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Fig. 3 The boundary workspace of the 20-link manipulator 

the developed angle selection code system is very efficient in 
plotting workspaces, especially, for a system with a large num
ber of degrees of freedom. Numerical examples were shown 
for the manipulators with revolute joints and it was shown 
that the developed algorithm works well for any «-link planar 
system. 
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Kinematic Analysis and Design of 
Articulated Manipulators with Joint 
Motion Constraints 

T. A. Dwarakanath,1 A. Ghosal,1 and 
U. Shrinivasa1 

For an articulated manipulator with joint rotation constraints, 
we show that the maximum workspace is not necessarily ob
tained for equal link lengths but is also determined by the 
range and mean positions of the joint motions. We present 
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expressions for sectional area, workspace volume, overlap vol
ume and work area in terms of link ratios, mean positions and 
ranges of joint motion. We present a numerical procedure to 
obtain the maximum rectangular area that can be embedded 
in the workspace of an articulated manipulator with joint mo
tion constraints. We demonstrate the use of analytical expres
sions and the numerical plots in the kinematic design of an 
articulated manipulator with joint rotation constraints. 

1 Introduction 
The concept of a manipulator workspace and the workspace 

of the manipulator regional structures has been studied exten
sively and is well understood (Roth, 1975; Kumar and Wald
ron, 1980; Hansen et al., 1983; Sugimoto and Duffy, 1981a,b; 
TsaiandSoni, 1984). Most of the results assume unconstrained 
joint motions and are not directly applicable to industrial ma
nipulators which usually have limited joint motions. Several 
researchers have discussed the design of manipulators based 
on workspace considerations (Tsai and Soni, 1984; Paden, 
1986). Again, these are based on the assumption of complete 
joint rotation. For a manipulator with joint constraints, Ras-
tegar and Deravi (1987) discussed the number of possible con
figurations as a function of the "overlap" and the "location" 
of the joint rotation range. Gupta (1986) pointed out the effect 
of rotation ranges of links on the number of possible config
urations. Their treatment is, however, not analytical. Vijay-
kumar et al. (1985) have discussed the effect of joint limits on 
workspace and dexterity. However, the design problem is not 
addressed. In this paper, we present analytical expressions for 
sectional area, volume, work area and bounding surfaces for 
an articulated manipulator. We also present a method to choose 
link lengths, joint ranges and their mean positions to obtain 
a workspace of given size. 

In manipulator applications, such as welding and painting, 
the total workspace is of less importance. It is more important 
to know the optimum location and orientation of the part in 
the workspace since this would allow the operator or task 
planner to compute how much painting or welding can be done 
in one setting of the part and the manipulator and thus max
imize the use of the manipulator. Very little is known about 
embedding regular shapes in the workspace. We present an 
algorithm to obtain the maximum rectangle that can be embed
ded in the workspace of an articulated manipulator with joint 
motion constraints. 

2 Articulated Manipulators with Joint Constraints 
To study the workspace of an articulated manipulator, shown 

schematically in Fig. 1, we consider the so-called wrist point. 
Denoting the wrist point by (x„, yw, zw)T, and by using the 
well known 4x4 matrix transformations (Paul, 1981), we can 
write 

(xw, >V> zw) = I (a2C2 + a3c2i)ci, (a2c2 + a3cn)su 

a2s2 + a3s2i] (1) 

where a2, «3 are the link lengths and c(.), 5(.) denote cosine and 
sine of angle (•), respectively. We can eliminate two out of 
the three 6's from Eq. (1) to obtain equations of the form 

4a\(xl+yl)cl- (xl+yl + zl + a\-a\-2a2s1zw)1 = Q (2) 

2a2a3c3 + a2 + al- (x2
w+yl + zl) =0 (3) 

Equations (2) and (3) represent two families of surfaces but 
the solid region described by them is the same and is the 
workspace of the manipulator. The above equation can also 
be used to study the workspace of a manipulator which has 
joint motion constraints. If, for example, d2 is between 02 
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Fig. 1 An articulated manipulator 

and 02min> we can find the bounding surfaces by simply sub
stituting 0, and 02 . in the above equation. 

° ^max zmm * 

Instead of using the maximum and minimum values of 0/ 
(/= 1, 2, 3), we introduce the mean position and the range of 
joint motion. The range of the jth joint, 6Jr, and its mean 
position, 6/..., in terms of the maximum, 0 ,_„.., and the minium mum di . are given by 

3m 

./max 

1/2(0 
•/max v-/min' ) y = l , 2 , 3 (4) 

The maximum number of bounding surfaces can now be 
obtained by considering Eqs. (2) and (3). There are three cases. 

Case 1: If 03 =0 , then we get four surfaces—two correspond
ing to extreme values of 02, one corresponding to 03 = 0 
and one corresponding to extreme values of 03. In Fig. 
2(a), we show the four boundary curves in the Y0-Z0 

plane. 
Case 2: If03 ?^0, but 03 contains 0, then we get six surfaces. 

Figure 2(b) shows the six boundary curves in the Y0-
Z0 plane. 

Case 3: If03 # 0 and 03r does not contain 0, then we get only 
4 surfaces. In Fig. 2(c), we show the four boundary 
curves in the Yo-Z0 plane. 

The extreme distance line joining the boundary point and 
the origin need not intersect the intermediate joint axis. The 
offset, e/, defined as the distance between the extreme distance 
line and the third joint axis is given by a2a3s3/ 

V zl+ix^i+y^i)2 It is clear that only if the range of 03 

includes zero, then the extreme distance line and the third joint 
axis intersect. 

The number of configurations to reach a generic point in 
the workspace of an articulated regional structure depends on 
the range of the angles 0i and 03. It is clear from Eq. (1) that 
if 03r does not contain 0 or w, then we can get utmost one value 
of 03 and thus one configuration. Whereas if 03r contains 0 or 
•K, we will get two configurations. Similarly we will get two 
values of 0i if 0i contains w and one value if it does not contain 
7T. 

1 

Y 

(a) 

Y 

(b ) 

Fig. 2 Sections of workspace in Y0-Zo plane for different cases 

2.1 Boundary Curves. As shown in Fig. 2, there are three 
cases for the boundary curves. Cases 1 and 2 were observed 
to yield smaller workspace volume and are discussed in Dwa-
rakanath (1993). The expressions for boundary curves for Case 
3 can be easily obtained from Eqs. (2) and (3) by substituting 
the maximum and minimum 0,-, /= 1, 2, 3 and then can be 
written in terms of 0,r and 0,m by using Eq. (4) (see Dwarak-
anath, 1993, for details). The expressions for the intersection 
points of adjacent curves can be also easily obtained by solving 
the corresponding equations and are given in Dwarakanath 
(1993). 

2.2 Workspace Volume. The workspace volume is a solid 
of revolution of the area bounded by the curves C{ through 
C4. The area bounded by the four curves, for Case 3 is given 
by 

A=Ai+A4-A2-Ai (5) 

where Ah /= 1, . . . , 4 is the area under the curve C„ /= 1, . . . , 
4, and is obtained by integration between the intersection points. 
After some algebraic manipulation we can show that A in terms 
of mean position and range of 02 and 03 is given as 

A = 2a2a3d2r sin (03m) sin (03/2) (6) 

It must be noted that if 03 is zero or the range of 03 contains 
zero [see Figs. 2(a) and 2(b)], then the limits of integration 
and the'right-hand side of Eq. (5) have to be altered appro
priately. We can observe from Eq. (6) that for a constraint on 
the link lengths of the form a2 + a3=K constant and for a given 
range and mean position of 02 and 03, the maximum value of 
A is obtained when a2 = a3 = K/2. 

Once the sectional area is known, we can obtain the work
space volume as a solid of rotation of the sectional area. The 
expression of the volume in terms of ranges and mean position 
of the joint angles is given as 
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/ = (1/2)0,, sin (02/2)[2a2af (0vsin dlm- sin 03f sin (203m + 0 2 J) 

- 8«la3 cos 62m sin 03,„ sin (03/2)] (7) 

As can be observed from Eq. (7), the volume is a function of 
link lengths, mean positions and ranges of joint motions. The 
maximum volume for a2 + «3 = K constant is obtained by sub
stituting a 3 = K - a2 in Eq. (7) and setting d V/da2 = 0. This gives 
a quadratic equation in a2 which can be solved as 

0-30 

where, 

and 

+ \ l (K22 + 2KT,)2+12KI} 

K2 = sind2 - s in0 3 sin(203 +d2 ), 

(8) 

K3 = cos 62 sin 03 sin(03 /2). 

It may be noted that the negative sign before the square root 
term gives a2<0 and hence is not used. As can be seen from 
the above equation, the maximum volume does not occur al
ways for a2 = a3=K/2, but depends on the ranges and mean 
positions of the joints. In Fig. 3, we plot the normalized vol
ume, V/ [(4/3)TT (a2 + «33], as a function of link ratio for various 
02 . One can easily obtain similar design charts for other joint 
mean positions and ranges. 

2.3 Work Area. We call the area determined by the in
tersection of a plane normal to Y0-Z0 plane with the workspace 
as the work area. In Fig. 2(c), the projection of the plane 
normal to Y0-ZQ plane is shown as a straight line Z0 = m YQ + c. 
Since the curves 1 and 4 are convex, the maximum work area 
is obtained when the above mentioned straight line is either 
tangent to curves 2 and 3 or to any one of them. A straight 
line intersecting curves 2 and 3 would give rise to voids in the 
work area and hence are not of interest. Figure 4 shows the 
typicil work area when the straight line is tangent to curves 2 
and 3. The work area consists of two parts, the area A W[ which 
results from the surface of revolution of curve C4 about Z0 

axis and the area A„2 which results from the surface of rev
olution of curve C\ about Z0 axis. Area Ay,, is the sector of a 

circle and can be computed in closed form as 

[ir/2-J,}R2 + ROf cos^) AWi — (9) 

where R, \p and Of are shown in Fig. 4 and their expressions 
in terms of a2, a3 and the minimum and maximum dJt (j = 2, 
3) are given in Dwarakanath (1993). 

The expression for area AW2 can be written as 
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Fig. 3 Workspace volume versus link ratio for varying 02 

Fig. 4 Rectangle embedded in the work area 

rithm to obtain the area of the maximum rectangle that can 
be embedded inside the work area. 

It may be mentioned that the area of the rectangle, the 
orientation, and the aspect ratio depend on link ratio, mean 

iw2= V M i cos2<f> + M2 sin
2<j> + M3 cos (j> + M4sin</> + M5a3 cos <j>d<t> (10) 

J*i 

where the limits of the integration and expressions for Mt 

through M5 are functions of m, c, link lengths, joint ranges 
and mean positions (see Dwarakanath, 1993). There appears 
to be no closed form expression for the integral and the area 
AW2 can be obtained by numerical integration. The total work 
area is the sum of Aw. and A„v The work area depends on 
the mean positions and the link lengths. It was observed that 
for a set of mean positions, there exists an optimum link ratio 
which gave maximum work area. 

2.4 Rectangular Area. In many robotic applications such 
as painting or welding of large surfaces, instead of the complete 
work area, it is of more interest to find the maximum rectangle 
that can be embedded inside the workspace or the work area. 
Due to the difficulty in obtaining closed form expression for 
Awy it is not possible to derive closed form expressions for 
the area of the maximum rectangle that can be embedded inside 
the work area. In Appendix A, we present a numerical algo-

positions and joint rotation ranges. Figure 5 shows the rec
tangular area as a function of link ratios for various 03 . The 
algorithm can be easily modified to obtain similar design charts 
for area, orientation, and aspect ratio as a function of other 
mean positions and joint rotation ranges. 

3 Kinematic Design 
The results in section 2 can be used for kinematic design of 

articulated manipulators. 
Consider the kinematic design of an articulated manipulator 

for painting 1.0 m x 1.0 m flat areas. We assume that the joints 
are hydraulically actuated and the range of rotation are 0, = 27r, 
02,. = 7Odeg, and0 3 r =65deg. 

The optimum mean position can be found by considering 
the requirement of embedding the area in the workspace. We 
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Fig. 5 Rectangular area versus link ratio for varying 0; 

get 02,„ = 90 deg and d3m = - 60 deg. The optimum link lengths 
are a2 = 0.66 m and a3 = 0.56 m. The optimum orientation of 
the plane containing the area in the workspace is given by 
150.70 deg to Y0 axis. 

4 Conclusion 
This paper deals with articulated manipulators with joint 

motion constraints. We have shown that established results 
known for unconstrained joint motion get modified when joint 
motions are constrained. We have presented expressions for 
sectional area, volume in terms of link ratios, mean position 
and the range of the joint rotation. The concept of a work 
area has been defined and expression to obtain the work area 
has been presented. The work area depends on the link ratios, 
mean position and the joint rotation ranges. We have also 
presented an algorithm to obtain the maximum rectangular 
area that can be embedded in the work area. The results show 
how to obtain the link dimensions and other design parameters 
like joint ranges and mean positions to meet requirements 
related to the workspace of the manipulator. 

5 Acknowledgment 
The first author would like to thank the Council of Scientific 

and Industrial Research, India, for the support received from 
grant no. 9/79(334)/91-EMR-I while carrying out this work. 
The authors would also like to thank the reviewers for their 
comments. 

6 References 
Dwarakanath, T. A., 1993, "Towards Optimal Synthesis of Articulated Ma

nipulators with Joint Motion Constraints," Ph.D. Thesis, Dept. of Mechanical 
Engineering, Indian Institute of Science, Bangalore. 

Gupta, K. C , 1986, "On the Nature of Robot Workspace," Int. Journal of 
Robotics Research, Vol. 5, pp. 112-121. 

Hansen, J. A., Gupta, K. C., and Kazerounian, S. M. K., 1983, "Generation 
and Evaluation of the Workspace of a Manipulator," Int. Journal of Robotics 
Research, Vol. 2, pp. 665-672. 

Kumar, A., and Waldron, K. J., 1980, "The Dexterous Workspace," ASME 
paper no. 80 DET-108. 

Paden, B. E., 1986, "Kinematics and Control of Robot Manipulators," Ph.D. 
Thesis, Department of Electrical Engineering, University of California, Berkeley. 

Paul, R. P., 1981, Robot Manipulators: Mathematics, Programming and 
Control, The MIT Press, Chapter 3, pp. 65-84, Cambridge. 

Rastegar, J., and Deravi, P., 1987, "The Effect of Joint Motion Constraints 
on the Workspace and Number of Configurations of Manipulators," Mecha
nisms and Machine Theory, Vol. 22, pp. 401-409. 

Roth, B., 1975, "Performance Evaluation of Manipulators from a Kinematic 
Viewpoint," National Bureau of Standards Workshop on Performance Eval
uation of Manipulators. 

Sugimoto, K., and Duffy, J., 1981, "Determination of Extreme Distances of 
a Robot Hand—Part 1: A General Theory," ASME JOURNAL OF MECHANICAL 
DESIGN, Vol. 103, pp. 631-636. 

Sugimoto, K., and Duffy, J., 1981, "Determination of Extreme Distances of 
a Robot Hand—Part 2: Robot Arms With Special Geometry," ASME JOURNAL 
OF MECHANICAL DESIGN, Vol. 103, pp. 776-783. 

Tsai, Y. C , and Soni, A. H., 1984, "The Effect of Link Parameter on the 
Working Space of General 3R Robot Arms,' ' Mechanism and Machine Theory, 
Vol. 109, pp. 9-16. 

Vijaykumar, R., Waldron, K. J., and Tsai, M. J., 1985, "Geometric Opti
mization of Serial Manipulator Structures for Working Volume and Dexterity," 
Int. Journal of Robotics Res., Vol. 5, pp. 91-103. 

A P P E N D I X A 
The details of the algorithm are given in Dwarakanath (1993). 

Here we only outline the steps. 
(1) Obtain the equations of the curves Bx through B4 in the 

U- V coordinate system (see Fig. 4) from the equations of the 
boundary curves Cx through C4. 

(2) Draw line Lx passing through a point P[ at an angle /3 
to the axis V (see Fig. 4). 

(3) Solve for the intersection point Qx. 
(4) Extend line Lx to intersect Bx at Q. Let coordinates of 

Q be (UQ, VQ). Draw the line LA perpendicular to Lx and 
passing through Q. Solve for the intersection point Q2 between 
L4 and Bx or B2. 

(5) Draw lines L2 and L3 parallel to L4 and Lx respectively, 
and passing through Qx and Q2, respectively. Let L2 and L} 
intersect V axis at P2 and P2 , respectively. Obtain the V 
coordinates of P2 and P2". 

(6) If I VP£ I < I VP' 1 then the rectangle that can be inscribed 
in the work area is determined by the points Qx, Q, Q2 and 
the foot of the perpendicular from Qx to L3—else the rectangle 
that can be inscribed in the work area is determined by the 
points Qx, Q, Q2 and the foot of the perpendicular from Q2 
toL2. 

(7) Find area of the inscribed rectangle from the coordinates 
of the four points and store result. 

(8) Increment /3 until j3<7r/2 and repeat steps 2 to 7. 
(9) Decrement the V intercept of Lx (VP[) until zero and 

repeat steps 1 to 8. 
(10) Choose the largest rectangle from those stored in step 

7. 
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