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ABSTRACT

In this paper, we take a relook at two-degree-of-freedom
instantaneous rigid body kinematics in terms of dual numbers
and vectors, and show that a dual ellipse is a cylindroid. The
instantaneous angular and linear velocities of a rigid body is
expressed as a dual velocity vector, and the inner product of
two dual vectors, as a dual number, is used. We show that
the tip of a dual velocity vector lies on a dual ellipse, and the
maximum and minimum magnitude of the dual velocity vector,
for a unit speed motion, can be obtained as eigenvalues of a
positive de�nite, symmetric matrix whose elements are the dual
numbers from the inner products. From the real and dual parts
of the equation of the dual ellipse, we derive the equation of a
cylindroid(Ball,1900).

INTRODUCTION

One of the classical result in instantaneous kinematics
of rigid bodies is that for a general system of two screws,
the lines along the instantaneous screws axis lie on a cubic
ruled surface called the cylindroid, and there is a pitch as-
sociated with each ruling of the cylindroid(Ball,1900; Hunt,
1978; Bottema and Roth, 1979; Roth, 1984). In this paper,
we take a relook at the instantaneous two- and three-degree-
of-freedom kinematics of a rigid body in terms of dual
numbers and vectors and notions from di�erential geometry.
Dual numbers, �rst introduced by Cli�ord(Cli�ord, 1873),
have been used extensively in kinematics(Yang, 1969; Veld-
kamp, 1976; Pennock and Yang, 1985; McCarthy, 1986),
and we represent the linear and angular velocity of a rigid
body moving in three dimensional space, <3, as a dual vec-
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tor. We use a de�nition of an inner product of two dual
vectors as a dual number and this allows us to obtain the
maximumand minimumof the dual velocity vector as eigen-
values of a positive de�nite and symmetric dual matrix. We
show that for a unit speed motion constraint, the tip of the
dual velocity vector lies on a dual ellipse. Next, from the
dual and real parts of the parametric equations of the dual
ellipse, we show that the dual ellipse is equivalent to the
cylindroid with a pitch associated with ruling on the cylin-
droid. Furthermore, we show that the invariant determi-
nant of the positive de�nite symmetric matrix is equivalent
to the pitch of the screw lying along the central axis of the
cylindroid. For three-degree-of-freedom motion, we show
that the tip of the dual velocity vector lies on a dual elli-
posid which is equivalent to a line congruence with a pitch
associated with each line. These are the main results of this
paper.

MATHEMATICAL PRELIMINARIES

A dual number, â, has the form a+ �a0 where a and a0
are real numbers and �2 = �3::: = 0. A dual vector, Â, has
the form a+�a0 where a and a0 are real vectors in R3. The
inner product of two dual vectors Â and B̂ can be de�ned
as(Brand, 1947)

< Â; B̂ >= a � b+ �(a �b0 + b � a0) (1)

It may be noted that the above inner product is invari-
ant to the choice of the origin of the coordinate system used
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to describe Â and B̂. The inner product is also di�erent
from the inner product de�ned in (von Mises, 1924)(or see
the English translation (von Mises, 1996)) where the inner
product has been de�ned as (a � b0 + b � a0).

A line in <3 can be described as a dual vector as

L̂ = Q+ �Q0 (2)

where Q denotes the direction of the line, and Q0 = r�Q is
the moment of the line with r as the position vector of any
point on the line from an origin. There are 4 independent
parameters in Q and Q0 since jQj = 1 and Q �Q0 = 0.

The inner product of two lines follows from equation
(1) and we have

< L̂1; L̂2 > = Q1 �Q2 + �(Q1 �Q02 +Q2 �Q01)

= cos�� �d sin� (3)

where � and d are the angle and the shortest distance re-
spectively between the two lines.

A screw can be also described as a dual vector as

Ŝ = S+ �S0 (4)

where, in terms of line coordinates, S = Q and S0 = Q0 +
hQ. In the previous equation h is called the pitch of the
screw and is the ratio of the translational displacement to
the rotational displacement. A screw has 5 independent
parameters, i.e., 4 associated with the line along the screw
and a pitch.

The inner product of two screws follows from equations
(1) and (3), and we have

< Ŝ1; Ŝ2 > = S1 � S2 + �(S1 � S02 + S2 �S01)
= cos�+ �((h1 + h2) cos�� d sin�) (5)

where h1 and h2 are the pitches associated with the two
screws.

The inner product of a screw with itself, from equation
(5), can be written as

< Ŝi; Ŝi >= 1 + �(2hi) (6)

The angular velocity, !, and the linear velocity, v, of a
point on a rigid body, can be together considered as a dual
vector of the form

V̂ = ! + �v (7)
2

The quantity V̂ have also been called a twist and a
motor, and can be thought of as a screw together with a
magnitude. In terms of line coordinates, V̂ is given as

V̂ = j!j(Q+ �(Q0 + hQ)) (8)

where j!j is the magnitude of the angular velocity vector.

MULTI-DEGREE-OF-FREEDOM MOTION OF A RIGID

BODY

A general rigid body displacement can be expressed as
a 4 � 4 matrix of homogeneous coordinates(Bottema and
Roth, 1979) or as 3 � 3 dual orthogonal matrices(Yang,
1969). By using the properties of these matrices, and dif-
ferentiating the matrix elements with respect to time, one
can obtain expressions for left- and right-invariant veloc-
ities of the moving rigid body(see for example (Samuel et
al., 1991)). For our purpose of studying instantaneous kine-
matics, we assume that the angular and linear velocity of
the rigid body can be expressed, using dual vectors, as

V̂ = ! + �v =
nX
i=1

Ŝi _�i (9)

where !, v are the angular and linear velocity respectively,
Ŝi; i = 1; 2; ::; n are n independent screws expressed using
dual vectors, and _�i; i = 1; 2; :::; n are the time derivatives
of the n motion parameters. The above equation can also
be written in terms of a dual Jacobian matrix as

V̂ = [Ĵ] _� (10)

where _� is the vector ( _�1; :::; _�n)
T and the i'th column of [Ĵ ]

is the screw Ŝi.
Using the inner product between two screws (see equa-

tions (5) and (6)), we can write

< V̂ ; V̂ >= _�
T
[ĝ] _� (11)

where the matrix elements ĝij are the inner products

< Ŝi; Ŝj >; i; j = 1; 2; ::; n. The elements of the matrix
[ĝ] are dual numbers and the matrix [ĝ] is symmetric and
positive de�nite. In the study of point trajectories(Ghosal
and Roth, 1987) or di�erential geometry of curves and sur-
faces, one de�nes similar inner products which are, however,
real numbers for point trajectories. The inner products (in
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language of di�erential geometry) de�ne a metric in the
tangent space(Millman and Parker, 1977) and allows one to
de�ne distance and angle in the tangent space.

We make the following observations, analogous to point
trajectories, from the de�nition of [ĝ] and [Ĵ]:

� If [ĝ] is non-singular(i.e, det[ĝ] 6= 0), then we can write

V̂T ([Ĵ][ĝ]�1)([Ĵ ][ĝ]�1)T V̂ = _�
T _� (12)

The matrix ([Ĵ ][ĝ]�1)([Ĵ ][ĝ]�1)T is symmetric and pos-

itive de�nite, and for a constraint of the form _�
T _� = 1,

the tip of the dual velocity vector V̂ lies on a dual el-
lipsoid. For two-degree-of-freedom motions the tip of
the dual vector V̂ lies on a dual ellipse.

� The maximum and minimum values of V̂2 subject to

constraint _�
T _� = 1 can be obtained by solving the

eigenvalue problem

[ĝ] _� � �̂ _� = 0 (13)

For a two-degree-of-freedom motion the elements of the
matrix [ĝ], in terms of the pitches(h1; h2), the angle, �,
and the distance, d, between the two screws, Ŝ1 and Ŝ2,
are

ĝ11 = 1 + �(2h1)

ĝ12 = ĝ21 = cos �+ �((h1 + h2) cos �� d sin�)

ĝ22 = 1 + �(2h2) (14)

The eigenvalues are given by

�̂1 = 2 cos2 �=2(1 + �((h1 + h2) � d tan(�=2))

�̂2 = 2 sin2 �=2(1 + �((h1 + h2) + d cot(�=2)) (15)

The determinant, det[ĝ], is given by

det[ĝ] = sin2 �(1 + �2(h1 + h2 + d cot�)) (16)

It may be noted that the eigenvalues are dual numbers
and the det[ĝ] is zero if sin� = 0; n�, i.e., the axis of
the two screws are parallel. In such a case the two
screws are not independent and we have a one-degree-
of-freedom motion of the rigid body.
The maximum and minimum jV̂j are the square roots
of the maximum and minimum eigenvalues of [ĝ]. For
3

a two-degree-of-freedom motion,
p
�̂1 and

p
�̂2, are

given as

q
�̂1 =

p
2 cos(�=2)(1 + 0:5�(h1+ h2 � d tan(�=2)))q

�̂2 =
p
2 sin(�=2)(1 + 0:5�(h1 + h2 + d cot(�=2)))

(17)

The directions of the maximumand minimumvelocities
are related to the eigenvectors of [ĝ] and are along the
vectors [Ĵ ] _�i; i = 1; 2; 3 where _�i is the eigenvectors

corresponding to eigenvalue �̂i.
For a three-degree-of-freedom motion of the rigid body,
the matrix [ĝ] is 3�3 and it has three eigenvalues. The
maximum,minimum, and intermediate values of jV̂j are
the square roots of the three eigenvalues and are along
the three principal axes of the dual ellipsoid.

It may be noted that the normalization _�
T _� = k2 scales

the eigenvalues without changing the the shape of the
dual velocity ellipse or ellipsoid.

� The dual area (volume in case of ellipsoid) is propor-
tional to

p
det[ĝ]. The dual area (volume in case of el-

lipsoid) is an invariant since it is proportional to det[ĝ].
For a two-degree-of-freedom motion we have

p
det[ĝ] = sin�(1 + �(h1 + h2 + d cot�)) (18)

In the next section, we give a geometrical interpreta-
tion of the dual ellipse and ellipsoid and their dual area
and volume by considering the real and dual parts of the
equations.

INTERPRETATION OF DUAL ELLIPSE AND ELLIPSOID

In the case of a point trajectory, the parametric equa-
tion of an ellipse in a plane are (x; y) = (a cos �; b sin �),
where a and b are the lengths of the major and minor axis.
For a two-degree-of-freedom rigid-body motion, we use dual
numbers and the parametric equation of a dual ellipse can
be written as

X̂ =

q
�̂1 cos �

Ŷ =

q
�̂2 sin � (19)

where the local X and Y axis are chosen along eigenvec-
tors(in this case lines) corresponding to the eigenvalues of
[ĝ]. The Z axis is along a line perpendicular to lines along
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X and Y axis(see �gure 1). The quantities on the left-hand
side of the equation (19), X̂ and Ŷ denote the tip of the
dual vector V̂ given as in equation (8). In the chosen co-
ordinate system, with (x; y; z0) denoting the coordinates of
any point on the line along V̂, we can write

Q = (cos �; sin �; 0)T = (1=
p
x2 + y2)(x; y; 0)T

Q0 = (0; 0; z0)T �Q = (�z0 sin �; z0 cos �; 0)T (20)
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Figure 1. Two-degree-of-freedom motion of a rigid body

Hence, we get

X̂ = j!xj(cos � + �(h cos � � z0 sin �))

Ŷ = j!yj(sin � + �(h sin � + z0 cos �)) (21)

The square root of the eigenvalues of [ĝ] are given in equa-
tion (17) and denoting the dual parts by h�1 and h�2

2, we can
write

q
�̂1 =

p
2 cos(�=2)(1 + �h�1)q

�̂2 =
p
2 sin(�=2)(1 + �h�2) (22)

2h�
1
and h�

2
are the maximum and minimum or principal pitches.
4

Substituting equations (21) and (22) in equation (19), and
separating the real and dual part, we get

j!xj cos � =
p
2 cos(�=2) cos �

j!yj sin � =
p
2 sin(�=2) sin �

h�1 = h� z0 tan � (23)

h�2 = h+ z0 cot �

The last two equations give

z0 = �1

2
(h�1 � h�2) sin 2�

h =
1

2
(h�1 + h�2) +

1

2
(h�1 � h�2) cos 2� (24)

It may be noted that the second equation in (24) is similar to
the expression of the pitch of a line lying on a cylindroid(see,
for example,(Hunt, 1978), p. 97). The equation of the
cylindroid can be recovered from the �rst two equations in
(23), and by using the �rst equation in (24). We get

j!xjj!yj sin � cos � = j!xjj!yj( �z0
h�1 � h�2

) = sin�(
xy

x2 + y2
)

(25)
which can be rewritten as

(
j!xjj!yj
sin�

)z0(x2 + y2) + (h�1 � h�2)xy = 0 (26)

If we rescale the Z coordinate such that z =
j!xjj!yj

sin�
z0,

we have the classical equation of a cylindroid(see, for exam-
ple, (Hunt, 1978))

z(x2 + y2) + (h�1 � h�2)xy = 0 (27)

It may be noted that if � = 0; �, or either or both the mag-
nitudes, j!xj and j!yj, are zero, we no longer have a cylin-
droid. This is intuitively consistent since, in these cases, we
no longer have a two-degree-of-freedom motion.

It is well known (see, for example, (Samuel et al., 1991),
p. 461) that the Lie bracket of two twist, V̂a and V̂b(with
magnitudes j!aj; j!bj, pitches h1 and h2 and at an angle �),
is another twist lying along the central axis of the cylindroid
whose pitch and magnitude are given as h1 + h2 + d cot�,
j!ajj!bj sin� respectively. The dual area of the dual ellipse
is proportional to

p
det[ĝ] given in equation (18). We can
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observe from equation (18) that the dual part of
p
det[ĝ] is

identical to the pitch of this central screw and the real part
is a scaled version of the magnitude. Hence the dual area of
the dual ellipse is proportional to the pitch and magnitude
of the twist lying along the central axis of the cylindroid.

The above results can be summarized as follows:
The dual ellipse traced by the tip of the dual velocity vec-

tor, of a rigid body undergoing two-degree-of-freedom mo-

tion, is geometrically a cylindroid. The dual area of the

ellipse is proportional to the pitch and magnitude of the in-

variant twist along the central axis of the cylindroid.

For a three-degree-of-freedom rigid-body motion, the
tip of the dual vector V̂ traces a dual ellipsoid. The para-
metric equation of a dual ellipsoid are

X̂ =

q
�̂1 cos� sin �

Ŷ =

q
�̂2 sin� sin � (28)

X̂ =

q
�̂3 cos �

where the X, Y and Z axis are chosen along eigenvectors(in
this case lines) corresponding to the three eigenvalues of the
3�3 dual matrix [ĝ]. For any line in this chosen coordinate
system, we have

Q = (l;m; n)T = (cos� sin�; sin� sin �; cos �)T

Q0 = (x; y; z)T �Q =

2
4

0 �z y
z 0 �x
�y x 0

3
5 (l;m; n)T (29)

where (l;m; n)T is a unit vector of direction cosines and
(x; y; z)T is any point on the line.

Using equation (4) and the above equation, we get

X̂ = j!xj(l + �(lh+ yn �mz))

Ŷ = j!yj(m + �(mh + zl � nx)) (30)

Ẑ = j!zj(n+ �(nh+ xm � yl))

The eigenvalues of the 3 � 3 dual matrix [ĝ] are the roots
of a cubic equation and are real since [ĝ] is symmetric. The
square root of the eigenvalues can be written in a symbolic
form as

q
�̂1 = A1(1 + �h�1)q
�̂2 = A2(1 + �h�2) (31)q
�̂3 = A3(1 + �h�3)
5

where h�i ; Ai; i = 1; 2; 3, can be obtained from solving the
characterestic cubic polynomial of [ĝ].

Substituting equations (30), (31) in equation (28), and
equating the dual parts, we get three equations

h�1l = lh+ yn �mz

h�2m = mh+ zl � nx (32)

h�3n = nh+ xm � yl

which can be written in a matrix form as

2
4
h� h�1 �z y

z h� h�2 �x
�y x h� h�3

3
5 (l;m; n)T = 0 (33)

For the above homogeneous equations to have a non-trivial
solution, we must have the determinant of the matrix as
zero. This condition yields

x2(h�h�1)+y2(h�h�2)+z2(h�h�3)+(h�h�1)(h�h�2)(h�h�3) = 0
(34)

The above equation gives the pitch h associated with a line
passing through any arbitrary point (x; y; z). The above
equation describes a hyperboloid of one sheet and is iden-
tical to the one obtained by Ball(Ball,1900) (also given in
Hunt(Hunt, 1978)) when considering a three screw-system.

We can also eliminate h from equations (32), taking two
at a time. We get

(h�1 � h�2)lm � (yn �mz)m + (zl � nx)l = 0

(h�2 � h�3)mn � (zl � nx)n+ (xm � yl)m = 0 (35)

The above two equations represent two quadratic line com-
plexes and when they are satis�ed, we automatically satisfy

(h�3 � h�1)nl � (xm� yl)l + (yn �mz)n = 0 (36)

From the above analysis, we recover the well known re-
sult(Hunt, 1978; Nayak and Roth, 1981) that the instan-
tantenous screw axis of a general three-degree-of-freedom
motion of a rigid body lie on a line congruence obtained as
an intersection of three quadratic line complexes.

The determinant of [ĝ] is given by

det[ĝ] = 1 + 2 cos �12 cos �23 cos�31 � cos2 �12 � cos2 �23

� cos2 �31 + �[2(h1 + h2 + h3)(1 +
Copyright c
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2 cos�12 cos�23 cos�31 � cos2 �12 �
cos2 �23 � cos2 �31)

+2d12 sin�12(cos �12 � cos �23 cos�31)

+2d23 sin�23(cos �23 � cos �12 cos�31)

+2d31 sin�31(cos �31 � cos �12 cos�23)] (37)

where �ij, dij are the angles and distances between the

lines along dual vectors Ŝi, Ŝj respectively. Unlike the two-
degree-of-freedom case, it is not clear what the dual volume
of the dual ellipsoid,

p
det[ĝ], represent in <3.

Finally, it may be noted that the real part of equation
(30) yield

j!xjl = A1l

j!yjm = A2m (38)

j!zjn = A3n

which imply, as in the two-degree-of-freedom case, that we
need to scale the local coordinate axis X, Y and Z appro-
priately.

CONCLUSION

In this paper, the instantaneous kinematics of two- and
three-degree-of-freedom rigid body motion has been studied
in terms of dual numbers and vectors. The instantaneous
linear and angular velocities of a rigid body are described
by dual vectors, A inner product between two dual vectors
as a dual number has been used and we have shown that
the tip of the dual velocity vector lies on a dual ellipse or
dual elliposid for two and three-degree-of-freedom motion
respectively, and the maximum and minimum values of the
dual velocity vectors are the eigenvalues of a positive, de�-
nite dual matrix of inner products. Furthermore, from the
real and dual parts of the parametric equations, we have
shown that the dual ellipse is equivalent to a cylindroid and
the dual ellipsoid is equivalent to a line congruence with
a pitch associated with each line on the cylindroid or the
congruence.
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