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ABSTRACT
This paper deals with the kinematic analysis of a wheeled

mobile robot (WMR) moving on uneven terrain. It is known in lit-
erature that a wheeled mobile robot, with a fixed length axle and
wheels modeled as thin disk, will undergo slip when it negotiates
an uneven terrain. To overcome slip, variable length axle (VLA)
has been proposed in literature. In this paper, we model the
wheels as a torus and propose the use of a passive joint allowing
a lateral degree of freedom. Furthermore, we model the mobile
robot, instantaneously, as a hybrid-parallel mechanism with the
wheel-ground contact described by differential equations which
take into account the geometry of the wheel, the ground and the
non-holonomic constraints of no slip. Simulation results show
that a three-wheeled WMR can negotiate uneven terrain without
slipping. Our proposed approach presents an alternative to vari-
able length axle approach.
Key Words: Wheeled vehicle kinematics, Uneven terrain,
Slip-free motion.

INTRODUCTION
The motion of wheeled mobile robots (WMR) on flat terrain

has been well studied due to its direct application in industrial
environments (see for example, [1, 2]). More recently, mobile
robots are being used in off-road navigation tasks and planetary
exploration. The kinematic analysis proposed in [1, 2] cannot be
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applied directly to uneven terrain since on uneven terrain there
can be slipping between the wheel-ground contact point. Wal-
dron [3] has argued that two wheels independently joined to a
common axle cannot roll on uneven terrain without slip. The
use of Ackerman steering and differential wheel actuation which
works for conventional vehicles on flat terrain does not work
because there is no instantaneous center compatible with both
wheels. Although a few WMR’s capable of adapting to uneven
terrain have been proposed in the literature [4–6] they are not
capable of slip free motion. The lateral slip in WMR’s is unde-
sirable because it leads to localization errors thus increasing the
burden on sensor based navigation algorithms. In addition, for
planetary explorations, power is at a premium and such slipping
leads to large wastage of power.

The problem of two wheels joined independently to a axle,
moving on uneven terrain, without slip has been studied in [7–9].
In [9], the authors have modeled the vehicles as hybrid series par-
allel chains and using instantaneous rate kinematics showed that
for prevention of slip, a) the line joining the wheel terrain contact
points must be coplanar with the axle axis, or b) the wheels must
be driven at identical speeds relative to the axle. In [8], the au-
thors have suggested the use of a variable length axle (VLA) to
overcome this problem, and they have proposed the use of an un-
actuated prismatic joint in the axle to vary the axle length. In [7],
the instantaneous kinematics of a 3-wheeled vehicle with a VLA
joining the two rear wheels have been studied. The authors have
also provided experimental results regarding the variation of the
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length of the axle. In [5], the position kinematics of a wheeled ac-
tively articulated vehicle (WAAV) has been solved. This vehicle
has the capability to adapt to uneven terrain but it is not capable
of slip-free motion. A modification of the kinematic design of
WAAV using VLA has been proposed in [10] and its kinemat-
ics has been studied. Vehicles with such a kinematic design to
ensure no kinematic slipping has been termed as vehicles with
slip-free motion capability (VSMC).

There are a few limitations of using a VLA – a) at high in-
clinations there is slipping due to gravity loading, and b) the dy-
namic slip due to inertial loading becomes large at higher speeds.
To overcome the limitations in VLA, the use of an actuated VLA
has been proposed. An actuated VLA, however, requires accu-
rate measurement of slip to obtain the desired actuator output.

It may be noted that all the above mentioned work model the
wheel as a thin disk. On a flat ground this is reasonable since the
contact point always lies in a vertical plane passing through the
center of the wheel. However on uneven terrain this is not the
case in general and the contact point will vary along the lateral
surface of the general wheel due to terrain geometry variations.

In this paper we have proposed an alternative to VLA for
slip-free motion capability in wheeled mobile robots. Our alter-
native design is based on the following concepts:

� Each wheel is assumed to be a torus. The wheels and the
ground are considered as rigid bodies and single point con-
tact is assumed between the wheel and the ground. The
equations describing the geometry of the wheel and the
ground are assumed to be sufficiently smooth and contin-
uous such that derivatives up to second-order exists and ge-
ometric properties such as curvature and torsion can be com-
puted.� The equations of contact between two arbitrary surfaces in
single point contact, derived by Montana [11], are used to
model the motion of a torus shaped wheel on an uneven ter-
rain.� The lateral rotational motion of the wheel is accommodated
by a passive rotary joint. This allows the distance between
the wheel-ground contact points to change without changing
the axle length. Since this joint is passive, sensing or control
is not required.� Instantaneously, the wheeled mobile robot can be mod-
eled as hybrid-parallel mechanism with a three-degree-of-
freedom joint at the wheel-ground contact. Unlike a typ-
ical kinematic joint, the no-slip non-holonomic constraint
leads to non-linear ordinary differential equations which are
derived for the torus and smooth ground pair by following
Montana [11].� The position kinematics of the mobile robot is solved by in-
tegrating the ordinary differential equations and the holo-
nomic constraints arising out of the hybrid-parallel mecha-
nism. The set of differential-algebraic equations are solved

to obtain the position and orientation of the vehicle for given
values of actuated variables and initial conditions.

We demonstrate our approach with a 3-wheeled vehicle and
show by simulation that slip free motion can be achieved without
a passive or actuated VLA. In our approach, no-slip motion is
achieved by using torus shaped wheels and passive rotary joints
without any additional sensors or control. This is the main con-
tribution of this paper.

The paper is organized as follows: in the next section, we
discuss the issues of modeling the uneven terrain. We assume
that we have the terrain elevation data, from a sensor such as
a laser range finder, at discrete points. These discrete points are
interpolated using cubic splines which ensures sufficient smooth-
ness and continuity. Subsequently, we state the contact equations
derived by Montana and use them to derive the contact equations
for a torus shaped wheel moving on uneven terrain. Then, we
present our approach of modeling of the vehicle as a parallel ma-
nipulator instantaneously and derive the kinematic equations for
it, followed by some simulation results, illustrating the capability
of the vehicle to negotiate uneven terrain without slip. In the last
section we present the conclusions and scope of future research.

MODELING OF UNEVEN TERRAIN
In this section, we review the differential-geometric proper-

ties of a surface required in our analysis and briefly present the
concept of bi-cubic patch used to model the uneven terrain.

A surface in 3D space, ℜ3, can be expressed as a map of the
form X : U

� ℜ2 � ℜ3. In terms of coordinates, we have three
equations, giving the � x � y � z � coordinates of a point on the surface
as a function of two independent variables � u � v � , of the form

� x � y � z � T � X � u � v �

At any point on the surface, we can define tangent vectors Xu and
Xv as

Xu
� ∂X

∂u
Xv

� ∂X
∂v

At any non-singular point, a normal to the surface can also be
defined as

n � Xu � Xv�
Xu � Xv

�

We assume that Xu and Xv are orthogonal. This implies that
the vectors 	 Xu


Xu

 � Xv


Xv

 � n � form a right-handed coordinate systems

at any point on the surface. Based on this, we can define the
following:
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� A metric �M � on the surface as

�M � ��� �
Xu

�
0

0
�
Xv

���
� A curvature form �K � as

�K � ����� Xuu 	 n 
 �
Xu

� � Xuv 	 n 
 �
Xv

�� Xuv 	 n 
 �
Xu

� � Xvv 	 n 
 �
Xv

� �
� A torsion form � T � as

� T � � �Xv 	 Xuu 
 �
Xu

�
Xv 	 Xuv 
 �

Xv
� �

We start with the assumption that we have the digital eleva-
tion model (DEM) of the terrain i.e., n available measured data
points of the terrain in the form � x � y � z � i � i � 1 � 2 ���
��� � n. This
data is assumed to be available from sensors located on the mo-
bile robot or external to the robot. The reconstruction of a surface
from its DEM is an ill-posed problem and a ”correct” surface
does not generally exist. As a result various notions such as least
square error, distance metrics, energy minimization, smoothness
assumptions on the underlying surface have been proposed in
the literature to evaluate a reconstructed surface (for some of the
techniques of surface reconstruction see, [12–14]). Each tech-
nique has its own strengths and drawbacks and finding an algo-
rithm for efficient representation and accurate reconstruction of
a surface is still an open problem. However, our focus in this
paper is not on surface modeling techniques - in our analysis, we
require a surface representation which enables us to compute up
to second derivatives and any representation of the surface which
allows us to do this will serve our purpose. Therefore, without
loss of generality, in this paper we represent the surface as a sim-
ple bi-cubic patch.

A bi-cubic patch is given by the equation

X � u � v � � 3

∑
i � 0

3

∑
j � 0

ai ju
iv j � u � v � ε � 0 � 1 �

The quantities ai j’s are called algebraic coefficients and there are
16 of them. One can find them from given 4 corner points and
the slopes and twist vectors at these corner points. Alternatively,
one can also find them if 16 points on the surface are given. The
above equation of a bi-cubic patch can be differentiated twice and
the required metric, curvature and torsion form can be computed
efficiently. In a bi-cubic patch, a change in any of the algebraic
coefficients(or any of the 16 points) changes the whole surface.
For details see [15].

In this paper, we have used synthetic ground data for our
simulation purposes. We have used in-built functions in Mat-
lab [16] (Spline Tool Box) to generate a bi-cubic patch from
given synthetic ground data and obtained the metric, curvature
and torsion of the ground.

KINEMATIC MODELING OF SINGLE WHEEL
In this section, we derive the kinematic equations of contact

of a torus shaped wheel rolling without slip on uneven terrain.
For completeness, we present the differential equations describ-
ing contact between two smooth surfaces developed by Mon-
tana [11]. Then we use the same to find the contact equations
for a single wheel moving on uneven terrain.

Figure 1 shows two surfaces 1 and 2 in contact with each
other. The two surfaces are described relative to coordinate sys-
tems, Cr1 and Cr2 , fixed to the two surfaces by X1

� X1 � u1 � v1 �
and X2

� X2 � u2 � v2 � respectively. At the point of contact, coor-
dinate systems Cl1 and Cl2 (which are fixed relative to Cr1 and
Cr2) are defined on the two surfaces as follows:

� The coordinate system on surface 1 i.e. Cl1 is
	 Xu1 
 �

Xu1

� � Xv1 
 �
Xv1

� � n � u1 � v1 � �� The coordinate steam on surface 2 i.e. Cl2 is
	 Xu2 
 �

Xu2

� � Xv2 
 �
Xv2

� � n � u2 � v2 � �
The four parameters � u1 � v1 � , � u2 � v2 � (point of contact on sur-
faces 1 and 2 in Cr1 and Cr2 respectively) and the angle ψ be-
tween the X-axis of Cl1 and Cl2 are the five degrees of freedom
between the two contacting surfaces. The angle ψ is chosen such
that a rotation by angle � ψ aligns the two X-axes. We can obtain
the surface properties like metric �M � , curvature form �K � and tor-
sion form � T � for both the surfaces using expressions provided in
section 2. �K � � , the curvature matrix of 2 at the point of contact
relative to 1 is given by

�K � � � � Rψ ���K2 ���Rψ � T (1)

where � Rψ � is the matrix

� Rψ � ��� cos � ψ � � sin � ψ �� sin � ψ � � cos � ψ ���
The contact equations in the local frames Cl1 and Cl2 are

given as [11]

� u̇1 � v̇1 � T � �M1 ��� 1 ���K1 �����K � � ��� 1 � � � ωy � ωx � T � �K � � � vx � vy � T �
� u̇2 � v̇2 � T � �M2 ��� 1 � Rψ � ���K1 �����K � � ��� 1 � � � ωy � ωx � T ���K1 � � vx � vy � T �

ψ̇ � ωz ��� T1 ���M1 � � u̇1 � v̇1 � T ��� T2 ���M2 � � u̇2 � v̇2 � T (2)

0 � vz
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Figure 1. TWO ARBITRARY SURFACES IN SINGLE POINT CONTACT.

where ωx, ωy and ωz are the angular velocity and vx, vy and vz are
the linear velocity components of Cl1 relative to Cl2 . For rolling
without slip vx, vy should be zero.

In our case surface 1 is the wheel (parametrized by � u1 � v1 � )
and surface 2 is the ground (parametrized by � ug1 � vg1 � ). The ge-
ometrical properties of the ground, modeled as a bi-cubic patch,
are determined as described in section 2. The wheel is modeled
as a torus and its parametric equations in Cr1 is given by

x � r1 cos � u1 �
y � cos � v1 � � r2 � r1 sin � u1 � � (3)

z � sin � v1 � � r2 � r1 sin � u1 � �

The wheel curvature, metric and torsion can be easily determined
from the above equation.

In order to analyze the motion of the torus on the bi-cubic
patch, we assign several coordinate frames. Figure 2 shows a
torus wheel in a single point contact with the uneven ground. The
frames 	 0 � , 	 1 � , 	 w � and 	 2 � are frames Cr2 , Cl2 , Cr1 and Cl1
respectively. The transformation matrices to arrive at 	 w � from

	 0 � as shown in figure 2 are given in Appendix A. We arrive
at the contact equations of the torus shaped wheel rolling with-
out slip on an arbitrary surface by putting vx and vy to zero in
the equations(2). The simulation results of a single torus shaped
wheel rolling without slip on uneven terrain is given in section 5.

KINEMATIC MODELING OF VEHICLE
We consider a 3-wheeled vehicle, designed for slip free

motion, moving on uneven terrain. We consider two possible
cases: vehicles with a top platform with three and six degree-of-
freedom respectively.

2

r1

v =constant1

u =constant1

r

Contact Point

Uneven Terrain

Torus Wheel

O

C

{0}

{2}

{3}

{4}

{w}

{1}

Figure 2. TORUS WHEEL ON UNEVEN TERRAIN.

3-DOF Vehicle

As mentioned earlier, we assume that the rear wheels have
a degree-of-freedom at the wheel axle joint allowing lateral tilt.
This allows the point of contact on the torus shaped wheel to vary
along the u1 coordinate during motion on uneven terrain. The
front wheel can be steered and it has no lateral tilt capability. In
this configuration, we can model the vehicle instantaneously as
an equivalent hybrid-parallel mechanism as shown in figure 3.

3

θ3

G1G2

G3

C3

δ2 δ1

θ1
C2

θ2

C1
φ

{0}

3 DoF "Non−holonomic" joint 

Top Platform

P

O

Figure 3. EQUIVALENT INSTANTANEOUS MECHANISM FOR THE 3-

DOF VEHICLE.

As mentioned in equation (2), at the wheel-ground contact
point, we have one holonomic constraint, vz

� 0, which ensures
contact is always maintained. Moreover, at each instant, we
have 2 non-holonomic constraints which prevents instantaneous
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sliding, and these are vx
� 0 and vy

� 0. Intuitively, this suggests
us to model the wheel ground contact point, instantaneously,
as a three-degree-of-freedom(DOF) joint. It may be noted that
this joint is different from a three-DOF spherical joint due to
the presence of 2 non-holonomic constraints which restrict the
motion at any instant only in terms of achievable velocities1. In
addition, the wheel-axle joints allowing rotation of the wheel,
lateral tilt and steering respectively are modeled as 1 DOF rotary
joints.

Now using Gruebler’s criterion for a mechanism

DOF � 6 � n � j � 1 � � ∑ fi (4)

we find the DOF of the mechanism as 3, with total number of
links n as 8, number of joints j as 9, and the total number of
degrees of freedom (3 for each wheel ground contact and 1
for each of the 6 rotary joints), ∑ fi

� 15. Therefore, three of
the joint variables should be actuated and we choose rotation
at the two rear wheels, θ1 and θ2, and the steering at the front
wheel, φ3, as the actuated variables. The two lateral tilts at
the rear wheels, δ1 and δ2, and the rotation of the front wheel
θ3 are taken to be the passive variables which are to be computed.

6-DOF Vehicle

3
φ2

θ3

δ3δ2

G1

G3

C3

G2

φ1

δ1

θ1

C1

θ2

C2

φ

{0}

3 DoF "Non−holonomic" joint 

Top Platform

O

P

Figure 4. EQUIVALENT INSTANTANEOUS MECHANISM FOR THE 6-

DOF VEHICLE.

In addition to the joints provided in the 3-DOF vehicle,

1As known in literature, non-holonomic constraints restrict only the space of
achievable velocities and not the positions. A wheel or a thin disk undergoing
rolling without slip, with vx

� vy
� 0, can reach any position in a plane and the

only constraint is that of not leaving the plane and loosing contact

if we also provide a joint in each of the two rear wheels, to
allow a steering degree-of-freedom in the wheels, and a joint
in the front wheel to allow for lateral tilt in the front wheel,
the instantaneous equivalent mechanism is as shown in figure
4. In this case n � 11, j � 12 and ∑ fi

� 18. Therefore, using
Gruebler’s criterion we obtain the degrees of freedom of the top
platform as 6, and would require 6 actuations to achieve the six
degrees-of-freedom. In this paper, we present kinematic analysis
and simulation results for a 3 DOF vehicle configuration. The
analysis procedure, however, can be easily extended to a 6 DOF
vehicle with actuated variables chosen as the rotation of the three
wheels θ1, θ2, θ3 and the three steering angles φ1, φ2, φ3. The
lateral tilt of the three wheels, δ1, δ2, δ3, in this configuration
would be the passive variables.

Kinematics of 3 DOF Vehicle

As the vehicle is subjected to non-holonomic no-slip con-
straints, the kinematics problem is formulated in terms of the
first derivatives of the kinematic variables. The kinematic vari-
ables are obtained by integration since the no-slip constraints are
non-integrable. The kinematics problem for the 3-DOF vehicle
can be stated as follows:

Given the actuated variables, θ̇1, θ̇2, φ̇3, and the geometri-
cal properties of the ground and wheel, find Vx � Vy � Vz � Ωx � Ωy � Ωz,
where Vx � Vy � Vz are the components of the linear velocity vector
of the center of the platform (or any other point of interest) and
Ωx � Ωy � Ωz are the components of the angular velocity vector of
the platform.

To solve this problem we proceed as follows:

� Surface generation:
As described in section 2, we use 2-D cubic splines to
reconstruct the surface from elevation data. From the
interpolated surface we find expressions for the metric,
curvature and torsion form for the ground. We also obtain
expressions for the metric, curvature and torsion form for
the torus shaped wheel.

� Form contact equations:
For each wheel we write the 5 differential equations(see
equation (2)) in the 15 contact variables ui, vi, ugi , vgi , and
ψi, where i � 1 � 2 � 3. Since the wheels undergo no-slip mo-
tion, we set vx

� vy
� 0 for each of the wheels. It may

be noted that ωx � ωy and ωz in the contact equations for
each wheel are the three components of angular velocities
of frame 	 2 � with respect to frame 	 1 � and are unknown.
These are related to the angular velocity of the platform
Ωx � Ωy � Ωz and the input and passive joint rates. In the fixed
coordinate system, 	 0 � , we can write

0 � ωx � ωy � ωz � T � 0 � Ωx � Ωy � Ωz � T � 0 ωinput (5)
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where ωinput
� ˙0 � R � in0 � R � inT

, and 0 �R � in is given by
0
w � R ���R � e3 � φi ����� R � e2 � δi ����� R � e1 � θi ��� with i � 1 � 2 � 3, and
e1

� � 1 � 0 � 0 � T , e2
� � 0 � 1 � 0 � T , e3

� � 0 � 0 � 1 � T . Appendix A
gives the relevant transformation matrices for a wheel. Note
that for the 3-DOF vehicle φ1

� φ2
� δ3

� 0.

The above equation (5) couples all 5 sets of ODE’s and we
get a set of 15 coupled ODE’s in 21 variables. These are
the 15 contact variables ui � vi � ugi � vgi � ψi � i � 1 � 2 � 3 � , the 3
wheel rotations θ1 � θ2 � θ3, the 2 lateral tilts δ1 � δ2, and the
front wheel steering φ3. Out of these, the rates of the three
actuated variables, θ1, θ2 and φ3, are assumed to be known.

� Form holonomic constraint equations:
In addition to the contact equations, for the 3 wheels to form
a vehicle they must satisfy 3 holonomic constraint equations
(refer to figure 3), namely

� � � �
OC1 � ��� �

OC2 � 2 � l12
2; � ��� �

OC1 � ��� �
OC3 � 2 � l13

2; (6)

� � � �
OC3 � ��� �

OC2 � 2 � l32
2;

where ��� �
OC1, ��� �

OC2, ��� �
OC3 are the position vectors of the center

of the three wheels, C1, C2, C3, respectively from the origin
O of the fixed frame and li j is the distance between center
of wheels i and j respectively.

� From the above steps, we have 15 first order ODE’s and 3
algebraic constraint equations for the 18 unknown variables.
This system of differential algebraic equations(DAE’s) can
be converted to 18 ODE’s in 18 variables by differentiating
the constraint equations and solved in any ODE solver with
appropriate initial conditions. All the 18 ODE’s mentioned
above has been obtained using a symbolic manipulation
package Mathematica [17].

� Initial conditions:
To solve the set of 18 ODE’s, we have to choose the ini-
tial conditions which satisfy both the holonomic constraint
equations and the derivative of the constraint equations.
Among the 18 variables we can choose δ1

� 0 � δ2
� 0 � φ3

�
0, initially. Moreover we can also choose v1 � v2 � v3 to be
3π 
 2 and the position of point of contact of any one wheel
in 	 0 � (in our simulations, we have chosen the point of con-
tact of wheel 2, given by ug2 � vg2). The other two wheels
must also be in contact with the ground. Hence, for each
wheel, we have

� � �
OCi � 0

w �R ��� � � �
CiGi

� ��� �
OGi; i � 1 � 2 � 3 (7)

Converting them to unit vectors we have two independent

equations for each wheel. In addition, for each of the three
wheels, we have,

cos � ψi � � ê1i � ê �

1i
i � 1 � 2 � 3 (8)

where 	 ê1 � ê2 � ê3 � and 	 ê
�

1 � ê �

2 � ê �

3 � are the coordinate axes of
reference frames 	 2 � and 	 1 � respectively in 	 0 � (refer to
figure 2). In addition there are 3 holonomic constraint equa-
tions given by equation (6). This gives us 10 nonlinear equa-
tions in 10 variables and we can solve them numerically. It
is to be noted that there can be more than one solution for the
variables. However, we also have to check that the deriva-
tives of the constraint equations are satisfied at the initial
instant. We choose a solution set which satisfies the holo-
nomic constraints and the derivative equations as our initial
conditions.� Solve equations: Using any ODE solver, solve the set of
18 ODE’s, numerically with the initial conditions. Once we
have obtained ui � vi � ugi � vgi � ψi � i � 1 � 2 � 3 and δ1 � δ2 � φ3 we
can obtain the rotation matrix of the platform � Rp � . The po-
sition vector of the center of the platform � �

OP with respect to
the fixed frame, 	 0 � , denoted by � xc � yc � zc � is give by

� xc � yc � zc � T � �
� �
OCi ��� Rp � � �

CiP (9)

for any i � 1 � 2 or 3 (see figure 3).

NUMERICAL SIMULATION AND RESULTS
In this section, we present numerical simulation results

based on the equations developed in previous sections. We, first,
present simulation results of a single wheel moving on uneven
terrain without slip. Then we present three simulations of
3-DOF vehicle moving without slip on a flat terrain, piece-wise
flat terrain and on an uneven terrain modeled as a bi-cubic patch.

Single wheel
The uneven terrain used for this simulation is shown in figure
5. As mentioned earlier, it was generated as a bi-cubic patch
from synthetic digital elevation data. The metric, curvature
and torsion form are obtained analytically for the torus shaped
wheel and the uneven terrain. The set of 5 first order ODE’s in
u̇1 � v̇1 � u̇2 � v̇2 � ψ̇ given in equation (2) are integrated using ODE45
in Matlab for a given ωx � ωy � ωz (note vx � vy

� 0 for no-slip and
vz

� 0 to avoid loss of contact). For the simulation, the radii
of the torus wheel are assumed to be r1

� 0 � 05m � r2
� 0 � 25m,

and ωx
� 1 � ωy

� 0 � ωz
� 0 � 5. The assumed initial conditions are

u1
� π 
 2 � v1

� 3π 
 2 � ug1
� 0 � vg1

� 0 � ψ � � π. Figure 6 shows
the variation of wheel parameters, u1, v1, and ψ. It can be seen
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that the wheel tilts as it rolls on the uneven surface. Due to this,
the trace of the wheel center and the contact point, as shown in
figure 7, is different.
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Figure 5. UNEVEN TERRAIN USED FOR SIMULATIONS.
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3-DOF 3 wheeled vehicle
For the 3-DOF, three wheeled vehicle, analyzed in section 4, we
use the following numerical values:

� Length of the rear axle � 2la
� 2m.� Distance of center of front wheel from middle of axle � ls

�
1 � 5m.
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Figure 7. PLOT OF CENTER OF WHEEL AND GROUND CONTACT

POINT FOR SINGLE WHEEL MOVING ON UNEVEN TERRAIN.

� Two radii of the torus shaped wheel are r1
� 0 � 05m � r2

�
0 � 25m.� The center of the vehicle is assumed to be at � 1 
 3 � ls from
the center of the axle along the line joining the center of the
axle to the center of front wheel.

We present simulation results for the motion of the vehicle
over three types of surfaces.

1. Flat terrain: The inputs and initial conditions used are
θ̇1

� 0 � 7 � θ̇2
� 0 � 1 � δ1

� 0 � δ2
� 0. On flat ground the vehi-

cle has 2 DOF and φ3, which remains constant, is given by

tanφ3
� ls � θ̇1 � θ̇2 �

la � θ̇1 � θ̇2 � (10)

For simulation, the initial conditions chosen are:
u1

� π 
 2 � v1
� 3π 
 2 � ug1

� la � vg1
� 0 � ψ1

� � π
u2

� π 
 2 � v2
� 3π 
 2 � ug2

� � la � vg2
� 0 � ψ2

� � π
u3

� π 
 2 � v3
� 3π 
 2 � ug3

� 0 � vg3
� ls � ψ3

� � π � φ3

It can be seen, as expected, from figure 8 that there is no
lateral tilt of the wheels when the vehicle is moving on flat
ground. The holonomic constraints given by equation (6)
are satisfied at all times as shown in figure 9. The locus of
the center of the wheels, the wheel ground contact points
and the center of the platform is shown in figure 10.

2. Wheel 1 on an inclined plane and other two wheels on
flat ground: Figure 11 shows the 3-wheeled vehicle with
one wheel on an inclined plane. The slope of the plane is
taken to be 10

�

. The inputs and initial conditions used for
the numerical simulation are as follows:
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θ̇1
� 0 � 5 � θ̇2

� 0 � 4 � φ̇3
� 0 � 0005t � δ1

� 0 � δ2
� 0 � φ3

� 0
u1

� π 
 2 � v1
� 3π 
 2 � ug1

� 1 � 04551 � vg1
� 0 � ψ1

� � π
u2

� π 
 2 � v2
� 3π 
 2 � ug2

� � la � vg2
� 0 � ψ2

� � π
u3

� 1 � 57612 � v3
� 3π 
 2 � ug3

� 0 � 004635 �
vg3

� 1 � 49779 � ψ3
� � π

To maintain no-slip motion and satisfaction of the holo-
nomic constraints, the torus shaped wheels must tilt in
the lateral direction. The variation of lateral tilts of the
rear wheels is shown in figure 12. The satisfaction of
holonomic constraints is depicted in figure 13, and the lo-
cus of the wheel center’s, wheel-ground contact points and
the center of the three-wheeled vehicle is shown in figure 14.

3. Bi-Cubic surface patch: The bi-cubic surface patch used
is the same for the single wheel simulation and is shown
in figure 5. The inputs and initial conditions used for the
simulations are:

θ̇1
� 0 � 5 � θ̇2

� 0 � 4 � φ̇3
� 0 � δ1

� 0 � δ2
� 0 � φ3

� 0
u1

� 1 � 586967 � v1
� 3π 
 2 � ug1

� 0 � 983772 � vg1
� � 0 � 037978 �

ψ1
� � 3 � 140963 � u2

� 1 � 547598 � v2
� 3π 
 2 � ug2

� � la �
vg2

� 0 � ψ2
� � 3 � 144127 � u3

� 1 � 578296 � v3
� 3π 
 2 �

ug3
� 0 � 001578 � vg3

� 1 � 549151 � ψ3
� � 3 � 143452

The variation of lateral tilts of the rear wheels is shown
in figure 15. The satisfaction of holonomic constraints is
depicted in figure 16, and the locus of the wheel center’s,
wheel-ground contact points and the center of the platform
is shown in figure 17.

In all the above cases, the no-slip conditions at the wheel
ground contacts are satisfied.
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Figure 8. VARIATION OF LATERAL TILTS FOR 3-DOF VEHICLE MOV-

ING ON FLAT GROUND.
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Figure 9. CONSTRAINT SATISFACTION FOR 3-DOF VEHICLE MOV-
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−3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1
−0.5

0

0.5

1

1.5

2

2.5

ug(m)

vg
(m

)

Wheel 1           
Wheel 2           
Wheel 3           
Center of Platform
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CONCLUSION
In this paper we have studied the problem of kinematic slip

for mobile robots moving on uneven terrain. We have departed
from the conventional thin disk model and considered a torus
shaped wheel for motion with single point contact. This enables
us to take into account the lateral variation of the contact point
on the wheel when moving on uneven terrain. For eliminating
kinematic slip we have proposed the use of a joint which allows
lateral tilt of the wheels. We have demonstrated our approach
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Figure 12. VARIATION OF LATERAL TILTS FOR 3-DOF VEHICLE

WITH ONE WHEEL ON INCLINED PLANE.

using a three wheeled vehicle, modeling the wheel-ground con-
tact points as a 3-DOF joint with constraints described by ordi-
nary differential equations. Numerical simulation results show
that the vehicle modeled with torus shaped wheels and non-
holonomic constraints at the wheel-ground contact, can negotiate
uneven terrain without kinematic slip. This is an alternative to the
variable length axle proposed in literature.

Our analysis is valid for any surface representation which
provides up to second derivatives efficiently and accurately. Fu-
ture work is being carried out on improved terrain modeling and
representation. We are also investigating the ability of the ve-
hicle to traverse uneven surfaces when joint limits are imposed
on the lateral degrees of freedom. Finally, the dynamics of the
vehicle on uneven surface is also being studied.
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Appendix A:
The transformation matrices for going from frame 	 0 � to frame

	 w � are as follows:

0
1 �T � �

���
�

l1 m1 n1 ug

l2 m2 n2 vg

l3 m3 n3 f � ug � vg �
0 0 0 1

����
�

where li � mi � ni � i � 1 � 2 � 3 are the components of the orthogonal
vectors 	 fu


fu

 � fv


fv

 � n � ,n as defined in Section 2.

1
2 �T � �

���
�

cosψ � sinψ 0 0� sinψ � cosψ 0 0
0 0 � 1 0
0 0 0 1

� ��
�

2
3 �T � �

���
�

sinu 0 cosu 0
0 1 0 0� cosu 0 sinu � r1

0 0 0 1

� ��
�

3
4 �T � �

���
�

1 0 0 0
0 � sinv cosv 0
0 � cosv sinv � r2

0 0 0 1

����
�

4
w �T � �

���
�
� 1 0 0 0
0 1 0 0
0 0 � 1 0
0 0 0 1

� ��
�
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