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ABSTRACT 
In this paper, we present a differential-geometric analysis 

of singularities of point trajectories of two and three-degree-of- 
freedom serial and parallel manipulators. At non-singular con& 
urations, the first order local properties are characterized by the 
metric coefficients, and, geometrically, by the shape and size of a 
velocity ellipse and ellipsoid for two and three-degree-of-freedom 
motions respectively. At singular configurations, the definition 
of a metric is no longer valid and the velocity ellipsoid degener- 
ates to an ellipse, a line or a point, and the area or the volume 
of the velocity ellipse or ellipsoid becomes zero. The second and 
higher order properties, such as curvature, are also not defined at 
a singularity. In this paper, we use the rate of change of the area 
or volume to characterize the singularities of the point trajec- 
tory. For parallel manipulators, singularities may lead to either 
loss or gain of one or more degrees-of-freedom. For loss of degree 
of freedom, the ellipsoid degenerates to an ellipse, a line, or a 
point as in serial manipulators. For a gain of degree-of-freedom 
the singularities can be pictured as growth to lines, ellipses, and 
ellipsoids. The method presented gives a clear geometric picture 
as to the possible directions and magnitude of motion at a singu- 
larity and the local geometry near a singularity. The theoretical 
results are illustrated with the help of a general spatial 2R ma- 
nipulator and a three-degree-of-freedom RPSSPR-SPR parallel 
manipulator. 

INTRODUCTION 

Evaluation of singularities plays an important role in 
several aspects of robotics including design, trajectory plan- 
ning, and control. Much of the past research in the area of 

1 Address all correspondence to this author. 
singularities of manipulators have been related to the study 
of manipulator configurations resulting in singularities (see, 
for example, (Wang and Waldron, 1987; Litvin et. al., 1990; 
Hunt, 1986; Martinez et. al., 1994)), enumeration and clas- 
sification of kinematic structure of manipulators and mecha- 
nisms with singular configurations(see, for example, (Lipkin 
and Pohl, 1991; Karger, 1995; Karger, 1996; Sugimoto et. 
al., 1982; Gosselin and Angeles, 1990; Litvin et. al., 1986; 
Merlet, 1991)), novel designs of manipulators and wrists, 
including use of redundancy, that would exclude singulari- 
ties from the useful portion of the workspace(see, for exam- 
ple, (Stanisic and Duta, 1990; Tchnon and Matuszok, 1995; 
Shamir, 1990))) analysis of singular sets for serial manipula- 
tors(see, for example, (Karger, 1996; Tchnon and Muszyn- 
ski, 1997)) and pl anning of trajectories at singularities(see, 
for example, (Chevallereau, 1996; Lloyd, 1996; Nenchev et. 
al., 1996; Necchev and Uchiyama, 1996)). In practice, one 
is confronted with commercial manipulator geometries that 
usually do have singularities in their workspace. One there- 
fore has to develop a better understanding of the geometric 
nature of singularities to develop path planning algorithms 
which can avoid singularities or recover from a singularity 
once it is encountered. There have been some studies in this 
area (see, for example, (Martinez et. al., 1994; Sardis et. al., 
1992)). There has also been some analysis of singularities of 
point trajectories and their bifurcations(Kieffer, 1992; Ki- 
effer, 1994). This paper is related to these later works in 
that it deals with analysis of singularities of point trajecto- 
ries. The paper differs from these works in that a) it de- 
velops a geometric method for local characterization of sin- 



gularities which is not restricted to one-degree-of-freedom 
motions, and b) the method is applied to both serial and 
parallel manipulators. The main idea of this paper is based 
on the concept of a metric on a manifold and the associ- 
ated concepts of a velocity ellipsoid or ellipse(Ghosal and 
Roth, 1987), whose size and shape characterizes the local 
first order properties of non-singular point trajectories. At 
singular positions, the definition of the metric is no longer 
valid and the velocity ellipsoid degenerates to an ellipse, line 
or a point. For second and higher order properties, we con- 
sider the rate of change of the volume of the ellipsoid since 
the familiar concepts of curvature etc. are no defined at a 
singularity. We extend the concept of the velocity ellipsoid 
and the rate of change of volume to parallel manipulators. 
The results of this paper, in addition, to their theoretical 
interests in kinematics of manipulators, have applications 
in trajectory planning and control. 

The paper is organized as follows: In section 2, we 
briefly present the differential-geometric concepts of a met- 
ric and the associated velocity ellipse and ellipsoid and then 
discuss its usefulness for differential analysis of point tra- 
jectories traced out by non-redundant, serial and parallel 
manipulators. In section 3, we discuss singularities of point 
trajectories traced out by two and three-degree-of-freedom 
serial and parallel manipulators by considering the rate of 
change of the volume of the velocity ellipsoid. In section 4, 
we illustrate our theory with the help of a general spatial 2R 
and a three-degree-of-freedom RPSSPR-SPR parallel ma- 
nipulator. Finally, in section 5, we present the conclusions. 

MATHEMATICAL FORMULATION 

The trajectory traced by a point in a moving rigid body 
can be expressed as a set of equations giving the coordinates 
of the point in the terms of the n independent motion pa- 
rameters. Assuming that the coordinates of the point are 
the Cartesian coordinates, (2, y, z), and the n independent 
motion parameters are denoted by Bi, i = 1,2, . . . . n, the set 
of equations can be written in a symbolic form as 

In the case of a manipulator, the vector function $ depends 
on the point chosen on the end-effector, the geometry and 
structure of the manipulator and its dimensions. The func- 
tion $ and can be thought of as a mapping which takes 
points in the motion parameter space, (61, . . . . B,), to points 
in the 3D (Euclidean) space of the motion. These equations 
are the familiar direct kinematics equations for a manipula- 
tor. 

In the case of serial manipulators with n degrees of free- 
dom, the n motion parameters are the rotations or transla- 
2 
tions at the joints and are independently actuated. In the 
case of parallel manipulators and closed-loop mechanisms, 
not all the n motion parameters are actuated and m of 
them may be. passive. In such a case the degree of freedom 
of the parallel manipulator or the closed-loop mechanism is 
(n - m), and in addition to the above equations, we have 
m independent constraint equations of the form 

r1(81, “‘, 6%) = 0 (2) 

where v( .) denotes the m constraint functions Q( .), i = 
1,2, .., m. 

In this paper, we restrict ourselves to non-redundant 
manipulators, i.e., n < 3 for serial manipulators and 
(n-m)<3f p 111 or ara e manipulators and closed-loop mech- 
anisms. 

Differential kinematics of serial manipulators at non-singular 

points 

In the case of serial manipulators, the velocity at any 
point, p, on the point trajectory can be written as 

n 

v= 
c+- 

e. t 1 (3) 
i=l 

where ei is the time derivative of Bi and pi is the first partial 
derivative of 11, with respect to Bi or 8$/a&. The partial 
derivatives are evaluated at p. 

The above equation can also be written in terms of the 
matrix of first partial derivatives or the Jacobian matrix as 

v = LWIP~ (4 

where 8 is the vector (01, . . . . O,)* and [J(+)]n is the Jaco- 
bian matrix of + evaluated at p. By varying b, we can get 
any arbitrary velocity v at p. It is more instructive to look 
at the variation of v with a normalizing constraint of the 

form eTb = k2. For k = 1, we have a unit speed motion 
and by varying k one can get all possible velocities, v, at 
the point p under consideration. 

The dot product of the velocity with itself can be writ- 
ten as 

v.v=bT[g]il (5) 

where the matrix elements gij are the dot products (+i . 
tij),i,j = 1,2, ..,n. The matrix [g], equal to [J($)]‘[J($)], 
Copyright @ 1998 by ASME 



is symmetric and positive definite and its elements( in the 
language of differential geometry) define a metric in the 
tangent space(Millman and Parker, 1977). We make the 
following observations from the definition of [s] and equa- 
tion (5): 

l If [g] is non-singular(i.e, det[g] # 0), then we can write 

VT([J][g]-l)([J][S]-l)TV = 3-8, (6) 

The matrix ([J][g]-‘)([J][g]-l)T is symmetric and pos- 

itive definite, and for a constraint of the form 8b = 1, 
the tip of the velocity vector v lies on an ellipsoid. For 
two-degree-of-freedom motions the tip of the vector v 
lies on an ellipse in the tangent plane. 

l The maximum and minimum values of v2 subject to 

constraint bTb = 1 can be obtained by solving 

dv*2/dB1 = dv*2/df& = 0 

where ve2 is given as 

(7) 

V *2 = bT[g]b - X(bT6 - 1) (8) 

The above reduces to solving the eigenvalue problem 

[s]b - Ail = 0 (9) 

The maximum and minimum Iv] in terms of the maxi- 
mum and minimum eigenvalues of [s], X,,, and Xmin, 
are given as 

Ivlmz = AZ 

IVlmin = Jx,, (10) 

The directions of the maximum and minimum velocities 
are related to the eigenvectors of [g] and are along the 
vectors [J(+)]6;, i = 1,2,3 where 8i is the eigenvectors 
corresponding to eigenvalue Xi. 
The maximum, minimum, and intermediate values of 
Iv] are along the three principal axes of the ellipsoid 
and determine the shape of the ellipsoid(for an ellipse 
there are only a maximum and a minimum). If the 

normalization &TO = k2 is used then the maximum 
and minimum values are scaled by k but the shape of 
the velocity ellipsoid(or ellipse) doesn’t change. 
3 
The volume (area in case of ellipse) is proportional to 
dm. For an ellipse the area is krdm and for 
an ellipsoid, the volume is given by k (2n/3)dm. 
It may be noted that det[g] is equal to the product of 
the eigenvalues. 
Yoshikawa(Yoshikawa, 1985) introduced an useful ma- 
nipulability measure ddet([J][JIT) which has been 
used extensively by several researchers for resolution 
of redundancy(Nakamura, 1991). Several authors have 
also used the singular values of [J] to analyze the first 
order properties. However, det[g] and det([J][JT), ( 
and the square root of eigenvalues of [s] and the sin- 
gular values of [J]) h ave significant differences. We list 
some of them below. 

1) The elements of [s] and det[g] define distance, an- 
gle and elemental area(or volume) on a manifold 
whereas the matrix [J][JIT comes from a least 
squares type of solutions to a system of linear 
equations2. In this paper, our approach is from 
a differential-geometric perspective and not from 
linear algebra, and the focus of the paper is on 
singularities where the definition of a metric on a 
manifold breaks down and det[g] equals zero. 

2) As shown later, the quantity det[g] naturally occurs 
when we consider second and higher-order proper- 
ties of a manifold such as the Gaussian curvature. 
It is not clear how the the manipulability measure 
can be used to study second and higher properties 
of a manifold. 

3) The elements of [s] and det[g] are well-defined for 
all non-redundant manipulators and mechanisms. 
The manipulability measure is more suited for re- 
dundant manipulators since det ( [J][JIT) is zero for 
a non-redundant spatial 2R manipulator. It may 
be noted that det([JITIJ]) is always zero for a re- 
dundant manipulator. 

We next discuss parallel manipulators and closed-loop 
mechanisms. 

Differential kinematics of parallel manipulators at non-singular 

points 

As mentioned before, in the case of a parallel manip- 
ulator or closed-loop mechanism not all the n joints are 
actuated and there are m constraint equations of the form 
(2). We denote the (n - m) actuated joints by the vector 
0 and the m passive joints by the vector 4. The velocity 

2The solution to a set of linear equations(Golub and Van Loan, 
1989) Ax = b, A E Rmxn, x E P, b E W”‘, is given as z = 
(ATA)-‘ATb when m > n and E = AT(AAT)-‘b when m 5 n. 
(ATA)-‘AT and AT(AiT)-’ are called the pseudo-inverse of A. 
Copyright @ 1998 by ASME 
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vector, v, at any point p on the point trajectory traced by 
a parallel manipulator or a closed-loop mechanism can be 
written as 

v = [J]b + [.I*]$ (11) 

where the columns of [J] are the partial derivatives of + 
with respect to the n-m actuated joint variables 6’i and the 
columns of [J’] are the partial derivatives of II, with respect 
to the m passive variables &. The dimensions of [J] and 
[J*] are (dim(v) x (n - m)) and (dim(v) x m) respectively. 

By differentiating the m constraints equations (2), we 

get 

0 = 2 7)iii 
i 

(12

where vi is the partial derivative dq/dBi. Again assuming 
that the first (n - m) &‘s are actuated and the rest are 
passive, we can rearrange these m equations in the form 

0 = [If]8 + [I~*]~ (13

where the columns of [Ii’] are the first (n - m) vi’s and the 
columns of [I<*] are the last m qi’s. It may be noted that 
[K”] is always a square matrix of dimension m x m. 

Assuming that det[K*] # 0, we can solve for d from 
equation (13) as 

(is = -[Ii-*]-‘[1i-]b (14

and on substituting in equation (11)) we get 

v = ([J] - [J*][K*]-‘[K])e (15) 

where 8 is the vector of n - m actuated joint variables. 
Equation (15) is similar to equation (3) for serial ma- 

nipulators and we can define a metric for a parallel manip- 
ulator, [g’], as 

[g’] = ([J] - [J*][K*]-‘[IC])T([J] - [J*][K*]-‘[Ii’]) (16) 

The metric [s*] is symmetric and positive definite3 and we 
can again state that for a normalization constraint of the 

form bTe = k2, the tip of the velocity vector lies on an 
ellipsoid(ellipse). The shape and size of the ellipsoid(ellipse) 
is again determined by the eigenvalues of the matrix [g*]. 

3[g*] is clearly symmetric since it is of the form [AITIA]. It is also 
positive definite provided that det[K*] # 0 and ([Jj - [J*][K*]-‘[K]) 
is non-singular. 
Higher order properties at non-singular points 

The velocity vector, v, derived from the first derivative 
of the mapping function or the elements of the matrix [s] 
(or [s’]) determine the first order properties of the point 
trajectories. For the second order properties we consider 
the acceleration vector given in terms of the first and second 
partial derivatives of $ as 

a = el/Jiii + e $ijiiij (17) 
i=l i,j=l 

When the the number of independent & is two and the 
point trajectory is in X3, we can define a normal vector n 
at the non-singular point, p, as 

n= ,;: :: f:, (18)

where the partial derivatives are evaluated at p. It may be 
noted that the denominator is the same as Jm and is 
non-zero at a non-singular point. The normal component 
of acceleration, a,, is given by 

2 

a, = 
c 

Lij ii bj (19) 
i,j=l 

where the Lij’~ are the dot products ~ij . n, i, j = 1,2. 
The tangential components are given as 

2 . . 
at, = ek + c 

I’fjQiij k = 1,2 (20) 
i,j=l 

where the six r~j are known as Christoffel symbols(Millman 
and Parker, 1977) and are given as 

i,j,k= 1,2 (21) 

where g’” is the (1, k) element of [g]-‘. It may be noted 
that the six Christoffel symbols can be expressed as partial 
derivatives of the metric coefficients gij’s(or gt’s for parallel 
manipulators) (Millman and Parker, 1977). 

The second order properties are completely determined 
by the elements gij, Lij , and r~j. The local geometry of the 
surface is determined by the Gaussian curvature given by 

I( = det [Ll 
det [sl (22) 



and K can also be derived only in terms of the metric co- 
efficients, gij and their first partial derivatives(gt and its 
first partial derivatives for parallel manipulators) (Millman 
and Parker, 1977). It is also well known from differential 
geometry, that a surface is locally flat if all the Lij’s are 
zero (Ii’ = 0), a surface is locally parabolic if Ii = 0 but all 
Lij’s are not zero, a surface is locally elliptic if Ii > 0, and 
a surface is locally hyperbolic if Ii < 0. 

The six Christoffel symbols determine the nature of the 
curves on the surface and a curve is said to be a geodesic 
if the geodesic curvature is zero. It can be shown (Millman 
and Parker, 1977) that the geodesic curvature is zero if the 
tangential acceleration is zero, and if e,(t), 02(t) satisfies 
the non-linear differential equations 

i,j=l 

the point trajectory is a geodesic. 
In case the point trajectory is a solid region in X3(n = 

3), the tangent space is of the same dimension as the space 
of the motion and there is no notion of a normal vector. 
One can consider 2D sections (surfaces) of the solid region 
and compute the Gaussian curvature of each of the sections 
by computing the appropriate Lij’s and the det[g]‘s. An- 
other general approach is to compute the first and second 
partial derivatives of gij’s(grj in case of parallel manipula- 
tors) with respect to the motion parameters and define the 
Riemannian curvature tensor(Millman and Parker, 1977) 

a29jl -1 doi aek 
i#(rjskritl - rjslritk) (24 

where gSt is the (s,t) element of [g]-’ and 

(25) 

The above rank four tensor has the properties of curvature 
since one can show that if all the Rijkl vanishes everywhere, 
then the volume of the velocity ellipsoid is constant every- 
where similar to the case when the mapping 11, is linear and 
the surface is flat. The Gaussian curvature of a 2D subspace 
can also be computed as 

R1212 

Ii’ = det[g] (26) 
5 
It may be noted that in the expression of the Gaussian 
curvature (and Riemannian curvature) and the Christoffel 
symbols, det[g](detb*] f or ara e manipulators and closed- p 11 1 
loop mechanisms) appears in the denominator. If det[g] or 
det[g*] is zero, then we have a singularity and at a singu- 
larity, the Christoffel symbols and the Gaussian or the Rie- 
mannian curvatures are not defined. The expressions have 
an indeterminate form O/O, and hence, we cannot charac- 
terize the geometry of the point trajectory, at a singularity, 
using I’fj, Ii or Rijkl. In the next section, we analyze the 
behavior of det[g], to characterize the singularities in two 
and three-degree-of-freedom motions. 

SINGULARITY ANALYSIS 

For a single degree-of-freedom motion, the singulari- 
ties of the point trajectory(in this case a curve in ?J?‘) are 
points in 9’. These have been classified as ordinary, bifurca- 
tions and isolated singularities(Kieffer, 1992; Kieffer, 1994). 
For two and three-degree-of-freedom motions, it is not at- 
tractive to study the singularities of the infinite number of 
curves which make up the surface or the solid region. In this 
paper, we propose to study the nature of the singularity by 
analyzing the behavior of det[g](or det[g*] and det[Ii*] for 
a parallel manipulator) near a singularity. There are two 
main intuitive reasons for this approach. 

1) 

2) 

As discussed in section 2, the elements gij define a met- 
ric on the manifold and the quantity det[g] is related to 
the shape and size of the velocity ellipsoid. At a singu- 
larity the metric is not defined, det[g] is zero, and the 
ellipsoid degenerates to an ellipse, a line or a point, and 
the volume of the ellipsoid becomes zero. 
For second order properties, in the expressions for the 
Christoffel symbols, the Gaussian and Riemannian cur- 
vature, det[s] appears in the denominator and at a sin- 
gularity det[g] is zero. Hence, it is intuitive to consider 
the behavior of det[g] near the zero. Although the sec- 
ond order properties of a surface, such as curvature, is 
determined by both the numerator and denominator, 
clearly the denominator plays an important part near 
its zero. 

Singularity analysis for serial manipulators 

As mentioned above the condition for singularity in se- 
rial manipulators is det[g] = 0. To study the behavior of 
det[s] near a singularity, we denote the values of (01, .., O,)T 
which satisfy the singularity condition, det[g] = 0, by 8*, 
Copyright @ 1998 by ASME 



and expand det [s] in a Taylor series about 6*. We can write 

G(det[g]) = det[g] + 2 =[gloi 
i=l aei 

+(1/2) ctT z6*i6*j + .... (27) 

where all the partial derivatives on the right-hand side are 
evaluated at 8*. 

At a singularity the first term on the right-hand side, 
det[s], is zero and hence we get up to the first order 

G(det[g]) = g yd8i (28) 

The vector (v, . . . . 9)’ is the gradient of det[g] and 
gives the direction of the maximum change of volume of the 
ellipsoid. If any of the partial derivatives, ad$71 is zero, 
then we have a second order singularity in the 0; direction. 
If the second or higher derivatives are zero, then we have 
third or higher order singularity. 

Since det[g] is the product of the eigenvalues, we can 
write 

ddet [s] 
aoi 

At a singularity, we have the following cases: 

b One eigenvalue is zero, say Xi = 0 and X2,X3 non-zero. 
In this case, the ellipsoid degenerates to an ellipse, and 
the velocity along the direction corresponding to the 
zero eigenvalue will be zero. From equation (29), we 
can see that the only nonzero term is X2X3$$. Hence 

w greater than zero imply that the rate of change of 
veldcity along the direction corresponding to the zero 
eigenvalue is positive. Likewise if q is less than 
zero, the rate of change of velocity along the direction 
corresponding to zero eigenvalue is negative, and for 
9 = 0, the rate of change of velocity is zero. In the 
last ‘case we have a second order singularity. 

l Two eigenvalues zero, say X1 = X2 = 0 and X3 non-zero. 
In such a case, the ellipsoid degenerates to a line, and 
the velocity in the plane spanned by the eigenvectors 
corresponding to zero eigenvalues will be zero. In such 
a case, we can observe from the definition of det[g], 
that v = Xs%#. The sign of w determine I 
6 
whether the rate of change of velocity vector, in the 
plane spanned by the eigenvectors corresponding to zero 
eigenvalues, is positive, negative or zero. In the last case 
we have a second-order singularity. 

l All three eigenvalues zero. In such a case the ellipsoid 
degenerates to a point, and no motion is possible in any 
direction. 

It may be mentioned that researchers(Chevallereau, 1996; 
Lloyd, 1996) have pointed out that motion may be possi- 
ble with non-zero acceleration. To analyse the relationship 
between the derivatives of det [s] and the acceleration at a 
singularity, we write 

(30) 

where GI, is the co-factor of gl,. in det[g] and FTV are the 
Christoffel symbols(Millman and Parker, 1977). Hence, if 
any of the partial derivatives of det[g] with respect to Bi is 
zero, and the corresponding cofactor is not zero, then the 
dot product term XI”=, (~i,.~1) will be zero. A consequence 
of the dot-product term being zero, from equation (17), 
can be that the acceleration along certain directions is zero. 
This is illustrated in detail in the singularity analysis of a 
general 2R manipulator considered in a later section. 

The matrix of second partial derivatives determine the 
second order properties at a singular point. If the matrix 
a evaluated at 0* has a positive determinant then the 
singuirity is elliptic. If the matrix has a negative deter- 
minant, then the singularity is hyperbolic and if the de- 
terminant of the matrix is zero, then the singularity is flat 
or parabolic. In terms of the second derivatives of Xi, the 
sign indicates whether Xi is at a maximum, minimum or an 
inflexion point. 

Singularity analysis for parallel manipulators 

For a parallel manipulator, if the det[K*] # 0, then we 
can analyze the singularity corresponding to det[g*] = 0. 
We can replace [g] by [g*] in the above analysis and can 
compute the first and higher partial derivatives of det[g*]. 
When det[K*] = 0, we have a singularity associated with 
the gain of one or more degree-of-freedom(Gosselin and An- 
geles, 1990). This can be seen readily from equation (13) 
as follows: 

We assume that all the (n - m) actuated joints are 
locked or $J is set to zero. If det[K*] # 0, all the passive pa- 
rameters 4 become zero from equation (13) and as expected 
we get a structure. From linear algebra, we know that the 
Copyright @ 1998 by ASME 



homogeneous equation, [K*]& = 0, can have non-trivial so- 
lutions (not all 4i zero) when the matrix [Ii”] is singular 
or det[K*] = 0. This implies that the structure can have 
motion at the joint with non-zero 4i and gains one or more 
degrees-of-freedom at a singularity corresponding to matrix 
[K*] loosing rank. 

A geometric picture of the singularity corresponding to 
the gain of degree of freedom is as follows: 

With all the actuated joints locked(8 = 0), at non- 
singular positions, we get 4 = 0 from equation (13). 
Since 8 and 4 are both zero, from equation (ll), we get 
vTv = 0. Hence at a non-singular position with actuated 
joints locked, we can think of the velocity distribution as 
an ellipsoid of zero size. At a singularity, the matrix [K*] 
looses rank. If the rank is (m - 1) then we can extract the 
eigenvector of [K*] corresponding to the zero eigenvalue. 
Let the eigenvector corresponding to the zero eigenvalue be 
+i. Since, cl+ is also an eigenvector with cl any scaling 
constant, from equation (11)) we get 

v = c&l’]& (31) 

and there can be motion along the direction of [J*]&. In 
this case, we can think of the zero velocity ellipsoid “grow- 
ing” into a line. If the rank of the matrix [I<*] is (m - 2), 
then with a similar reasoning we can get 

v = c&T*]& + c2[J*l& (32) 

where &, 4, are the two eigenvectors corresponding to the 
two zero eigenvalues of [K*] and cl, c2 are the two scaling 
constants. If we normalize ci, i = 1,2, to be between -1 
and $1 (or cf + cs = l), then the tip of the velocity vector 
traces an ellipse4. If the rank of [K*] is (m - 3), then the 
tip of the velocity vector will lie on an ellipsoid. If the rank 
is less than (m - 3), then we have a situation similar to the 
redundant serial manipulator. 

The ellipsoids or their degenerate forms associated with 
the gain of degree-of-freedom in parallel manipulators and 
closed-loop mechanisms can be analyzed by considering the 
matrix [J*TJ*]. In particular, we can find the direction and 
magnitude of the maximum and minimum velocities from 
the eigenvalues of the matrix [J*TJ*]. 

The second order properties of the singularities asso- 
ciated with loss of degree of freedom, in case of parallel 
manipulators and closed-loop mechanisms, can be analyzed 

4c1 and Q are similar to Q, and t$ in the differential kinematics of 
serial manipulators, and as in section 2, we can easily prove that the 
tip of v lies on an ellipse. 
7 
in a manner similar to that of a serial manipulator by con- 
sidering [g*] instead of [g]. F or 1 oss of degree-of-freedom in 
parallel manipulators and closed loop mechanisms, we have 
to consider the Taylor series expansion of det[K*]. 

In the next section, we look at two cases to illustrate 
the theory developed in the last two sections. 

CASE STUDIES OF SERIAL AND PARALLEL MANIPULA- 

TORS 

In this section, we illustrate the theory developed in 
the two previous section by means of two examples, namely 
a general two-degree-of-freedom serial manipulator and a 
three-degree-of-freedom parallel manipulator described in 
(Lee and Shah, 1988). 

A general 2R manipulator 

Figure 1. shows a two-degree-of-freedom manipulator 
with two revolute(R) J ‘oints of general geometry. The joint 
variables are 81 and 82 and the point trajectory is traced 
by the point (x, y, z)~ in ZR3. Hence the point trajectory 
is a surface in W3. In terms of the link lengths, aij’s, link 
offsets, di’s, and the twists oij, the mapping function II, can 
be written as5 

(z,Y,z)~ = +(*l,&) = dlSl+al2al2+d2S2+u2sa23 (33) 

where 

Sl = (0, 0, l)T 

al2 = (~1, sl, OIT 

s2 = (5Iw2, --c1SQ12, C%2)T (34) 
a23 = [(cicz - s1s2ca12), (31c2 + c132Ccv2), SW2S21T 

The partial derivatives +r and ti2 are given by 

I/$ = ul2(-sl,~l,O)~ + d2(Sm2cl,Sm2S1,0)T 

+U23(-SlC2 - CiS2CQ12,CiC2 -sls2C~1210)~ (35) 
$2 = a23(- ClS2 - SlC2CQ12, -s1s2 + ClC2C~12, SQ12C2)T 

The coefficients of the metric [s] are given by 

gll = ut2 + d&x2 12 + 43(4 + 442) + 2a23al2C2 

-2dm3cww12s2 

912 = ~23(~12c~12c2 - dzswm + a23Ca12) (36) 
922 = 43 

5We will use the symbols ci, si etc. to represent cos(Oi), sin(8,) 
etc. respectively throughout the paper. 
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Figure 1. A schematic of a general 2R manipulator 

and 

det[g] = gllg22 - gt2 = &[(uis + a23~2)~&2 + 

(%2CQ12S2 +d2Sw2C2)21 (37) 

It may be noted that the gij’s and the determinant of [g] 
are independent of 01. This is because the metric coeffi- 
cients are always independent of translation and rotation of 
a coordinate system and the effect of 01 is equivalent to a 
rotation of the fixed coordinate system. 

The Gaussian curvature is given as 

K = U23s&cZgllg22(u12 + 023c2)- (a23s12C2g12)2 

Pew2 (38) 

At (&,02) given by (0,O) degrees, the velocity ellipse, 
in three sectional views and a 3D view, is shown in fig- 
ure 2. We have assumed ~12 = 45’, uis = d2 = 1 and 
~23 = 1.5. The maximum and minimum values of the 
magnitude of velocity for 4: + ez = 1 are &@?% and 
dm along the principal axis of the ellipse as shown in 
figure 2. The ellipse is in tangent plane with normal along 
8 
(0.9285,-0.2626,0.2626)T and the maximum and minimum 
velocities are along vectors (-0.6417, -2.7143, -0.4456)T 
and (0.2971,0.878,-0.9625)T in the tangent plane. The 
Gaussian curvature at (0,O) degrees is 0.3092 implying that 
the point (0,O) is elliptic. At the point (0,120) degrees the 
Gaussian curvature is -0.5791 and the surface is hyperbolic. 
One can also obtain points where the surface is parabolic. 

41 
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Figure 2. Velocity ellipse at a non-singular point (01, &) = (O,O)’ 

At a singular point, det[g] = 0 and this implies 

U12 + U23C2 = 0 or SQ12 = 0 

~12~~x12~2 +d2scuc2 = 0 (39) 

If soi2 = 0, then the manipulator is planar and the 
singularities can occur only if 82 = 0, r. If ais # 0, then 
the singularities can occur when 

tan2 (~12 = 43 - 42 

dz2 

(40) 
tan(e2/2) = (I~~s~12 

The above equation implies that the general 2R serial ma- 
nipulator can have singularities only for special values of 
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link lengths, offsets and twist angles, and if one has a ge- 
ometry satisfying the first equation in (40), the singularities 
lie along a curve with the value of 82 given by the second 
equation in the set of equations (40). 

For the values of ~12 = d2 = 1.0 and ~23 = 1.5, the sin- 
gularities occur for cris = f48.1897‘ and 02 = ?cl31.8103‘. 
The velocity ellipse for such values degenerates to a straight 
line along the unit vector (-0.7454, -0.4444, -0.4969)T. 
Figure 3 shows the three orthographic views of this line 
and also a 3D view of the degenerate velocity “ellipse”. The 

maximum velocity for $ + 4; = 1 is 1.5 along the direction 
of the straight line. By use of equations (40), one can cal- 
culate the values of (~12 and 82 for any other set of values 
of ~12, d2 and ~23 and get plots as in figure 3. 
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Figure 3. Degenerate velocity "ellipse" at a singular point 

On substituting (~12 and 82 from equations (40) in ex- 
pressions for gir and giz, we can show that for the general 
2R manipulator gii = gis = 0 at a singularity. Since det[g] 
is independent of 01 all its partial derivatives with respect to 
01 is zero. In addition, since gss is constant, all the partial 
derivatives of gss with respect to 82 are zero. The partial 
derivative of det[g] with respect to 6’2 is given by 

a det bl $722 
~ =911x +922g - 2g12g de2 

(41) 
9 
At the singularity !&$ = 0 and hence the whole of the 
right-hand side is zero. From equation (30), we obtain that 

&(A, . $l)Grl = 0, i,r = 1,2 (42) 
l=l 

Referring to equation (17) and using the above equation, 
we get at a singularity, 

a.$l=O 

a. & = 92282 (43) 

The above equation implies that acceleration is only possi- 
ble along the ti2 direction at a singularity. 

On computing the second partial derivatives of det[g], 
we find that the only non-zero term is 

a2 det[s] a2g11 
ae; = 5’228822 = 2&s; + 44 (44) 

The above implies that the singularity in a 2R manipulator 
is of second order. In addition, the determinant of the ma- 
trix of second partial derivatives of det[g] is zero implying 
the singularities are parabolic. 

It may be noted that in the planar case, cris = 0 and 
82 = 0, A, again the first partial derivatives of det[g] is zero. 
In the second partial derivatives of det[g], the only non-zero 
term is 

a2 det [s] 
ae; = 2u2 u2 23 12 (45) 

Hence the matrix of second partial derivatives has a zero 
determinant implying the singularities are parabolic. 

A RPSSPR-SbR parallel manipulator 

In reference (Lee and Shah, 1988), the three-loop, three- 
degree-of-freedom RPSSPR-SPR mechanism of figure 4 has 
been proposed as a “parallel” wrist. The authors have dis- 
cussed the direct and inverse kinematics but they have not 
dealt with its singularities. In this subsection, we use the 
theory developed in section 3, to determine the geometry of 
the solid region near a singularity for this parallel manipu- 
lator. 

The geometry chosen is same as in (Lee and Shah, 1988) 
where the revolute joints axes are assumed to be co-planar 
and are perpendicular to the medians passing through the 
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Figure 4. The RPSSPR-SPR parallel manipulator 

respective vertices. Assuming that the length of the medi- 
ans in the base equilateral triangle are unity, we can obtain 
the coordinates of the centre of the three spherical joints in 
the fixed coordinate system (0). These are given by 

Sl = [(I - hCl), 0, hs11 
T 

s2 = [-0.5(1 - Z2c2), X6/2(1 - Zzcz), Z2ss]T (46) 
s3 = [-0.5(1- Z3c3), -X6/2(1 - Z3c3), Z3s3]T 

where Bi, i = 1,2,3 are rotations at the three passive rotary 
joints and Zi, i = 1,2,3 are the translations at the actuated 
prismatic joints. 

The loop closure equations are obtained from the fact 
that the distance between the spherical joints are constant 
and are of the form 

(Si - Sj) . (Si - Sj) = kc, i,j = 1,2,3, i # j (47) 

where kij is the distance between spherical joint i and spher- 
ical joint j respectively. 
10 
Differentiating the three constraint equations with re- 
spect to time, we get 

( 311sr - Z112S~C2 - 2z~z2crss 
o=. 0 e, + 

311Sl - 1113SlC3 - 2ZlZ3ClS3 

3/&t - ZlZzClS2 - 211Z2S1C2 

3Z2S2 - Z2Z3S2C3 - 2Z2Z3QS3 & $ 

0 

0 
3Z3S3 - Z2Z3C2S3 - 2Z2Z352C3 i, + 

3Z3S3 - Z1Z3ClS3 - 2ZlZ3SlC3 

211 - 3Cl + zscrcs - 2zss1s2 
0 i, + 
211 - 3Cl + Z3ClC3 - 2Z3SlS3 

212 - 3C2 + ZlqC2 - 211~~ 

2Z2 - SC2 + Z3c2c3 - 2Z3S2S3 i2 + 

0 

0 
2Zs - 3C3 + ZzC2C.3 - 2Zsssss (48) 
2Zs - 3~3 + Z1c1c3 - 211s1s3 

The above equation can be written in the form of equation 
(13) as 

(2) = +~*I-l[Kl (i) (49)

where the columns of [K*] and [K] are coefficients of bi, i = 
1,2,3 and Zi, i = 1,2,3 respectively. 

Assuming all the lengths kij’s are &/2(the lengths of 
the medians of the top platform are 0.5 units each) the 
coordinates of the centroid of the moving platform are given 
as 

2 0 Y = (l/3)(% + s2 + s3> 
z 

=; [(;lylcl) + (;pi:‘::):I)l 

(-l/2)(1 - Z3c3) 

+ 

K 

y/2)(1 - Z3C3) )I (5
and the velocity of the centre is given by 
Copyright @ 1998 by ASME 



where [J’] and [J] are 3 x 3 matrices obtained from the 
coefficients of Bi, i = 1,2,3, and Z;, i = 1,2,3 respectively. 
Using equation (49) in equation (51), we get 

v = ([J] - [J*][K*]-1[l(])(il,i2,i3)T = &,i, (52) 
i=l 

The metric in this case is the matrix ([J] - 
[J*][lC*]-l[K])T([J]-[J*][K*]-l[K]), and the three-degree- 
of-freedom RPSSPR-SPR parallel manipulator will loose 
one or more degree-of-freedom when 

det[g*] = ([J] - [J*][K*]-l[II])T([J] - [J*][K*]-‘[Ii]) = 0 
(53) 

The above equation is a function of the passive variables 
t$, i = 1,2,3 and the three actuated variables Zi, i = 1,2,3. 
Equation (53) together with the loop closure equations (47) 
represent 4 equations in 6 unknowns and hence the singular- 
ities occur on a high-order 20 surface. It is very difficult to 
derive analytical results for this case; we, therefore, present 
numerical results. 

At a typical non-singular point given by (11, Zs, Zs) = 
(0.5, 1.0,2.0) meters, and the corresponding passive 
variables,(&, 02, es), given by (0.4,0.7535,0.2402 radians, 
the tip of the velocity vector will lie on the ellipsoid 
shown in figure 5. The maximum, intermediate, and 
minimum velocities along the principal axes of the ellip- 
soid are given by 0.3724,0.3162,0.2031 m/set respectively. 
The directions of the corresponding principal axes are 
(0.9921, -0.0394, 0.1187)T, (0.1166,0.6338, -0.7646)T and 
(-0.0452,0.7724, 0.6335)T respectively. 

Prom numerical solution of the constraint equations and 
the condition for loss of degree-of-freedom, we find that 
the leg lengths, (Ii, Zs, Zs), given by (0.5,1.0,1.9710) meters 
and the corresponding passive variables, (01 , 02, es), given 
by (1.1691,0.4781,0.2355) radians is a singular point. The 
11 
-0.4 -0.2 0 0.2 0.4 
vx 

-0.4 
: 

-0.4 -0.2 0 0.2 0.4 

VY 

Figure 5. Velocity ellipsoid at a non-singular point 

tip of the velocity ellipsoid no longer lies on an ellipsoid 
and the eigenvalues of the matrix ([J] - [J*][K*]-l[K]) are 
(0.7647,0,2.2773) / m sec. At this singular point, the mech- 
anism looses one degree-of-freedom and the velocity distri- 
bution is the ellipse shown in sectional views and as a 3D 
plot in figure 6. The centroid of the top platform can move 
along any direction in a plane spanned by the vectors cor- 
responding to the two non-zero eigenvalues. 

The RPSSPR-SPR parallel manipulator will gain one 
or more degrees-of-freedom when 

det[K*] = 

(3ZlSl - Z1Z2S1C2 - 211Z2C1S2) x (&S2 - /2/3S2C3 - 2/2/3C253) 

x (3Z3s3 - Z1Z3c1s3 - 2Z1Z3s1c3) 

+(311Sl - 11/3QC3 - 2z1/3C1S3) X (3/252 - 11&S2 - 211/2S1Q) 

x (313S3 - /2/&S3 - 2/2/&C3) = 0 (54) 

The above equation is a function of all the passive and ac- 
tive joint variables and again together with the loop closure 
equation (47) represent a set of 4 equations in 6 variables. 
Thus the singularities resulting in a gain of one or more 
degrees-of-freedom also lie on a 20 surface. It is very dif- 
ficult to get the analytical expressions for this surface and 
we present numerical results. 

At leg-lengths, (11, Zz, Zs), g iven by (0.575,0.483,0.544) 
meters respectively and the corresponding passive variables, 
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Figure 6. Velocity ellipse at a singular point 

(0i, B2, es), given by (-0.3441, -0.0138,0.2320) radians, 
det[K*] is found to be very close to zero. The eigenvalues 
of [K*] are -0.5565, 0 and 0.4509 respectively and the three 
eigenvectors corresponding to the three eigenvalues are 
(-0.8098,0.3571, -0.4656)T, (-0.3109, -0.8743, -0.3727)T 
and (-0.0877, -0.4781, -0.8739)T respectively. Hence at 
this point, the mechanism gains one degree-of-freedom and 
the velocity of the centroid, with all actuated joints locked, 
is given as 

(55) 
where the eigenvector, (dr, &, L$$)~, is given as (Y X 

(-0.3109, -0.8743, -0.3727)T with CY arbitrary. It is clear 
that the velocity vector lies along a straight line and the 
mechanism has gained instantaneously a degree-of-freedom 
at this singular point. Figure 7 shows the velocity distribu- 
tion at the singular point. 

CONCLUSION 

In this paper, we have presented a general geomet- 
ric framework for differential analysis of point trajectories 
traced out by multi-degree-of-freedom serial and parallel, 
non-redundant manipulators. At non-singular points, the 
12 
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Figure 7. Velocity at a singular point 

tip of the velocity vector of a point on the end-effector lies 
on an ellipsoid or ellipse. At singular configurations, the 
ellipsoid degenerates to an ellipse, a line or a point depend- 
ing on the number of degrees-of-freedom lost at that point. 
For a parallel manipulator, at a gain of degree-of-freedom 
singularity, there is a growth to a line, an ellipse or an ellip- 
soid depending on the number of degrees-of-freedom gained. 
In both serial and parallel manipulators, the partial deriva- 
tives of shape and size of the ellipsoid or ellipse can be used 
to determine the geometry near the singularity. The devel- 
oped theory was illustrated with the help of a serial and a 
parallel manipulator examples. 
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