
y

Proceedings of DETC'99
1999 ASME Design Engineering Technical Conferences

September 12-15, 1999, Las Vegas, Nevada, USA

DETC99/DAC-8659

MODEL REFERENCE LEARNING CONTROL FOR RIGID ROBOTS

Guruprasad K. R.

Robotics & CAD Laboratory

Department of Mechanical Engineering

Indian Institute of Science

Bangalore 560 012, INDIA

Email: guru@mecheng.iisc.ernet.in

Ashitava Ghosal

Robotics & CAD Laboratory

Department of Mechanical Engineering

Indian Institute of Science

Bangalore 560 012, INDIA

Email: asitava@mecheng.iisc.ernet.in
ABSTRACT

The equations of motion of a rigid robot are often known

only approximately, as some of the parameters are not known

exactly and there are also unmodelled nonlinearities. Most adap-

tive control schemes can estimate the parameters if the structure

of the equations is known, but are not very useful if structure

itself is not known.

In this paper we propose a model reference learning control

scheme using Adaptive Network based Fuzzy Inference System

(ANFIS) for control of rigid robots whose model may have para-

metric and structural uncertainties. The approximate model of

a robot, which may di�er very signi�cantly from the actual robot

in parametric values and structure, is used as a reference plant

and a nonlinear model based controller is designed based on this

model. The ANFIS corrector provides an additional correction

to control input as a function of the present and desired states of

the plant. The error between states of plant and that of reference

plant is used to tune the ANFIS corrector.

The proposed control scheme has been implemented for a

two-degree-of-freedom serial rigid robot. The results of the sim-

ulation experiments carried out show that the proposed control

scheme can learn to control the unmodelled dynamics. The AN-

FIS controller is shown to give improved performance for param-

eter as well as structural uncertainties.

INTRODUCTION

Control of dynamical systems modeled as linear systems
is very well developed and theories and tools are available
for design of linear systems. When the transfer function
(or state space realization) is not known exactly, adaptive
controllers like model reference adaptive control (MRAC)
(Sastry, 1984) are available.
1

When the dynamical systems are modeled as nonlinear,
design of controllers is much more di�cult. In recent years,
based on new geometric methods and for a class of nonlin-
ear systems called feedback linearizable systems, nonlinear
controllers have been designed which guarantee desired per-
formance. The model based control scheme (Craig, 1989)
used for robot control is an example of such controllers.

In designing controllers for a nonlinear plant, using the
techniques of feedback linearisation, accurate knowledge of
dynamic equations modeling the system is very useful. Un-
fortunately for most of the practical systems, the model may
not be known exactly. In such cases one can go for system
identi�cation techniques like Kalman �ltering (Franklin,
et.al, 1990; Astrom, et. al., 1984), or advanced methods
like use of arti�cial neural networks. Adaptive controllers
which estimate the unknown parameters online have also
been used for rigid robots (Craig, 1986).

Most of the above mentioned controllers assume a pri-

ori knowledge of the structure of the dynamic equations
and can handle parametric uncertainties. In this paper,
we use the Adaptive-Neuro Fuzzy Inference System (AN-
FIS) proposed by Jang (Jang, et. al., 1993) to control rigid
robots which have both parametric and structural uncer-
tainties. There are other intelligent controllers proposed
by researchers such as a Fuzzy-Gaussian Neural Networks
(FGNN) (Watanabe, et. al., 1996) and the work by Chen
and Gill (Chen, et. al., 1996), however, Jang and Sun (Jang,
et. al., 1993) show that ANFIS performance is better than
other prediction methods, including arti�cial neural net-
works, in terms of quicker learning and minimization of er-
ror.
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This paper di�ers from the existing works using ANFIS
in the sense that we propose a nonlinear model reference

learning control scheme using ANFIS which takes care of
the unstructured uncertainty in a dynamical system. We
also show that the ANFIS based controller can handle both
parametric and structural uncertainties. An approximate
model, which may di�er signi�cantly from the actual robot
in terms of parametric values and structure, is used as the
reference plant. Based on the reference plant model, we
design a classical nonlinear controller and the ANFIS is used
as a corrector which compensates for unknown dynamics of
the plant.

The paper is organized as follows: In section 2, we
describe, in general, the model reference learning control
scheme using ANFIS. In section 3, we give the details of
the implementation on a 2R robot. In section 4, we present
the simulation results and in section 5, we present the con-
clusions.

MODEL REFERENCE LEARNING CONTROL USING ANFIS

The block diagram of a Model reference learning con-

troller using ANFIS is shown in �gure 1. The plant is a
nonlinear dynamical system for which the dynamic equa-
tions in state space form can be written as

_X = f(X;U) (1)

where, X is the state vector and U is the input vector.
We consider the case where the dynamics (1) of plant

are known only approximately, both in parameters and

structure. The model of the plant used for the reference

plant is given by

_X = f̂(X;U) (2)

where f̂ denotes the approximate model of the plant.
The controller block is a nonlinear controller designed

based on reference plant dynamic equations (2) and is in
the form

U 0 = g(X;Xd) (3)

where Xd is the desired state. The compensation for un-
modelled dynamics is added as a correction to the control
input, U 0, by the ANFIS corrector and we denote the com-
pensation by �U which is of the form
2

�U = �g(X;Xd) (4)

The total control input to the plant is given by

U = U 0 + �U (5)

The ANFIS corrector

The added correction, �U , is such that with the total
control U , the plant tries to follow the response of reference
plant. Inputs to the ANFIS corrector are feedback states X
and the desired states Xd. Alternatively, error between X

and Xd can also be used as input instead of Xd. The output
is the correction �U . The ANFIS corrector architecture can
be designed based on the approximate plant structure, i.e.,
based on number of states and size of vector U . Further,
the knowledge of the plant can be exploited in optimizing
the network.

Learning of ANFIS corrector

The ANFIS corrector has to learn the function �g as
given in equation (4). For learning, we use a training data
set1. A training data set is the desired input-output pair of
the network. The training data is derived from the input
(X;Xd) and the error E. To compute �U for given X , we
can use the Jacobian, J, of the plant. If the Jacobian is
known, we can write

_U = J _X

which can be approximated as (assuming constant time

step)

�U = J�X (6)

Equation (6) gives us a transformation from �X to �U .
In other words, for a required correction in X , we can �nd
correction for U . The correction �U should be such that
the states of the plant should be as close as possible to that
of reference plant. Thus the correction required at output
of the plant is E. Hence we can rewrite (6) as

1The network can be trained both online and o�-line. Initially the

ANFIS Corrector may be trained o�-line. Online learning can handle

variation of the plant parameters while being controlled.
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Figure 1. Block Diagram of Proposed Control Scheme
�U = JE

We do not know the Jacobian, J , a priori as the plant
dynamics is not known exactly. One option is to compute
J online from samples of input and corresponding output
of the plant. Once su�cient number of samples are taken,
we can �nd J by using the pseudo inverse as

J(X; _X) = [�U1�U2:::�Un]
TA#

where, A = [E1E2:::En]
T and A# denotes the pseudo-

inverse of A. The Jacobian, J , has to be computed for
each input X . If we sample X and E at a time interval of
T , then we can get a training data for time nT . The time
interval, T , should be kept at minimum possible value so
that the computed J is su�ciently accurate. Most mechan-
ical systems are not very fast and hence we can compute
J to su�cient accuracy with a realizable T . Alternatively
we can use an Arti�cial Neural Networks (ANN) for the
purpose of computing J online.

Once we have the training data for the network, back-
propagation (BP) algorithm (using gradient descent (GD)
method) can be used for training the network. If consequent
layer is linear, i.e. �rst order Sugeno model (Kosko, 1994)
3

is used for FIS, hybrid learning method (jang. et. al., 1995)
can be used. In hybrid method both GD and least square
estimation (LSE) are used.

IMPLEMENTATION FOR A 2-R ROBOT

Robot dynamic equations are nonlinear and coupled
and many of the parameters like inertia, location of center of
gravity etc. will not be know exactly. In addition, there will
be unmodelled nonlinearities like, nonlinear friction, back-
lash etc. In spite of the uncertainties in parameters and

structure, we are required to design a tracking controller
for robots. In this section we discuss the implementation
details of model reference learning control scheme for a 2-R
robot.

Dynamics of 2-R robot

The dynamic equations of a robot can be derived using
the Lagrangian formulation (Craig, 1989). The dynamic
equations can be represented in matrix form as

� =M(�)�� +C(�; _�) (7)

where, �(t) is the n � 1 vector of joint angles, M(�) is the
n�n mass matrix which is positive de�nite and symmetric,
C(�; _�) is the n�1 vector of Coriolis, centrifugal, and gravity
torques, and � is the vector of joint input torques.
Copyright c
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In this paper we consider a two link robot with rotary
joints (2R) as shown schematically in �gure 2. For a 2R
robot, the components of M and C in equation (7) can be
written as

M11 = m1r
2
1 + I1 + I2 + (m2 +mp +mt)l

2
1 +

m2r
2
2 +mpl

2
2 + 2l1(r2m2 +mpl2)cos(�2);

M12 = M21 = I2 +m2r
2
2 +mpl

2
2 +

l1(m2r2 +mpl2)cos(�2);

M22 = I2 +m2r
2
2 +mpl

2
2;

C1 = �(m2r2 +mpl2)l1sin(�2) _�2(2 _�1 + _�2) +

m1gr1cos(�1) + (m2 +mp +mt)gl1cos(�1) +

cos(�1 + �2)g(m2r2 +mP l2) + f1(�1; �2; _�1; _�2);

C2 = (m2r2 +mpl2)(l1sin(�2) _�1
2
+

gcos(�1 + �2)) + f2(�1; �2; _�1; _�2)

where f1 and f2 represent unmodelled nonlinearities, mi,
li, Ii and ri are the mass, length, inertia and location of
the center of gravity of link i respectively and mp & mt are
payload and motor masses respectively.

As the model (7) may not be known exactly, we consider
the reference plant model as

�̂ = M̂(�)�� + Ĉ(�; _�) (8)

where M̂ and Ĉ are estimates of M and C respectively.
There could be di�erences in structural as well as parameter
values between M and C and their respective estimates.

Xo

Yo

X1

�2

�2

�1

�1

Link 1

Link 2

Figure 2. A schematic of a 2R planar rigid robot.
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The controller

We use a model based controller designed based on ref-
erence plant dynamics (8) for the controller block of �gure
1. This is of the form

� 0 = M̂(�)�pd + Ĉ(�; _�) (9)

where �pd = ��d +Kpe+Kv _e.
If the plant were to be known exactly, the control law

would be of the form

� = M(�)�pd + C(�; _�) (10)

ANFIS architecture

The di�erence between control inputs � and � 0 is taken
care of by the ANFIS corrector. We can write the di�erence
�� = � � � 0 as

�� = ~M(�)�pd + ~C(�; _�) (11)

or in general

�� = f(�; �pd) + g(�; _�) (12)

Thus the ANFIS corrector needs to learn to approximate
the functions f() and g() as given in (12). Inputs to the
ANFIS corrector are �, _� and �pd and the output is �� .
For a 2-R robot number of inputs and outputs are 6 and 2
respectively.

We can utilize the knowledge of the system to simplify
the network. In the case of robot dynamics, functions of �
are always trigonometric functions, hence we can use sin(�)
and cos(�) instead of �. Even though this increases the
number of inputs to the network by 2, the approximation
characteristics improves. With this observation, if we parti-
tion each input space into n fuzzy sets then total number of
rules will be n8 2. In equation (12), there are two parts, f
and g and considering the replacement of sin(�) and cos(�)
for � as input we have

�� = f(sin(�); cos(�); �pd) + g(sin(�); cos(�); _�)

2The number of partitions need not be same for all the inputs. If

ni represents number of fuzzy partitions in ith input, then number of

rules in general is
Q

N

i=1
ni, where N is number of inputs.
Copyright c
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This reduces the number of rules to 2n6. For n = 2, the
number of rules are reduced from 256 to 128. The reduction
in number of rules is more signi�cant for larger n.

The �gure 3 shows the architecture of ANFIS for 2-R
robot. We partition each input into two fuzzy sets, namely -
negative and positive. There are 5 layers in the network and
we describe each of the layers in detail below. The notation
fl;i indicates node function of i-th node in layer l.

Layer 1:

The nodes in this layer evaluate the membership func-
tions, i.e., the fuzzi�cation operation is carried out. The
Gaussian membership functions (MF) are claimed to give
better results compared to other MFs such as triangular,
trapezoidal, and Cauchy functions (Lot�, et. al., 1996) and
hence we use Gaussian MFs.

There are 16 adaptive nodes in this layer. Each input
node is connected to two nodes in this layer as shown in the
�gure 3. The node function is Gaussian and is given by

f1;i(x) = e�(
x�c

a
)
2

where a and c are parameters of the node which constitute
the premise parameter set.

The linguistic meanings that can be attached to these
membership functions are negative and positive.

Layer 2:

There are 128 �xed nodes in this layer which multiply
the incoming signals and send the product out. Each node
output represents the �ring strength of corresponding rule
and we can write.

f2;i(X) =

nY

j=1

Xi

whereX is set of all outputs of nodes in previous layer which
are connected to the ith node of this layer.

It should be noted that for the �rst 64 nodes, the con-
nectivity is restricted to �rst 6 inputs and next 64 nodes to
the last 6 inputs. This is because of presence of two parts in
the function (12) namely f() and g(), f() being function of
sin(�), cos(�) and �pd which constitute the inputs 1-6 and

g() being function of sin(�), cos(�) and _� which constitute
input 2-8.

Layer 3:

There are 128 �xed nodes in this layer to compute the
ratio of i-th rule's �ring strength to sum of �ring strengths
of all rules, i.e., they compute the normalized �ring strength
of corresponding rule. The computation is of the form
5

f3;i =
f2;iP128

j=1 f2;j

Layer 4:

We have 256 nodes in this layer. Each node in layer 3
is connected to two adaptive nodes of this layer. The node
function is the consequent part of �rst order Sugeno model
of fuzzy inference system multiplied by �ring strength of
corresponding rule, i.e., the nodes compute the outcome
of the rule and multiply them by the normalized �ring
strength.
If i � 128, we have

f4;i = wn(

6X

j=1

ai;jxj + ai;7)

for i > 128 we have

f4;i = wn(

8X

j=3

ai;j�2xj + ai;7)

where, wn is output of node of previous layer connected
to the node under consideration, xi is i-th input and ai;j
is j-th parameter of i-th node. The odd numbered nodes
compute the contribution of corresponding rule to �1 while
even numbered nodes compute contribution to �2.
Layer 5:

This layer has 2 �xed nodes which add all the inputs.
These nodes sum contribution of each rule to corresponding
outputs namely �1 and �2 to get the �nal values.

f5;1 =

128X

i=1

f4;2i�1

f5;2 =

128X

i=1

f4;2i

The output of �fth layer is the output of the network.

Learning of the ANFIS corrector

The ANFIS corrector described in previous sections
should be trained to approximate the function (12). A
Copyright c
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Figure 3. Architecture of ANFIS
training data set and a learning algorithm is required for
the purpose. The process of training data set generation
and the learning algorithm is discussed next.

A. Training Data: For learning, we need to generate a
training data which consists of desired input-output values
of the network. For online learning, this can be achieved by
observing error in states E, for present feedback and desired
states. The inputs are sin(�), cos(�), _� and �pd which can
be computed directly from feedback and desired values of
the states. The output �� can be computed from E using
online computed Jacobian, J , as discussed in section 2. For
o�-line learning, a set of training data is required, i.e., we
6

need to have a set of desired input-output values of network.

For the purpose of simulation, we compute �� directly,
by computing di�erence between two control laws (9) and
(10) as given by equation (11). The �gure 4 illustrates the
training data set generation procedure adopted in this work.
The blocks controller1 and controller2 are implementation
of control laws (9) and (10) respectively. As both controller
blocks receive same inputs, the di�erence in their outputs is
nothing but �� , the desired output of ANFIS corrector. By
simulating 4 for di�erent trajectories and storing the values
of desired and actual states and �� , we get the training
data set. The trajectories should be such that input space
Copyright c
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is spanned uniformly. We have used sinusoidal trajectories
for the purpose.

B. Learning Algorithm: Once the training data is avail-
able, we can train the network using a learning algorithm.
The nodes in layer 5 being linear, hybrid learning method
(jang. et. al., 1995) can be used. LSE can be used to tune
the parameters of nodes in layer 5 and GD can be used to
tune parameters in layer 2. The use of LSE in this case in-
volves multiplications of large matrices of the size 896�896.
This is computationally very expensive and hence we have
used only the gradient descent based backpropagation algo-
rithm for learning.

Extension to higher degree-of-freedom robots

With the increase in the number of degrees-of-freedom
in a robot, the number of rules will clearly increase and with
it the computational complexity. As discussed earlier, the
number of rules are 2n6 for an n degree-of-freedom robot {
the number of rules for a six degree-of-freedom robot will be
93312. It may be noted that each rule is independent and
can be computed in parallel. In this algorithm, the number
of layers is always 5 and is independent of n. Hence there
is no increase in complexity due to the increase in degrees-
of-freedom as far as the number of layers is concerned. In
a parallel implementation, the computational time is inde-
pendent of n. Although, the results shown in this paper
were obtained by a software implementation, for actual ap-
plications in control of multi-degree-of-freedom robots, the
ANFIS corrector should be implemented in hardware using
VLSI technology.

SIMULATION RESULTS

We present some of the results of simulation experi-
ments in this section. We �rst show some representative
7
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Figure 5. The history of error measure during learning process

results on learning of ANFIS and then give results for the
2R robot.

Learning of ANFIS

As discussed earlier, we use backpropagation learning
algorithm to estimate both premise and consequent param-
eters. To ensure convergence of the algorithm, we chose the
step size of gradient descent adaptively. We use following
heuristic approach (Jang, 1993)

� if the error measure increases, decrease the step size by
20%

� if the error measure is decreasing continuously over 3
epochs, then increase the step size by 10%.

Figures 5 and 6 show the error measure history and

�gure 7 shows how the step size varies adaptively during a
learning process.

It was observed that the learning algorithm can con-
verge to di�erent solutions with di�erent initial conditions,
and/or di�erent ways in which the step size is chosen. This
can be attributed to the nature of the problem in hand, the
minimization of a nonlinear function with its associated lo-
cal minima. When we used a very small step size, not only
the algorithm converged slowly, but also it got trapped in
a local minimum. If we used a large step size, the solution
would diverge. Thus adaptive selection of the step size was
used.

Control of the 2R Robot

The parameters of the 2R robot (8) chosen are give in
table 1
Copyright c
 1999 by ASME



0 5 10 15 20 25 30 35 40
10

20

30

40

50

60

70

80

90

100

No of Epoch

E
rr

or
 M

ea
su

re
 (%

)

Learning of ANFIS

Figure 6. The history of error, after restarting the learning process where the

error was minimum in previous case with di�erent step size

0 10 20 30 40 50 60 70 80 90
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Number of epoch

St
ep

 s
iz

e

Learning of ANFIS
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The simulations were carried out for the following tra-
jectories:

� Step Input:

{ �d1 = �d2 = 0:5rad

� Sinusoidal:

{ Joint 1. �d2(t) = sin(0:1t+ �=2)
{ Joint 2 �d2(t) = sin(0:1t� �=2)

� Cartesian Trajectory:

{ t = 0s: x = 1:45m; y = 0m;
{ t = 5s: x = 1:45m; y = 0:5m;
{ t = 10s: x = 1:45m; y = 0m; The intermediate
points were generated using a cubic.
8

We also performed the simulations for two models.

� Case 1: When the reference plant is a bad estimation
of the actual plant.
The parameters of the reference plant (8) are listed in
table 2
It may be noted that, we have chosen purposefully bad
estimates of the plant to demonstrate that the control
scheme performs acceptably even for fairly "bad" es-
timates of the plant. For "very good" estimate, there
may not be signi�cant improvement over the conven-
tional model based control scheme.

� Case 2: Linear Reference Plant. The reference plant
model was chosen as linear with decoupled equations.

�i = Ji��i + ci _�i i = 1; 2 (13)

The numerical values chosen for the simulations are
J1 = J2 = 10 and c1 = c2 = 1.

It may be noted that Case 1 is a bad estimation but the
structure of the reference plant is same as that of the plant.
However, in Case 2, the structure is also di�erent. In fact,
for Case 2, the model based controller is similar to a PD
controller with an additional damping indicated by c1 and
c2, and ��di, is scaled by a factor of Ji (see equation 10).

Some of the results of simulation experiments have been
shown in �gures 8 -13.

Table 1. Physical parameters of the 2R robot for simulation of Model Ref-

erence Learning Control using ANFIS

Link Length Mass C.G. Inertia

(m) (kg) (m) (kgm2)

1 0.7 75.15 0.26 36.30

2 0.9 46.15 0.66 31.14

Table 2. Physical parameters of the reference plant

Link Length Mass C.G. Inertia

(m) (kg) (m) (kgm2)

1 0.7 2.15 0.27 1.30

2 0.9 0.25 0.56 31.64
Copyright c
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Figure 8. The response of �rst joint to step input when the reference model

is nonlinear (case 1).
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Figure 9. The response of second joint to step input when the reference

model is nonlinear (case 1).

CONCLUSION

In this paper, we have presented a model reference
learning control using ANFIS. The control scheme has been
implemented for a 2R rigid robot with the model contain-
ing uncertainty in structure and parameters. Two cases of
reference plants were considered. First, the model is a bad
estimation of the plant but with same structure as the ac-
tual robot, and second, the reference plant is assumed to
be linear with decoupled equations. Simulations were car-
ried on for various trajectories such as step, sinusoidal and
a cubic Cartesian trajectory. It was found that the con-
troller could track the desired trajectories well even when
the reference model is linear.
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Figure 11. The response of second joint to step input when the reference

model is linear (case 2).
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Figure 12. The response of second joint to sinusoidal input when the refer-

ence model is linear (case 2).
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