of the screw) and a pitch.
The screw can be described by a dual vector Ŝ

�
S � εS0, where

S
�

Q and S0
�

Q0 � hQ. The pitch of the screw, h, is given by

h
� S � S0

S � S � �
� S ����� 0 (3)

If the magnitude of the real part of Ŝ is 0, and that of the
dual part is non-zero, then the pitch is infinite, signifying a pure
translation.

The inner product of two screws is computed as

�
Ŝ1 � Ŝ2 � �

S1 � S2 � ε
�
S1 � S02 � S2 � S01 � (4)�

cosφ � ε
� �

h1 � h2 � cosφ
�

d sinφ �
where h1 and h2 are the pitches associated with the two screws,
d and φ have the meanings as explained above.

1Q denotes direction of the line, and Q0 = r � Q is the moment of the line with
r as position vector of an arbitrary point on the line from an origin.
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Rigid-body Motion and Twists
We parameterize SE

�
3 � , the space of rigid-body displace-

ments, in terms of dual orthogonal matrices of the form Â
�

R �
εDR, where R � SO

�
3 � gives the orientation of the moving frame

attached to the rigid-body with respect to some fixed reference
frame, and D is the 3 � 3 skew-symmetric matrix associated with
d � ℜ3, the displacement of the origin of the moving frame with
respect to the fixed frame [5]. For n-degree-of-freedom motions
of the rigid-body, we can associate n independent real motion
parameters, θi � i �

1 ��� ��� n via a smooth map, ψ : ℜn � SE
�
3 �

such that ψ
�
θ � �

Â � SE
�
3 � . The motion parameters, θ, may be

assumed to be functions of time t alone, and thus the vector func-
tion θ

�
t � describes the motion in ℜn. As θ

�
t � evolves smoothly,

it traces a curve c
�
t � �

ψ
�
θ
�
t � � on the manifold SE

�
3 � , to each

point of which we can associate a tangent space, which contains
the velocity ċ

�
t � of the curve. The tangent vector ċ

�
t � may be ob-

tained from the push-forward map ψ � : ℜn � TÂSE
�
3 � such that

ψ � � θ̇ � � ˙̂A
�
θ
�
t � � � Ṙ � ε

�
ḊR � DṘ � � TÂSE

�
3 � . We can translate

this tangent vector to the tangent-space at the identity element of

SE
�
3 � by left or right translations by Â

� 1 ���
Â

T � to obtain the
Lie algebra associated with the group, where the multiplication
is given by the Lie bracket, denoted by

� �
��� � . In kinematics lit-
erature, se

�
3 � is well known as the algebra of twists [1]. De-

pending upon the translation used to take them to the identity,
we can get a left-invariant twist or a right-invariant twist. In this
paper, we use the right-invariant twists2, whose explicit form is

Ω̂
� ˙̂AÂ

T �
Ω � ε

���
D � Ω � � Ḋ � where Ω

�
ṘRT � so

�
3 � denotes

the right-invariant angular velocity of the rigid-body. Using the
isomorphism of the algebras

�
so

�
3 � � � �� � � � and

�
ℜ3 � � � , we ex-

press the twist in terms of a dual vector:

V̂
�

ω � ε
�
ḋ � d � ω � (5)

where ω � ḋ and d � ω are the counterparts of Ω � Ḋ, and
�
D � Ω �

respectively in ℜ3. The quantity V̂ is also known as a motor,
and may be thought of as a screw together with a magnitude [10].
In terms of line coordinates, V̂

� �
�ω �� � Q � ε
�
Q0 � hQ � � , where��ω �
� , the magnitude of the angular velocity vector also denotes

the magnitude of the twist.

The Dual Metric
The resultant twist in (5) may be re-written in terms of the

dual Jacobian Ĵ as

V̂
�

Ĵθ̇
� �

Jω � εJv � θ̇ � n

∑
i � 1

$̂iθ̇i (6)

2Analogous results can be obtained for left-invariant twists.

where $̂i, the ith column of Ĵ is the ith input screw which can be
computed as the vector form of the dual skew-symmetric matrix
∂Â
∂θi

Â
T θ̇i, and Jω, Jv represent the Jacobians corresponding to the

angular and linear velocities respectively. At a non-singular con-
figuration, the columns of Ĵ are linearly independent, and as such
they form a basis set for for a subspace of se

�
3 � spanned by the

permissible twists of the manipulator end-effector. The principal
basis-set, consisting of the principal twists describe completely
the first-order instantaneous kinematics of rigid-body motion.

Following the results for point trajectories [6], we seek ex-
tremal magnitudes of the resultant twist, �
� V̂ �� , subject to a unit

speed constraint, �
� θ̇ �
� � 1. Form equation (6), �
� V̂ �� � θ̇T
ĝθ̇,

where ĝ
�

Ĵ
T

Ĵ
�

JT
ωJω � ε

�
JT

ωJv � JT
v Jω � . Under the unit speed

constraint, the vecotr objective function becomes

f
�
θ̇ � �

ĝi jθ̇iθ̇ j
�

λ̂i
�
θ̇2

i
�

1 � i � j
�

1 ��� � ��� n
where ĝi j

���
$̂i � $̂ j 	 is the element

�
i � j � of the matrix ĝ, and

λ̂i � ∆ are the unknown Lagrange multipliers. As shown in [6],
the solution of this n-dimensional extremization problem in n-
dimensions reduces to the following eigen problem:

ĝθ̇
�

λ̂θ̇ (7)

which can be solved as described in the Appendix A. Here, we
list some of the properties of the matrix ĝ and its eigen system.
Symmetry: The matrix ĝ is symmetric and this follows from the
definition of ĝ.
Bi-invariance: Since the dual inner-product is frame-invariant
(the Klein and Killing forms are both frame invariant), ĝ is inde-
pendent of the reference frame, and so are the principal twists.
Positive Definiteness over ∆:

From the properties of dual eigenvalues (see Appendix A),
we see that the real part of an eigenvalue of ĝ is eigenvalue of the
real part of ĝ, i.e., JT

ωJω. The matrix JT
ωJω can admit only non-

negative real eigenvalues, hence the dual eigenvalues are also
non-negative [8]. We also note that the rankℜ

�
Jω � , hence that of

JT
ωJω can be at most 3, hence at most 3 of the dual eigenvalues of

ĝ are non-zero. The rank of a dual matrix over ∆3 
 3 can at most
be 3 [11], hence if rank∆

�
ĝ � � n � n � 3 or rank∆

�
ĝ � �

3 � n � 3, ĝ
is nondegenerate over ∆.

These properties allow us to consider ĝ as a dual analog of
a Riemannian metric on SE

�
3 � . We also observe that the charac-

teristic polynomial of ĝ is at most a cubic due to the last prop-
erty, which renders the eigen problem solvable analytically. In
summary, for degree-of-freedom(n) = 1 � 2 � 3, at a non-singular
configuration, n eigenvalues of ĝ are positive, and for n � 3, at
non-singular configurations, 3 of them are non-zero, and n

�
3 of

them are zeros.
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The eigenvectors, θ̇i, obtained from the solution of
equation(7) form the basis of the row space (for λ̂ �� 0) and
nullspace (for λ̂

�
0) of Ĵ. From equation ( 6), it is clear that

the principal twists lie in the column space (for λ̂ �� 0) and the left
nullspace of Ĵ (for λ̂

�
0), which may be obtained by construct-

ing the set of vectors � V̂ i � � Ĵθ̇i � i
�

1 ��� ��� � n. We look at the two
spaces separately, and propose the concept of degree-of-freedom
partitioning.

Column-space of Ĵ
The non-zero eigen values of Ĵ

T
Ĵ (or ĝ) are equal to those

of ĴĴ
T

, and square of the singular values of Ĵ. This allows us to
write the principal twists corresponding to the column-space of
Ĵ as

V̂
�
i
���

λ̂iQ̂
�
i (8)

where Q̂
�
i
�

Q
�
i � εQ

�
0i is a dual eigenvector of ĴĴ

T
. Expanding

into real and dual parts, we get

V̂
�
i
� � λi

�
Q
�
i � ε

�
λ0i

2λi
Q
�
i � Q

�
0i ��� λi �� 0 (9)

Comparing with the expression for dual velocity, V̂
�
i
�

ω
�
i � εv

�
i

we get

ω
�
i
� � λiQ

�
i

v
�
i
� � λi

�
λ0i

2λi
Q
�
i � Q

�
0i � (10)

We deduce two important results from the last equation. Firstly,
the principal pitch is given by

h
�
i
� λ0i

2λi
(11)

Secondly, the magnitudes of the principal twists, given by��ωi �� ��� λi is related to the principal pitch by the relation	
λ̂i

� ��ωi �� � 1 � εh
�
i � (12)

Left-nullspace of Ĵ
If n � 3, or rankℜ

�
Jω ��
 3, one or more of the principal

twists will lie in the left nullspace of Ĵ. These twists may be
computed from equation (6), where θ̇i are the eigenvectors cor-
responding to the vanishing eigenvalues of ĝ. Expressed as dual

vectors, these twists are of the form 0 � εv
�
i � �

i
�

1 ��� ����� n �
3 �

for n-degree-of-freedom motion (n � 3). These twists have infi-
nite pitches, and they signify pure translational motion of the
rigid-body. To motivate this point, we show below the dual-
vector form of the principal twists for the general case of n

�
6,

where the principal twists are the columns of the following ma-
trix:

B̂
��� ω1x � εv1x ω2x � εv2x ω3x � εv3x εv

�
1x εv

�
2x εv

�
3x

ω1y � εv1y ω2y � εv2y ω3y � εv3y εv
�
1y εv

�
2y εv

�
3y

ω1z � εv1z ω2z � εv2z ω3z � εv3z εv
�
1z εv

�
2z εv

�
3z

��
(13)

The first three columns have the non-zero principal twists form-
ing the column space of Ĵ, and the pure dual twists in the last
three columns correspond to the left-nullspace of Ĵ. These two
sets divide the rigid-body motion into two parts, namely, one
consisting of both translation and rotation, but independent of
the pure translational modes of motion, and another consisting
of purely translational motion, and independent of the rotational
motion of the rigid-body. This decoupling occurs due to the
fact that the dual inner product of two pure translational twists
is zero, and hence the pure translations lie in the left-nullspace
of Ĵ, and it is well known in linear algebra that the null space
is the orthogonal complement of the column space. The three
pure translations account for the three degrees-of-freedom of the
rigid-body as the three non-zero twists imply only three rota-
tional degrees-of-freedom. The translation associated with these
rotational degrees-of-freedom due to the non-zero pitches are not
independent and do not add to the degree-of-freedomof the rigid-
body since the equation (12) states that they are related to the
rotational motion. We call this decoupling degree-of-freedom
partitioning, which allows us to study the rotational and trans-
lational modes of rigid-body motion independent of each other,
and has great potential for application in design of robots where
the objective can be split into these two modes explicitly. We also
note here that if n � 6, then the number of principal twists in the
left null space of Ĵ will be more than 3, and their dual parts will
be linearly dependent. However, we can always construct an or-
thogonal basis set for subspace of ℜ3 spanned by the dual parts,
which will give us the distribution of pure translational motions
of the rigid body.

Analytical Expressions of Principal Twists for Multi-
degree-of-freedom Rigid-body Motion

We now present the most important results of the paper,
namely, the analytical expressions for the principal twists of
multi-degree-of-freedom rigid-body motion.
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One-degree-of-freedom Rigid Body Motion
The simplest case of rigid-body motion is that of one-

degree-of-freedom motion, and the distribution of allowable
twists is of the form V̂

�
$̂1θ̇1. The single input screw $̂1 it-

self may be identified with the principal screw of the system, and
transforming to a frame where the X axis is along the screw axis,
and the origin is some chosen point on the axis, the principal
twist can be written as

V̂
�
i
�

k
�
1 � εh

� � � 1 � 0 � 0 � T (14)

where h
�

is the pitch of $̂ and k � ℜ.

Two-degrees-of-freedom Rigid Body Motion
For two-degree-of-freedom motion of a rigid-body, let

θ
�
t � � �

θ1
�
t � � θ2

�
t � � T represent the two independent motion pa-

rameters. Let $̂i
�

Si � ε
�
hiSi � Soi � represent the ith input screw.

The resultant twist can be written as

V̂
�

$̂1θ̇1 � $̂2θ̇2
�

Ĵθ̇ (15)

Following the development in the last section, we obtain the ma-

trix ĝ, whose elements can also be written as ĝi j
� �

$̂i � $̂ j 	 �
cosφi j � ε

� �
hi � h j � cosφi j

�
di j sinφi j � , i � j

�
1 � 2. In particular,

ĝii
�

1 � ε
�
2hi � � i

�
1 � 2. The dual characteristic equation may

be written in its real and dual components as3

λ2 � 2λ � sin2 φ12
�

0

2
�
λ
�

1 � λ0 � �
h1 � h2 � � d sin2φ12 � 2sin2φ12

�
2λ � �

0 (16)

Solving for λ � λ0, we finally obtain the two eigenvalues as

λ̂1
�

2cos2 φ12 � 2
�
1 � ε

�
h1 � h2

�
d12 tan

�
φ12 � 2 � �

λ̂2
�

2sin2 φ12 � 2
�
1 � ε

�
h1 � h2 � d12 cot

�
φ12 � 2 � � (17)

The principal magnitude and pitches are obtained from the last
equation as

��ω �
1 �
� � � λ1

� �
2cosφ12 � 2

��ω �
2 �
� � � λ2

� �
2sinφ12 � 2

h
�
1
� λ01

2λ1

�
1 � 2

� �
h1 � h2 � � d12 tan

�
φ12 � 2 � � (18)

h
�
2
� λ02

2λ2

�
1 � 2

� �
h1 � h2 � � d12 cot

�
φ12 � 2 � �

3We use di j and φi j to denote the distance and angle between the ith and jth
screw axes.

The real eigenvectors of ĝ are given by 1 � � 2
�
1 � 1 � T , and they

map to the principal twists as

V̂
�
1 � 2

� 1�
2

�
$̂1 � $̂2 � (19)

It may be verified by direct computation that the inner products
of the screws, as well as their axes are zero. This implies that the
principal twists intersect each other orthogonally. If we trans-
form to a new coordinate system, in which the X- and Y -axes are

along the axes of V̂
�
1 and V̂

�
2 respectively, and the origin is the

point of intersection of the two, then we can write the principal
twists as

V̂
�
1
� �
�ω �

1 �� � 1 � εh
�
1 � � 1 � 0 � 0 � T

V̂
�
2
� �
�ω �

2 �� � 1 � εh
�
2 � � 0 � 1 � 0 � T (20)

Using this form of the principal twists, we can easily derive the
equation of the cylindroid, which describes the distribution of
the principle screws, and also compute the the distribution of the
magnitude of twists as an ellipse (see Appendix B for the deriva-
tion).

Three-degrees-of-freedom Rigid Body Motion
The dual velocity vector for a rigid body undergoing

three-degree-of-freedom motion, with motion parameters θ
�
t � �

�
θ1

�
t � � θ2

�
t � � θ3

�
t � � T , may be represented by

V̂
�

$̂1θ̇1 � $̂2θ̇2 � $̂3θ̇3 (21)

where $̂i
�

Qi � ε
�
hiQi � Qoi � is the screw associated with the

motion parameter θi. We obtain ĝ as above, and the real part of
the dual characteristic equation of ĝ in this case is obtained as4

λ3 � 3λ2 � �
3
�

c2
12
�

c2
23
�

c2
31 � λ� �

c2
12 � c2

23 � c2
31
�

2c12c23c31
�

1 � � 0 (22)

This cubic equation can be solved analytically using Cardan’s
formula and using the fact that the roots are real quantities (be-
ing the eigenvalues of a symmetric real matrix g), the analytical
expressions for the roots are obtained as

λi
�

1 � 2�
3

	
c2

12 � c2
23 � c2

31 cos

�
φ � �

i
�

1 � 2π
3 � (23)

4We use c � � � and s � � � to denote cos ��� 	 and sin ��� 	 respectively throughout the
paper.
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where i
�

1 � 2 � 3, and φ � �
0 � 2π � is such that sinφ

�
�
1 � 27 � � c2

12 � c2
23 � c2

31 � 3 �
c2

12c2
23c2

31 and cosφ
�

c12c23c31.
Analogous to the two-degree-of-freedom case, the principal
magnitudes and pitches associated with these twists are obtained
as ��ω �

i �
� � � λi � i
�

1 � 2 � 3, and

h
�
i
� � a20λ2

i � a10λi � a00

3λ3
i

�
6λ2

i � �
3
� �

c2
12 � c2

23 � c2
31 � � λi

(24)

where using the notation H
�

h1 � h2 � h3,

a20
�	�

2H

a10
�

H
�
2
�

c12
�

c23
�

c31 � � h1c23 � h2c23 � h3c12

a00
�

H
�
cosφ12 � cosφ23 � cosφ31

�
4c12c23c31 �

� 2d12
�
c23c31

�
c12 � � 2d31

�
c12c23

�
c31 �

� 2d23
�
c12c31

�
c23 �

The ith eigenvector of ĝ, may be obtained as

θ̇i
� � c12c31 � c23

�
1 � λi ��

1 � λi � 2
�

c2
12

� c12c23 � c31
�
1 � λi�

1 � λi � 2
�

c2
12

� 1 � T (25)

Normalizing these eigenvectors and writing them as
�
li � mi � ni � T ,

the principal twists are obtained from equation (21) as

V̂
�
i
�

$̂1li � $̂2mi � $̂3ni (26)

It follows from the properties of the dual symmetric matrices that
the lines L̂i along V̂ i are mutually orthogonal (for unique eigen-
values), and they meet at a point. Following the treatment in the
two-screw case, we transform to the principal basis, in which the
axes X � Y and Z are along L̂1 � L̂2 and L̂3, respectively, with the
origin at the point of intersection of the three axes. We can write
the principal twists in this basis, using the standard basis � ei � of
ℜ3, as

V̂
�
i
� �
�ω �

i �� � 1 � εh
�
i � ei � i

�
1 � 2 � 3 (27)

Analogous to the case of two-degree-of-freedom rigid-body mo-
tion, we derive the distribution of the magnitude of twists as an
ellipsoid, and deduce the equation of the pitch hyperboloid asso-
ciated with a 3-screw system (see Appendix B).

By recovering the classical results of screw theory using our
dual metric approach, we have demonstrated the mathematical
exactness of our formulation. The key advantage of the dual
metric approach is that we are able to derive compact analyti-
cal expressions for all the results, and also introduce the concept
of distribution of magnitudes of twists.

n-degree-of-freedom Rigid Body Motion, n � 3
The general case of n-degree-of-freedom motion can be con-

sidered within the same framework as above. As noted earlier,
the rankℜ

�
Jω � � 3, and hence rank∆

�
ĝ � � 3, which reduces the

characteristic polynomial of ĝ to at most a dual cubic. More
explicitly, the characteristic equation (43) takes the shape as fol-
lows:

λ̂
n � 3 �

λ̂
3 � ân � 1λ̂

2 � ân � 2λ̂ � ân � 3 � �
0 (28)

We conclude from the above that n
�

3 of the eigen values are
zeros, and the 3 non-zero ones can be computed from the residual
cubic equation, once the coefficients are computed from the dual
invariants of ĝ (see Appendix A). We also note that an � 1

� �
n,

as it is the negative of the trace of g and ĝii
�

1 � ε
�
2hi � . Hence

the real part of the characteristic equation becomes

λ3 � nλ2 � an � 2λ � an � 3
�

0 (29)

This equation requires the computation of only two coefficients,
which can be done very efficiently by computing the second and
third invariants of g. Thus, by exploiting the algebraic structure
of the problem, we ensure an analytic solution for rigid-body mo-
tion of arbitrary degree-of-freedom greater than 3. The 3 eigen
vectors corresponding to the non-zero eigenvalues can be com-
puted by the standard method. However, we will also have at
least n

�
3 principal twists in the nullspace of Ĵ, and to compute

them, we first have to find the vectors θ̇i in the null space of g,
i.e., solve the equation

gθ̇i
�

0 i
�

1 � ��� � � n �
3 (30)

where g is a n � n real matrix, whose rank is at the most 3. Hence
we can solve for the eigenvectors by row-reducing g to get 3 in-
dependent equations, and choose the n

�
3 free variables in each

of them suitably. Finally, the corresponding principal twist is ob-
tained by the mapping V̂ i

�
Ĵθ̇i. These twists have only their

dual parts, and they span the space of pure translational motions
of the rigid-body.

Principal Twists for Parallel and Hybrid Manipulators
The above analysis is readily applicable for serial manipu-

lators. In parallel manipulators, closed loop mechanisms, and
hybrid manipulators, in addition to the actuated joints, we have
one or more passive joints. A parallel device with m passive vari-
ables has m independent constraint equations denoted by

η
�
θ � φ � �

0 (31)
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where η is a m-vector, θ, and φ, are n
�

and m
�

vectors denoting
the actuated and passive variables respectively. Differentiating
this equation with respect to time and rearranging [12], we get

Jηθθ̇ � Jηφφ̇
�

0 (32)

At a non-singular configuration, Jηφ is invertible, and we can
obtain the passive joint rates as

φ̇
� �

J
� 1
ηφJηθθ̇ (33)

In general, equation (5) may be written in terms of the corre-
sponding Jacobians as

V̂
�

Jωθθ̇ � Jωφφ̇ � ε
�
Jvθθ̇ � Jvφφ̇ � (34)

Eliminating φ̇ using equation(32)

V̂
� �

Jωθ
�

JωφJ
� 1
ηφJηθ � θ̇ � ε

�
Jvθ

�
JvφJ

� 1
ηφJηθ � θ̇

�
Ĵeqθ̇ (35)

where from the dual Jacobian can be written as Ĵeq
� �

Jωθ
�

JωφJ
� 1
ηφJηθ ��� ε

�
Jvθ

�
JvφJ

� 1
ηφJηθ � , and its columns may be con-

sidered as equivalent input screws. Once Ĵeq is formed, the rest
of the analysis can proceed as shown earlier.

1 Analysis of Singularities
In the previous section, we have developed analytical ex-

pressions for principal twists. For analysis of singularities, we
can readily use the above approach and obtain the principal sin-
gular directions. In this section, we discuss both the loss and gain
kinds of singularities, while noting that the former type is possi-
ble only in purely serial manipulators, and the later in purely
parallel manipulators, while hybrid manipulators having serially
actuated branches connected in parallel can show both types of
singularities [13].

Loss Type of Singularity The loss kind of singularity
is said to occur when the manipulator end-effector fails to twist
about certain screws in spite of full actuation. This results in the
loss of one or more degrees-of freedom of the end-effector [12].
In our formulation, we treat the rotational degrees-of-freedom
as decoupled from purely translational degrees-of-freedom, and
hence the loss may occur in either of the following three ways:

1. Loss of rotational degree-of-freedom: The manipulator end-
effector has 1 � 2 or 3 rotational degrees-of-freedom depend-
ing upon the number of non-zero eigenvalues ĝ has at a non-
singular configuration. If at a singular configuration, m addi-
tional eigenvalues vanish5, then we say that the manipulator
has lost m rotational degrees-of-freedom. It may be noted
that the corresponding pitch also vanishes, and hence the
corresponding twist can reduce to a pure translation in the
nullspace of Ĵ at that configuration. We look at the possibli-
ties on a case by case basis.
One-degree-of-freedom In this case, the principal screw re-
duces to a null vector, 0 � ε0, unless the origninal degree-of-
freedom was translational (as in a P-joint), in which case
there is no loss of rotational degree-of-freedom possible.
Two-degrees-of-freedom From the set of equations (16), it
can be seen that only one of the λ̂s (λ̂2 in particular) can
vanish, under the condition sin2 φ12

�
0. The expression for

λ̂2 in equation (17) is invalidated, as it was derived under the
condition λ̂i �� 0. The other eigen value can be obtained from
equation(16) as λ̂1

�
2
�
1 � ε

�
h1 � h2 � � . The two principal

twists in equation (19) collapse to V̂
�
1
� 1�

2

�
$̂1 � $̂2 � which

gives the resultant rotational degree-of-freedom in this case,

and V̂
�
2
� 1�

2

�
$̂1

�
$̂2 � , now forms the left nullspace of Ĵ,

signifying a translatory motion.
Three-degrees-of-freedom In this case, there may be loss
of one or two angular degrees-of-freedom, the conditions of
the same are found from equation (21) as c2

12 � c2
23 � c2

31

�
2c12c23c31

�
1

�
0 and c2

12 � c2
23 � c2

31

�
2c12c23c31

�
1

�
0
� �

3
�

c2
12

�
c2

23

�
c2

31 � respectively. As in the case of two-
degrees-of-freedom rigid-body motion, the non-zero roots
may be computed from equations from equations(21,24), the
first of which reduces to a quadratic and a linear equation in
λ in the two cases respectively. The eigenvectors of g can be
computed symbolically, and therefrom the principal twists
in the columnspace and null space of Ĵ can be obtained us-
ing equation (27) and equation (27) respectively. It may be
noted here that the loss of one or two rotational degree-of-
freedom results in those many principal twists being pushed
from the column space into the left nullspace of Ĵ, which has
interesting consequences when degree-of-freedom is greater
than 3.
n-degrees-of-freedom n � 3 The treatment in this case
follows exactly the case of three-degrees-of-freedom. We
need to consider equation (28) instead of equation (21), and
the conditions for loss of one or two rotational degree-of-
freedom are an � 3

�
0, and an � 3

�
0
�

an � 2 respectively.
2. Loss of a translational degree-of-freedom: The number of

pure translational degrees-of-freedom equal the number of

5m can be either 1 or 2. All the three eigenvalues can vanish only for a purely
Cartesian manipulator, whose analysis can be done much more conveniently by
looking at its linear velocity distribution in ℜ3.
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linearly independent pure dual vectors in the left null space
of Ĵ. These vectors span the space of pure translational
velocities of the rigid-body and writing their dual parts as
the columns of a 3 � m real matrix B , m being the num-
ber of such vectors, their distribution can be found from the
eigen system of BBT . The rank of this matrix determines
the number of independent pure translations possible at the
end-effector. It may be noted that the degeneracy of rota-
tional motion, as described above, leads to the addition of a
column to B , but since the rank of B is limited to 3, the de-
generacy of rotational motion does not lead to an additional
translational degree-of-freedom if rank of B is already 3.

3. A combination of the above two types.

Gain Type of Singularity A parallel devices gain one
or more degrees-of-freedom in the configuration space when one
of the constraint Jacobians, Jηφ in equation (32) loses rank, and
the number of degree-of-freedom gain equals the nullity of Jηφ
(see, for example [14]). The gained passive motions lie in the
nullspase of Jηφ, and may be obtained by solving the equation

Jηφφ̇i

�
0 � i

�
1 ��� � � � nullity

�
Jηφ � (36)

The effect of this gain is that the manipulator end-effector can
now twist about one or more screws even with all the actuators
locked. These twists may be obtained by setting θ̇

�
0 in equa-

tion (34), and substituting the solutions of (36) for φ̇:

V̂ i
�

Jωφφ̇i � εJvφφ̇i (37)

We can obtain the gained screws $̂i by normalising V̂ i. Any

gained twist may be written as V̂ gain
�

∑
nullity � Jηφ

�

i � 1 ci$̂i � ci � ℜ.
This equation is comparable with $̂

�
Ĵθ̇, and under a similar

constraint, ∑
nullity � Jηφ

�

i � 1 c2
i

�
1, the principal twists of the system

can be extracted, wich will give us the principal basis for the
space of gained twists at a singularity.

In the following section, we obtain the principal twists and
singular directions for two manipulators to illustrate our ap-
proach.

Illustrative Examples
We demonstrate the theoretical developments by a 3-degree-

of-freedom parallel manipulator, and a 6-degree-of-freedom hy-
brid 3-fingered gripper.

Figure 1. The RPSSPR-SPR parallel manipulator

A three-degree-of-freedom Parallel Manipulator
Figure 1 shows a three-loop, three-degree-of-freedom

RPSSPR-SPR mechanism. The geometry chosen is same as in
reference [6], which also presents the kinematic equations. The
actuated variables are θ

� �
l1 � l2 � l3 � T , and the passive variables

are
�
θ1 � θ2 � θ3 � T . The loop closure equations are obtained from

the fact that the distance between the spherical joints, Pi, are con-
stant and constraint equations, ηk � k �

1 � 2 � 3 are of the form

��Pi
�

P j �
� � a2 � i � j
�

1 � 2 � 3 � i �� j (38)

where a is the length of a side of the equilateral platform, which
is assumed to be

�
3 � 2 units. The sides of the bottom triangle

are
�

3 units each. The reference point on the moving platform
is chosen as its centroid:

d
� �

x � y � z � T � �
1 � 3 � � P1 � P2 � P3 � (39)

In accordance with the theoretical development presented
here, at a non-singular configuration defined by l1

�
0 � 5 � l2 �

1 � 0 � l3 �
2 � 0, and corresponding passive variables θ1

�
0 � 400rad,

θ2
�

0 � 754rad and θ3
�

0 � 240rad, the dual eigen values of ĝ are
are computed analytically, yielding the numerical values

λ̂1
�

19 � 62 � ε
� �

2 � 49 �
λ̂2

�
1 � 17 � ε

� �
0 � 20 �

λ̂3
�

0 � ε
�
0 �

and the three principal pitches are given by

h
�
1
� �

0 � 06 � h
�
2
� �

0 � 09 � h
�
3
�

∞
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Table 1. DH PARAMETERS OF THE jth FINGER

i αi � 1 ai � 1 di θi

1 0 0 0 θ j

2 π
2 l j1 0 ψ j

3 0 l j2 0 φ j

4 0 l j3 0 0

The principal twists, at this configuration, is given by

V̂1
� � �

1 � 71 � � 4 � 05 � 0 � 54 � T � ε
�
0 � 61 � 0 � 31 � 1 � 91 � T

V̂2
� �

0 � 35 � � 0 � 01 � 1 � 02 � T � ε
�
0 � 38 � � 0 � 34 � � 0 � 23 � T

V̂3
� �

0 � 0 � 0 � T � ε
�
0 � 0 � 1 � 22 � T

It may be noted, however, that one of the dual eigenvalues is
always zero and the corresponding principal pitch h

�
3 is infinite

at all configurations. This fact can be resolved as follows: the
three degrees-of-freedom of the platform is partitioned into two
angular degrees-of-freedom and one pure translatory motion. In-
tuitively this is clear since the rotary joint axis in the base are in
a plane and the top platform can be made to translate parallel
to the Z axis without any angular motion by changing the leg
lengths. However, one of the strengths of our approach is that we
can analytically capture this partitioning of degrees of freedom.

Spatial 3-Fingered Gripper
We now analyze a 3-looped 6-degree-of-freedom hybrid

spatial manipulator (see figure 2). The manipulator has 3-fingers,
whose DH parameters (of the jth finger) are given in table 1.

The first two of the joints in each finger are actuated, and
the last link is passive. Hence the active variable is given by θ

�
�
θ1 � θ2 � θ3 � ψ1 � ψ2 � ψ3 � T , and the passive variable given by φ

�
�
φ1 � φ2 � φ3 � T . The individual legs have the same architecture, and

their link-lengths are taken such that l1
�

2l2
�

4l3
�

1. The other
architectural parameters are chosen as follows (see figure 2): d

�
1 � 2, h

� �
3 � 2,s

� �
3 � 2. The third finger is rotated about the

Y axis through an angle of π � 4. The constraint equations are
formed in a manner similar to that of the previous example, i.e.,
ηk � k �

1 � 2 � 3 has the form:

�
�Pi
�

P j �� � s2 � i � j
�

1 � 2 � 3 � i �� j (40)

These equations are solved after reducing them to a univariate
polynomial using Sylvester’s dialectic method.

l13

l12

l11

Z

l l l

l

l
l

21 22 23

31

32

33

θ

θ

θ

φ

ϕ

φ

ϕ

ϕ
φ

1

1
1

2

2

2

3

3
b

b

b

1

2

3

p
p

p

1

2

3

s

s
s

d
d

h

3

X

Y

Figure 2. The Spatial 3-fingered Gripper

Non-Singular Configuration A typical non-singular
configuration is obtained at θ

� �
0 � 2 � 0 � 1 � 0 � 3 � � 1 �
� � 1 � 2 � 1 � T ,for

which φ is solved as
�
0 � 3679 � 1 � 4548 � 0 � 8831 � T . The dual eigen

values of ĝ are computed as

λ̂1
�

0 � 0322 � ε
�
0 � 0881 �

λ̂2
�

2 � 1000 � ε
�
5 � 4494 �

λ̂3
�

1496 � 4500 � ε
�
1070 � 4100 �

and the three principal pitches are given by

h
�
1
�

1 � 3675 � h
�
2
�

1 � 2974 � h
�
3
�

0 � 3576 h
�
4
�

h
�
5
�

h
�
6
�

∞

The principal twists in the column space of Ĵ, at this configura-
tion, is given by

V̂1
� �

14 � 5577 � 35 � 2770 � 6 � 2392 � T � ε
�
15 � 1630 � 7 � 4271 � 8 � 2884 � T

V̂2
� � �

1 � 3407 � 0 � 5223 � 0 � 1723 � T � ε
� �

2 � 0408 � � 0 � 0341 � 0 � 0269 � T

V̂3
� �

0 � 0089 � � 0 � 0352 � 0 � 1759 � T � ε
� �

0 � 3566 � � 0 � 1899 � 0 � 2307 � T

and the three pure dual principal twists are

V̂4
� �

0 � 0 � 0 � T � ε
� �

0 � 0934 � 0 � 7672 � 0 � 1079 � T

V̂5
� �

0 � 0 � 0 � T � ε
� �

0 � 0263 � � 0 � 4937 � 0 � 0605 � T

V̂6
� �

0 � 0 � 0 � T � ε
�
0 � 1847 � � 0 � 0674 � 0 � 2720 � T

Singular Configuration: Loss We look at the sin-
gular configuration where all the three fingers are stretched
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out [13], i.e., φi
�

0. The configuration is defined
by θ

� �
0 � 0500 � � 0 � 0500 � 0 � � 1 � 0998 � � 1 � 0998 � 1 � 0026 � T, φ

�
�
0 � 0 � 0 � � T . We expect a loss of three degrees-of-freedom since

all three fingers are in singular configuration, as we find that the
pure dual principal twists vanish identically, signifying the loss
of three translational degrees of freedom. The other three princi-
pal twists are given as

V̂1
� � �

1 � 7888 � � 27 � 7299 � 0 � 0514 � T � ε
�
12 � 0096 � � 0 � 0062 � � 8 � 6253 � T

V̂2
� �

12 � 2507 � � 0 � 7909 � � 0 � 3526 � T � ε
�
1 � 7537 � 0 � 0443 � � 1 � 2595 � T

V̂3
� �

0 � 0001 � 0 � 0 � 0050 � T � ε
� �

0 � 0048 � � 0 � 7853 � � 0 � 0035 � T

Singular Configuration: Gain The gain condition
we use here is that one of the passive links lie in the plane
of the moving platform. We derive such a configuration
at θ

� �
0 � 0554 � � 0 � 0544 � � 0 � 8119 � � 0 � 8199 � 0 � 1 � 5708 � T , φ

�
� �

1 � 3300 � � 1 � 3300 � 0 � 7854 � T . There is a gain of a single degree-
of-freedom, and the corresponding gained passive motion in the
nullspace of Jηφ is obtained as

�
0 � 0 � 1 � T , indicating that φ3 has

an instantaneous motion even with actuators locked. The gained
twist is essentially the 3rd column of Jωφ � εJvφ, whose analyt-

ical expression is of the form
�
0 � ωy � 0 � T � ε

�
vx � 0 � vz � T . In par-

ticular, at the chosen architecture and configuration, the gained
twist is

�
0 � 1 � 3 � 0 � T � ε

� �
1 � 12 � 0 � 0 � T .

Conclusion
In this paper, we have presented a dual-number based ana-

lytical approach for computation of the principal twists and sin-
gular directions of a manipulator end-effector for general multi-
degree-of-freedom rigid-body motionU̇sing the dual vectors to
represent twists, we pose the problem as an eigen-problem, and
provide the solution of the same. The eigen-problem allows us
to obtain compact analytical expressions for principal twists and
also allows us to partition degrees of freedom in manipulators.
We demonstrate that the eigen-problem allows us to recover the
key results of classical screw theory, and also apply our for-
mulations on a parallel and a hybrid manipulator to determine
their principal twists and singularities. We hope that the concept
of dual-valued metric and degree-of-freedompartitioning will be
useful for manipulator design and analysis.
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Appendix A: Dual Eigen Problem
The general eigen problem of a square dual matrix Â

�
A �

εA0, A � A0 � ℜn 
 n, may be written as

Âx̂
�

λ̂x̂ (41)

However, here we give the solution for only case encountered in
the paper, i.e., Â is symmetric, and x̂

�
x is real. Concentrating

on the real part of equation (41), we get

�
A
�

λI � x �
0 (42)
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which corresponds to the eigen problem of A, the real part of Â.
We can compute λ, x from it using the usual techniques. To com-
pute λ0, the dual part of λ̂, we equate the determinant det

�
Â
�

λ̂I �
to 0, and obtain the dual characteristic polynomial of the form:

n

∑
r � 0

ârλ̂r � n

∑
r � 0

�
ar � εar0 � � λr � εrλr � 1λ0 � �

0 (43)

Equating the real and dual parts of the above equation to zero
separately, we get

n

∑
r � 0

arλr �
0

n

∑
r � 1

arrλr � 1λ0 � n

∑
r � 0

ar0λr �
0 � ân

�
1 (44)

Solution of the first of equations(44) gives, in general, n values
of λ, and for each of these values, we can solve for the corre-
sponding λ0 uniquely from the second. In particular, λ0 is given
in terms of λ as

λ0
� � ∑n

r � 0 ar0λr

∑n
r � 1 arrλr � 1

�
λ �� 0 � (45)

We make a few important observations on the dual eigen values:
Zero roots: If λ

�
0, λ0 is also 0. This follows from the appli-

cation of L’Hospital’s rule to equation (45) at the limiting case
λ � 0.
Repeated roots: If the real part of the characteristic polynomial
has a repeated root of order m, the corresponding repeated value
of λ0 has the expression

λ0
� � dm � 1

dλm � 1

�
∑n

r � 0 ar0λr �
dm � 1

dλm � 1

�
∑n

r � 1 arrλr � 1 � λ �� 0 (46)

It may be noted here that construction of the characteristic poly-
nomial by expansion of the determinant of

�
Â
�

λ̂I � requires ex-
pensive symbolic computation. Alternatively, we can construct
the polynomial by explicitly computing the invariants of Â, tak-
ing advantage of the principle of permanence of identities6. The
formula required for computation of the invariants is obtained
from the matrix-form of Newton’s identities:

Îk
� � �

1 � k
�

1

k

�
tr � Âk � � k � 1

∑
i � 1

� �
1 � iÎitr � Âk � i ��� � Î1

�
tr Â

6The principle states that matrix identities continue to hold even when the
elements are from an arbitrary ring (∆ in our case) instead of a field [15].

where k
�

1 � � ��� � n. The coefficients, âr, are obtained from the
dual invariants as âr

� � �
1 � n � rÎn � r � r �

1 � ��� ��� n � 1, while ân
�

1
as characteristic polynomials are always monic.

Appendix B: Derivation of the Classical Screw-theory
Results
Derivation of the Dual Ellipse, and Cylindroid

From equation (20), any admissible twist of the rigid-body
can be written as a linear combination of the two principal twists
as follows:

V̂
�

l1V̂
�
1 � l2V̂

�
2 (47)

where l1 � l2 are two arbitrary real numbers. Under a unit speed
constraint, l2

1 � l2
2

�
1, and we can introduce a real parameter

θ � � 0 � 2π � , such that l1
�

cθ and l2
�

sθ We get finally

V̂
� � ��ω �

1 �� cθ � ��ω �
2 �
� sθ � 0 � T

� ε
� �
�ω �

1 �� h �1cθ � �
�ω �
2 �� h �2sθ � 0 � T (48)

The real part of equation equation (48) gives the parametric
form of an ellipse which describes the distribution of the angu-
lar velocity in the local coordinate system, whose semi-major
and semi-minor axes are given by �
�ω �

1 �� � �
�ω �
2 �� . This motivates

us to call the geometric quantity described by equation (48) a
dual ellipse. The dual part of equation (48) yields more infor-
mation about the distribution of screws. We can write the resul-
tant screw axis as a linear combination of the principal screws:
$̂
� �

cθ � sθ � 0 � T � ε
�
h
�
1cθ � h �2sθ � 0 � T The pitch of the screw is ob-

tained from equation (3) as h
�

S � S0
�

h
�
1 cos2 θ � h

�
2 sin2 θ. The

foot of the perpendicular from the origin to the axis of $̂ is ob-
tained as

r0
� �

0 � 0 � � h �2 � h
�
1 � sθcθ � T � �

0 � 0 � z � T (49)

The above equation shows that the axis of V̂ is perpendicular
to the local Z axis, and is at a distance z from the origin, which
varies as sin2θ. Writing cosθ

� x
x2 � y2 , sinθ

� y
x2 � y2 and rear-

ranging, we get

z
�
x2 � y2 � � �

h
�
1
�

h
�
2 � xy

�
0 (50)

The above is the classical equation of the cylindroid (see, for
example, [3]).

11 Copyright c
�

2003 by ASME



Derivation of the Dual Ellipsoid and the Pitch Hyper-
boloid

Similar to the twodegree-of-freedom case, any admissible
twist for three-degree-of-freedom rigid-body motion can be writ-
ten as a linear combination the principal twists, and under a unit
speed constraint, l2 � m2 � n2 �

1, we get

V̂
�

lV̂
�
1 � mV̂

�
2 � nV̂

�
3 (51)� � ��ω �

1 �
� l � �
�ω �
2 �
�m � ��ω �

3 �
� n � T

� ε
� ��ω �

1 �� h �1l � ��ω �
2 �� h �2m � ��ω �

3 �
� h �3n � T

The real part of equation (51) gives the parametric form of an
ellipsoid, which describes the distribution of the angular velocity
in the local coordinate system. The semi-axes of the ellipse are
given by ��ω �

1 �� � ��ω �
2 �
� and ��ω �

2 �� , and its orientation is given by
the corresponding principal axes. We call the geometric entity
described by equation (51) a dual ellipsoid, which is a gener-
alization of the dual ellipse to 3-degree-of-freedom rigid-body
motion. To explore the dual part of equation (51), we take a look
at the distribution of screws, which may be written as

$̂
� �

l � m � n � T � ε
�
h
�
1l � h �2m � h �3n � T (52)

The pitch of the screw is obtained from equation (3) as h
�

S �
S0

�
h1

�
l2 � h2

�
m2 � h3

�
n2. The foot of the perpendicular from

the origin to the axis of $̂ is obtained as

r0
� � �

h
�
3
�

h
�
2 � mn � � h �1 � h

�
3 � ln � � h �2 � h

�
1 � lm � T (53)

By setting either of l,m or n to zero, we can obtain a cylindroid
in each case, whose axis is parallel to the Z � Y and X axis respec-
tively. The moment of the axis about the origin is Q0

�
S0

�
hS.

If
�
x � y � z � T be a point on the screw axis, then we can write�

x � y � z � T � S
�

Q0. Expanding this equation and rearranging, we
obtain

�� h
�

h
�
1

�
z y

z h
�

h
�
2

�
x�

y x h
�

h
�
3

�� �� l
m
n

��
�

0 (54)

For the above homogeneous equations to have a non-trivial solu-
tion, we must have the determinant of the matrix as zero. This
condition yields

x2 � h �
h
�
1 � � y2 � h �

h
�
2 � � z2 � h �

h
�
3 �� �

h
�

h
�
1 � � h �

h
�
2 � � h �

h
�
3 � �

0 (55)

The above equation gives the pitch h associated with a line pass-
ing through any arbitrary point

�
x � y � z � . Equation (55) describes

a hyperboloid of one sheet and is identical to the one obtained
by Ball [2] (also given in Hunt [3]) when considering a three
screw-system.
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