
~ Pergamon Mech. Mach. Theory Vol. 32, No. 3, pp. 375-389, 1997 
© 1997 Elsevier Science Ltd 

Printed in Great Britain. All rights reserved 
PII :  S0094-114X(96)00033-X 0094-114x/97 $17.00 + 0.00 

S I N G U L A R I T Y  A N A L Y S I S  O F  P L A T F O R M - T Y P E  

M U L T I - L O O P  S P A T I A L  M E C H A N I S M S  

DHEEMAN BASU and ASHITAVA GHOSAL 
Department of Mechanical Engineering, Indian Institute of Science, Bangalore-560 012, India 

(Received 6 February 1995; in revised form 1 April 1996) 

A~trae t - - In  parallel manipulators and multi-loop mechanisms, singularity is associated with either loss 
or gain of a degree of freedom. This paper deals with the singularity analysis associated with gain of degree 
of freedom in a class of spatial mechanisms. We present a geometric condition for platform-type, 
multi-loop, mechanisms and parallel manipulators, containing spherical joints on the platform, whose 
existence ensures singularity in such mechanisms. The geometric condition is based on the concept of a 
common tangent. We show that this condition also implies that the determinant of certain matrices, 
formed by the differentiation of the loop-closure equations, are zero. We illustrate our results with the 
help of several multi-loop mechanisms. In particular, we describe the singularity surface for the 
three-degree-of- freedom RPSSPR-SPR 'wrist' mechanism. © 1997 Elsevier Science Ltd. All rights 
reserved. 

1. I N T R O D U C T I O N  

The singularities and workspace of serial manipulators have been studied extensively by several 
researchers and are very well understood. The singularities in serial manipulators are characterised 
by the loss of one or more degrees of freedom. At singular configurations, there exists a geometric 
condition that all joint axes intersect a line (called the 'extreme distance line' [1]) and the 
determinant of the manipulator Jacobian becomes zero. Singularities have been explained, in the 
most general form, by the use of screw theory [2, 3]. In the case of parallel manipulators and 
multi-loop mechanisms, singularity analysis is much more difficult due to increased complexity 
--multi-loop mechanisms can contain multi-degree-of-freedom joints (such as cylindric (C) or 
spherical (S)) and some of the joints may not be actuated. It has been shown that singularity, in 
multi-loop mechanisms, is associated with either a loss or a gain of a degree of freedom [4]. It is, 
however, very difficult to develop algebraic or geometric conditions for singularities in parallel 
manipulators and multi-loop mechanisms. In this paper, we present a geometric condition for a 
class of multi-loop, platform-type, mechanisms containing one or more loops with an S - - S  linkt. 
This paper is organised as follows: In the rest of this section, we present a survey of the relevant 
literature. In Section 2, we present the concept of a loop-closure equation, define the concept of 
singularity and the associated concept of mobility in spatial mechanisms. In Section 3, we present 
our geometric condition and show that it is equivalent to the algebraic conditions of Section 2. 
In Section 4, we illustrate our results with a three-degree-of-freedom RPSSPR-SPR 'wrist' 
mechanism. Finally, in Section 5, we present our conclusions. 

1.1. Literature survey 

The mobility charts for single-loop, single-degree-of-freedom mechanisms were first developed 
by Radcliffe and Gupta [5]. Angeles and Callejas [6] and, later, Angeles and Bernier [7] and 
Williams and Reinholtz [8] considered the problem of four-bar linkages and used the concept of 
linkage discriminant. Rastegar [9, 10] has developed Grashof-type movability criteria for a number 
of single-loop, single-degree-of-freedom mechanisms by considering the mechanism to be a 
coupling of two serial chains. Ting [11] approached the problem geometrically and provided a 
simple movability criterion for a general N-bar linkage. 

t i n  this paper, we will use the phrase "S--S link' to denote the part of the lo0p (or the mechanism) containing two adjacent 
spherical joints. 
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Fig. 1. The RSSR mechanism. 
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Litvin et al. [12] introduced a scheme of differentiating the product of all the consecutive 
transformation matrices in a loop, thereby obtaining six simultaneous equations defining a 
singularity configuration. The loop was restricted to consist of prismatic, revolute and cylindrical 
joints. Later, FangheUa [13] systematized a structure-based approach for the kinematic analysis of 
spatial linkages based on the algebra of groups. Gosselin and Angeles [4] assumed the number of 
outputs to be equal to the number of inputs and introduced the concept of two Jacobian matrices 
for parallel manipulators. The singularity of each matrix corresponds to loss or gain of degree of 
freedom and singularity of both occurs only when the mechanism is architecturally singular. 
Merlet [14] has obtained singular configurations of parallel manipulators using Grassman 
geometry. Recently, Hunt et al. [15] established the general kinematic principles of fully in-parallel 
and fully in-series devices. Through screw theory, they have shown that a workpiece grasped by 
a fully in-series manipulator can only lose freedom while a workpiece grasped by a fully in-parallel 
manipulator can only gain freedom. A hybrid manipulator may both lose and gain freedom. 

2. LOOP-CLOSURE EQUATION AND SINGULARITY 

The degree of freedom of any spatial mechanism is given by the well-known Grfibler formula 

J 
f =  6(n - j -  1) + ~ f, (1) 

i=1 

where n is the number of links, j is the number of joints and f, is the degree of freedom of the ith 
joint. The number of actuated joints is equal to f and is smaller than the total number of joints 
j in the mechanism. In order to obtain the values of the ( j - f )  passive joints, one has to use the 
loop-closure constraint equations. To arrive at the 'simplest' form of the loop-closure equation one 
has to use the geometry of the mechanism and the nature of the joint. We illustrate the method 
of obtaining the 'simplest' form of the loop-closure equation with the help of a familiar RSSR 
mechanism. 

In an RSSR mechanism, as in Fig. 1, f is 2. If we neglect the rotational degree of freedom of 
the S - - S  link about itself, then the mechanism has one degree of freedom. We assign coordinate 
systems {Ol}, {02} as shown in Fig. 1 and denote the coordinates of the centres of the two spherical 
joints by tSl and 2S2, respectivelyi'. The position vectors tSt and 2S2 can be written by inspection as 

tSl=[l lcos01 llsin01 0 1] T 

2S2 = [/2 cos 02 /2 sin 02 0 l] r. (2) 

The position vector of the centre of the spherical joint, S~, can be written in the coordinate system 
{05} as 

~s, = [RI'S, (3) 

where JR] is a known 4 x 4 transformation matrix relating coordinate systems {Or} and {02}. 

i'Tbe leading superscript denotes the coordinate system in which the position vector is described and the following subscript 
denotes the number of the spherical joint. 
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In order to obtain the expression for 05 in terms of the actuated joint 01, we make use of the 
geometrical fact that the length of the S - - S  link remains constant. The loop closure equation can 
be written as 

( l S l  - -  IS2 ) "  ( I S l  - -  152) = ~3- ( 4 )  

After some simplification, the loop-closure equation can be written as 

(12 cos 02 - 14)(rHl, COS 01 + r,21, sin 01)+12 sin 02(r21ll cos 0, + r22l~ sin 00 

+ 1,12 c o s  02 - ( 1 / 2 ) ( g  + + F, - = f ( 0 l ,  0:)  = 0 (5)  

where /,, i = 1, 2, 3, 4, are the four link lengths and r 0 are the entries of [R]. 
In case of multi-loop mechanisms containing S - - S  links, the number of independent loop-closure 

equations will be equal to the number of independent loops. 

2.1. Number of  independent loops 

In this paper, the term independence of loop-closure equation is not used in the usual topological 
sense. Two loops will be considered independent if they give rise to two independent loop-closure 
equations. In multi-loop, platform-type mechanisms, the number of independent loops solely 
depends on the platform. It turns out that the number of independent loops is equal to the number 
of parameters required to define the geometric shape of the platform. A triangle is defined by three 
parameters, namely, the lengths of the three sides. Hence, the number of independent loop-closure 
equations for a mechanism with a triangular platform is three. For a quadrilateral platform, we 
have six independent loop-closure equations. For a hexagonal platform, such as a 6-6 Stewart 
platform, the number of loop-closure equations is 12. 

It can also be seen that, for any spatial mechanism with m equivalent single-degree-of-fredom 
joints~', not counting the spherical joints, the number of loop-closure equations, l, is equal to 
(m - f ) .  

2.2. Singular configurations and mobility of  a mechanism 

The loop-closure equation (5) can be used to solve for 02 for given values of 01. Depending on 
the link lengths and the r,js, we can obtain real or imaginary values of 02 for a given 0j. If 02 is 
imaginary, then the mechanism cannot be assembled in that configuration. Likewise, for a given 
02, 01 can also be real or imaginary. The range of real values of 01 and 02 determines the mobility 
of the mechanism. The extreme values of these ranges are the singular configurations of the 
mechanism. 

The extreme singular configurations can also be obtained by differentiating the loop-closure 
relations. For the RSSR mechanism, we have 

&f &f 612 = 0 (6) 

where 6Ii denotes the time derivative of 0~. 
At a singular configuration, 61~ (or 02) is zero. For a non-trivial solution of the above equation 

(i.e. 612 (or 610 not equal to zero), the partial derivatives of f with respect to 05 (or 01) must be zero. 
Simultaneous solution of the loop-closure equation and the vanishing of the partial derivative of 
f gives the values of 01 and 02 where the mechanism is at a singular configuration. If  we consider 
01 to be the input, then for 61l equal to zero and 612 # 0, the mechanism is said to have gained a 
degree of freedom. On the other hand, if 05 is considered as the output, then for 612 equal to zero 
and 611 nonzero, the mechanism is said to have lost a degree of freedom. In this paper, we are 
interested only in the gain of one or more degrees of freedom. 

In the case of the RSSR mechanism, the singular configurations and the mobility can be 
determined algebraically. However, for multi-loop and multi-degree-of-freedom mechanisms, 

tA two-degree-of-freedom cylindrical (C) joint is equivalent to two one-degree-of-freedom joints. 
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algebraic expressions are often not possible to obtain and singular configurations need not be points 
(as in the case of  RSSR mechanism) but can be curves, surfaces or higher-dimensional manifolds. 

2.3. Multi-loop spatial mechanisms 

Let us consider a general platform-type mechanism (containing S - - S  links on the platform) with 
m equivalent single-degree-of-freedom joints, not including the spherical joints and havingfdegrees 
of freedom. The l loop-closure equations can be written as 

f(01, 02 . . . . .  Om) = O, i = 1, 2 , . . . ,  l (7) 

where 01, 02 . . . . .  0, are the m joint variables. 
Differentiating the above loop-closure equations we can obtain l relations similar to equation 

(6). Without loss of generality we assume that first f of the m joints are actuated and the rest are 
passive. Hence, we can write the l velocity relations in a matrix form as 

o r  

aA 
00, 002 

OA 0f2 
001 002 

• . , . . 

@ aj'~ 
001 002 

Of, 0, 
ao¢ 

oA 02 
0o¢ 

@ 0j 

+ 

aOf + l 00f+2 OOm 

oA oA oA 
06+, 0oi + ~ aOm 

: : " . .  : 

of of of~ 
06+ 1 06+2 0o.. 

Of+ 

On 

0 

0 
= (8) 

0 

[~[01 + [s*][~;] = 0 (9) 

where [0] is the vector of actuated joint variables or inputs [01,02 . . . .  ,0/] r, and 
[4] = [0/+ 1, 0/+2 . . . . .  0m] T is the vector of passive joint variables• It may be noted that [J*] is 
always square, of dimension l x l. 

For the mechanism to gain a degree of freedom, we must have [0] = 0 and [~] # 0, which implies 
that 

det[J*] = 0. (10) 

The above equation, when solved with the loop-closure equations, will give the singularity 
configurations of the mechanism. 

In the case of the RSSR linkage, l = 1 and [J*] is 1 × 1. Assuming 01 to be the input, we can 
write the singularity condition as af/O02 = 0. For the assumed coordinate system, 0f/002 = 0 
expands to 

sin 02(rul3 cos 01 + rlzl3 sin 01 +/4) - cos Oz(rnl2 cos 01 + r2212 sin 0,) = 0. (1 l) 

Solving equations (5) and (11), we can determine the points of singularity for an RSSR linkage. 
In the case of one-degree-of-freedom mechanisms, the singularities are one-dimensional 

or points. In the case of f-degree-of-freedom mechanisms the singularities lie on an 
( f -1 ) -d imens iona l  manifold• In degenerate cases, the singularities can also lie on lower- 
dimensional manifolds• 

In the next section, we present a geometric condition and show that it is equivalent to the 
algebraic condition given in equation (10). 

3. A G E O M E T R I C  A P P R O A C H  

Geometrically, a mechanism at a singularity configuration is always characterised by the 
existence of a common tangent at some joint• By this we mean that if the mechanism is cut at that 
joint and the two parts are allowed to move freely, keeping all the actuated joints of the mechanism 
locked, the loci of the two tips of the links will have a common tangent• This principle can be easily 
visualised with the help of a four-bar linkage. Figure 2(a) shows the linkage in a general 
non-singular configuration while Fig. 2(b) shows it in a singular configuration, If  we cut the 
mechanism at joint j and allow rotation at the passive joints i and k only, keeping the input joint 
I locked, j, and j2 (tips of links 1 and 2, respectively) describe circular arcs shown in Fig. 2. In 
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Fig. 2. Concept of a common tangent. 

case 2(a), the tangents 7t and 72 are in different directions. In case 2(b), they are along a common 
direction 7. 

The complexity of the above analysis increases with the number of degrees of freedom allowed 
at kinematic pairs and also with the number of loops. First, we develop the singularity criterion 
for the RSSR single-loop mechanism, and then extend the criterion to multi-loop mechanisms such 
as the RSSR-SC and RSSRR-SRR mechanisms. 

Consider the RSSR mechanism shown in Fig. 2(c). We assume that the revolute joint R, is the 
actuated joint. I f  R~ is locked, the centre of  $1 is fixed and singularity is possible only due to joint 
$2. Breaking the joint $2 and allowing the links to move freely with the actuated joint R~ locked, 
we find that 

(1) The locus of S~l, the tip of link 2, is a circle in a plane perpendicular to the joint axis 22 
and perpendicular to the line O2Sz.? 

(2) The locus of $23, the tip of link 3, is a spherical surface with centre at joint S~ and with radius 
equal to 13. 

At a singular configuration, the common tangent 7 must be perpendicular to lines 02S2, S,$2 and 
to the axis 22. Since the lines O2S2 and SIS2 intersect, we conclude that at a singular configuration, 
the lines 02S2, S~$2 and the joint axis 22 lie on the same plane. Let us denote the angle from the 

?The point Oj is the origin of the coordinate system {Oi} and OiS, is the line joining the point O~ and the centre of the 
spherical joint S~. Likewise the line SjSj is the line connecting the centres of the spherical joints S, and S:. 
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line O2& to the line $1S2 by at as shown in Fig. 2(c). The position vectors of the spherical joint 
Sl in coordinate system {02} can be written as 

251 -~- [(/2 - -  /3 COS (~)COS 02 (/2 - -  13 COS ~)sin 02 -13 sin ~ 1] v. (12) 

Using equations (3) and (12), we obtain 

(/2 - / 3  cos ~)cos 0z = rllll cos 01 + rid1 sin 01 + /4 (13) 

(/2 -- 13 cos ~)sin 02 = r211l cos 01 + rz2ll sin 01 (14) 

--13 sin ct = r31ll COS 01 + r32ll sin 01 . (15) 

Eliminating (12 - 13 cos ~) from equations (13) and (14), we obtain the singularity condition of 
equation (11). In addition, after some algebra, we can obtain the loop-closure equation (5). This 
proves that the above equation set is equivalent to equations (5) and (11), which were obtained 
by an algebraic approach and the geometric condition is equivalent to Of/d02 = 0. We can thus 
conclude that: in a loop containing an S - - S  link, if the line joining the centres of the spherical 
joints intersects any passive R joint axis, the loop becomes singular. Also, the partial derivative 
of the loop-closure function with respect to that particular R joint variable becomes zero. 

In the case of multi-loop mechanisms, singularity in one loop causes singularity of the 
mechanism, though the converse is not necessarily true. This fact is illustrated in the next example. 

3.1. Multi-loop mechanism 

For the singularity analysis of multi-loop mechanisms, we consider two examples: (1) the 
one-degree-of-freedom RSSR-SC mechanism shown in Fig. 3 and (2) the two-degree-of-freedom 
RSSRR-SRR mechanism shown in Fig. 4. 

3.1.1. The R S S R - S C  mechanism. Figure 3 shows the RSSR-SC mechanism with three 
coordinate systems, {O1}, {02} and {03}. Assuming that 01 is the actuated joint, when 0, is locked, 
the first link is fixed and singularity due to the spherical joint $1 is impossible. 

Next, we consider the possibility of singular configurations due to the spherical joint $2. We cut 
the mechanism at $2 and denote the point $2 of the platform as S2p and that of the link 2 as $2~. 

In the loop RtStS3CR1, we have three joint variables which must satisfy the corresponding 
loop-closure equation. Hence, the degree of freedom of the loop is two. Out of these two freedoms, 
one is actuated and the other can be chosen arbitrarily. Hence, we get a planar pencil of tangents 
at S2p. Since the centre of $1 is fixed in space, the planar pencil must be perpendicular to the line 
$1 $2. In addition, the locus of $2~ is a circle and, therefore, the direction of the tangent to the locus 
is unique. At a singular configuration, a common tangent exists which must be perpendicular to 
the line O2S2, the axis of the rotary joint R2 and the line S1S2. This is similar to the singularity 
in the one loop case discussed earlier. 

\ d 
C s 

Fig. 3. The  R S S R - S C  mechanism.  
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Fig. 4. The RSSRR-SRR mechanism. 

Next we consider the possibility of singularity due to the spherical joint $3. We cut the mechanism 
at joint $3 and denote the point $3 of the platform as S3p and that of link 3 as $3/. In the loop 
RjSzS2R2R1, we have two joint variables which satisfy one loop-closure equation and one joint is 
actuated. Hence, the motion of the S j - -S2  link is, in general, constrained and, for a locked input, 
the link S j - -S2  is fixed in space. This implies a unique circular locus of S3p and the tangent to this 
locus is perpendicular to the platform. The locus of $3~ is a cylindrical surface and, hence, we have 
a planar pencil of tangents at $3/. This pencil is perpendicular to the line O3S3 in link 3. 

For the existence of common tangent, the line O3S3 must be coplanar with the platform. To arrive 
at an algebraic expression for this type of singularity, we define three vectors ~l, ~2 and ~3 along 
the lines O3S3, S~$3 and $2S3, respectively. The three vectors are given by 

[Slll3 COS 03 q- SI213 sin 03] 
~, = Is2,13 cos 03 + s22Z3 sin 03[ (16) 

[s3d3 cos 03 + s3d3 sin 01J 

L [snl3c°sO3+s'J3sinO3q-Sl3d3--llc°sO0:] 
~2 = IS2~13 cos 03 + s2d3 sin 03 + s23d3 - l~ sin (17) 

s~d3 cos 03 + s3213 sin 03 + s33d3 

rS, ll3 cos 03 + Sld3 sin 03 + s,zd3 - r,ll2 cos 02 -- rid2 sin 02 + /23.,-] 
~3 = I 1s2113 cos 03 + s2213 sin 03 + $23d3 r2112 cos 02 - r2212 sin 02 + 123y l / (18) 

[s3113 cos 03 + s3213 sin 03 + s33d3 r3d2 cos 02 - r3212 sin 02 + 123_-J 

where Ii, i = 1, 2, 3 are the link lengths and/23x,/23y, 123:, ro, so are the elements of the transformation 
matrices relating coordinate systems {02} and {03} to coordinate system {O1}. 

At a singular configuration, the triple product of these three vectors is zero, i.e. 

v~ "(v2 × v3) = 0. (19) 

We can also explain the above geometrical results as follows. 

Along the lines of equation (4), we can obtain the following three loop-closure equations: 

(ISl - IS2)" (lSl - 1S2) = k122 

(lS 2 -- IS3)" (IS 2 -- IS3) = k23 (20) 

(IS3 -- IS, ) • (IS 3 -- ISl ) ~- k~l 
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where ~Sj is the position vector of the centre of  the j th  spherical joint in the ith coordinate system 
and the k~s are the lengths of  the three sides of the platform. Differentiating the above equations, 
we obtain 

it, me,2 o io 0 C22 C23 C24 02 = 0 
C31 0 C33 C34J 03 0 

da 0 

(21) 

where Co is the partial derivative of ith function with respect to the j th  joint variable. With 01 as 
the input, at singularity, det[J*] = 0, and we can write 

FC12 0 0 J 
det[Cz2 C33 C23 C34 C24 =0" 

The above equation can be written in the form 

(22) 

det[A], det[B] = 0 

where det[A] = Cn and det[B] = C23C34 - C24C33. Therefore, at a singularity configuration, either 
det[A] = 0 or det[B] = 0. On simplification; det[A] = 0 is found to be equivalent to singularity in 
the RtS, S2R2Rt loop and det[B] = 0 is equivalent to equation (19). It may be mentioned that 
det[B] = 0 or the geometric condition equation (19) does not correspond to any single loop 
becoming singular. 

3.1.2. The RSSRR-SRR mechanism. To develop the geometric concept further, we next 
consider a two-degree-of-freedom R S S R R - S R R  mechanism. Figure 4 shows the R S S R R - S R R  
mechanism with coordinate systems, {O1}, {02} and {04} attached to the three revolute joints at 
the base and coordinate systems {O3}, {05} attached to the revolute joints R3 and Rs. For simplicity, 
we assume the axes of  R2 and R3 are parallel. Similarly, the axes of  R4 and R5 are assumed parallel. 
The R S S R R - S R R  mechanism has two degrees of freedom, and we assume 01 and 02 to be the 
actuated joints. If  the inputs are locked, the joint S~ is fixed in space and cannot cause any 
singularity. 

We next consider the possibility of  singularity due to the spherical joint $2. We cut the mechanism 
at joint $2 and denote point $2 of  the platform as $2~ and that on link 2 as S2g. In the loop 
R,S~S3Rs1GRt, the number of  degrees of  freedom is two but only one joint is actuated. We can 
choose arbitrarily the rate of the R!Ljoint and thus S2p can move in a plane. Since St is fixed, this 
plane is perpendicular to the line S1S3. The locus of  S2t is a circle in a plane perpendicular to the 
joint axis of  R3 and, hence, has a unique tangent. 

At a singular configuration, a common tangent exists which must be perpendicular to the line 
S, O3, the axis of  the rotary joint R3 and also the line SiSa. This is again the case of  singularity 
in the first loop and, hence, is equivalent to the vanishing of the partial derivative of  the first 
loop-closure function, with respect to 0a. Since the loop has two degrees of freedom, we expect 
the singularities to occur along a curve. 

Finally, we consider the possibility of  singularity due to the spherical joint $3. We cut the 
mechanism at joint Sa and denote the point $3 of  the platform and of the link as Sap and Sat, 
respectively. In the loop R,StS2RaR2RI, we have two degrees of freedom and two actuated joints. 
Therefore, the motion of the link SrS:, in general, is constrained. The locus of  S3p is a circle with 
unique direction of  the tangent. The direction of  the tangent is necessarily perpendicular to the 
plane of the platform. The locus of  S3t is in a plane perpendicular to the axis of  the joint R5 because 
we have two passive joints in this leg. However, the tangent will lie in this plane and is, therefore, 
perpendicular to the axes of  the joints R4 and Rs. 

If a common tangent exists, it has to be perpendicular to the plane of  the platform as well as 
to the axis of  the joint Rs. Thus, in the possible singular configuration, link 5 is aligned with the 
platform. This introduces two independent conditions, namely, the lines StSa and SESa intersect the 
axis of  Rs. Equivalently, we can say that the partial derivatives of  both second and third 
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loop-closure functions with respect to 04 are zero. Hence, in this case we do not obtain any 
singularity curve and the singularity curve degenerates into a finite set of points. 

We can also explain the above geometrical results as follows. 
Along the lines of equation (4) we obtain three loop-closure equations similar to equation (20). 

Differentiating the loop-closure equations we obtain 

Cu Cl2 Cu 0 0 

0 C22 C~3 C~4 C25 

G~ 0 G3 C34 G~ 

02 
0~ 

O] 
0 

0 • 

0 

0 

(23) 

where C,j is the partial derivative of ith function with respect to j th  joint variable. With 0~ and 02 
as inputs, at the singularity, det[J*] = 0, i.e. 

[-Cu 

det[C23 c34C24 

The above equation can be written in the form 

oo] 
C~5 = O. 
C35 

det[A], det[B] = 0 

(24) 

where det[A] = C~3 and det[B] = C24C35 - C25C34. We can see that det[A] = 0 gives the condition 
of  singularity due to the spherical joint $2. The expression, det[B] = 0, should give another 
singularity curve, but by means of geometric reasoning it can be shown that det[B] = 0 does not 
correspond to any singularity curve. The expression, det[B] = 0, degenerates to a finite set of points 
where C24 = C34 = 0. This fact was verified numerically. 

3.2. Summary 

The concept of a common tangent is a useful tool to visualise the singular configurations of 
platform-type spatial mechanisms containing S - - S  links. The results obtained from the use of this 
concept are in complete agreement with the algebraic results obtained from differentiating 
loop-closure equations. The main results are: 

(1) In a loop containing an S - - S  link, if the line joining the centres of the adjacent S joints 
intersects any passive R joint, the mechanism is in a singular configuration. 

(2) In the above situation, the partial derivative of the loop-closure function with respect to the 
rotation at the R joint is zero. 

(3) In multi-loop mechanisms, in addition to the singular configurations, resulting from 
condition (1), there are other singularities where condition (1) may not be true. In such situations 
other geometrical conditions are needed. 

4. S I N G U L A R I T Y  OF R P S S P R - S P R  M E C H A N I S M  

In Ref. [16], the three-loop, three-degree-of-freedom RPSSPR-SPR mechanism of Fig. 5 has 
been proposed as a parallel 'wrist'. The authors have given the inverse and direct kinematics of 
this mechanism, however, they have not described its singularities. It is important to know the 
singularities of this mechanism before it can be used. In this section, we obtain the singularities 
of this mechanism by making use of the approach described in Sections 2 and 3. 

4.1. Algebraic and geometric approach 

We choose the geometry and the coordinate systems used in Ref. [16]. The chosen geometry 
causes loss of generality to some extent but makes the expressions much simpler. The revolute joint 
axes are assumed to be coplanar and are perpendicular to the medians passing through the 
respective vertices of the equilateral base-triangle. In this mechanism all the spherical joints are 
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Fig. 5. The RPSSPR-SPR mechanism. 

equivalent, since the mechanism is symmetric. Therefore, it is enough to consider the possibility 
of singularity due to any particular spherical joint. We arbitrarily choose spherical joint St. 

We denote the point St on the platform and that on the first leg as S]~ and S~ respectively. In 
the R2P2S2S3P3R3 loop, we have four degrees of freedom and only one loop-closure equation. Hence 
the loop has three degrees of freedom out of which two are actuated and one can be chosen 
arbitrarily. Therefore, the tangents at S~p can lie in a solid region. Again, in the first leg we have 
two degrees of freedom and one of them, the prismatic one, is controlled. Hence we find that the 
locus of St~ is a circle. The tangent in this case has a unique direction. The common tangent, if 
it exists, will lie on the vertical plane as well as on the planar pencil. By simple inspection, we can 
express the coordinates of the centres of the spherical joints as 

t S  1 = [(1 - Lt cos 0t) 0 Lt sin 01 1] T 

E IT tS2= -½(1-- L2 cos 02) x / /3 (1 -L2cos02)  L2sin0~ 1 -T- 

E IT tS3 = -½(1 - L3 cos 03) x//3 (1 - L3 COS 03) L3 sin 03 1 (25) 

Since the lengths between the S joints are constant, we can write the three loop-closure equations 
as in equation (20). Differentiating the three loop-closure equations we obtain 

All A12 0 D ,  D12 0 

0 B22 B23 0 E22 E23 

C31 0 C33 F31 0 F33 

Ll 

L2 

L3 

O, 
02 
03 

ol 
0 

0 

0 

0 

0 

(26) 
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Fig. 6. Singularity corresponding to case 2 for S~. 

Let us consider variables Li, associated with the prismatic joints, to be the inputs. The condition 
for the existence of  singularities is 

FDll DIs 0 1 
det[J*] = d e t |  0 E22 ~ = 0 

o r  

DIIE22F33 -q- D12E23F31 "~- O. (27) 

The above equation, together with the three loop-closure equations in six joint variables, defines 
the singularity surface. It is difficult to obtain explicitly an expression for this surface, since the 
singularity surface seems to be of  a very high order. A number of  particular cases can be, however, 
solved in closed form, which are the boundary curve or curves of symmetry of the singularity 
surface. We discuss these cases using the geometric and algebraic approaches described in this 
paper. 

4.1.1. Case 1. Singularity may occur when one row of the Jacobian matrix, [J*], is zero. For  
example, let us consider Dll = DI2 ----- 0. This means the line $2S2 intersects the axes of  the revolute 
joints Rt and Rz. This can happen only when the line StS2 is on the plane of the base and, hence, 
both 0, and 02 are zero. Therefore, this case is not of  much kinematic significance. 

4. L2 .  Case 2. Singularity may occur when any one column of the [J*] matrix is zero. For each 
column of  the [J*] equated to zero, we obtain two equations (for example, the first column equated 
to zero yields Dll = Fs, = 0). These equations, together with the three loop-closure equations, 
describe a curve. We can define a curve as the locus of  the centroid of  the platform. The curve 
corresponding to Ott ----- Fst = 0, with the length of  the sides of  the platform denoted by k, is given 
by 

-- 16k2x2z 2 + 64k2xSz 2 + 16x4z 2 - 96k2x4z 2 - 64xSz 2 + 64k2xSz 2 + 96x6z 2 - 16k2x6z 2 

_ 64xTz 2 + 16xSz 2 - 24k2xZz 4 + 48kZx~z" + 32x4z 4 - 24kZx4z 4 _ 64xSz 4 

+ 32x6z 4 + k4z 6 - 8k2x2z6 + 16x4z 6 = 0. (28) 

To give a geometric interpretation of  this curve, we set joint rates of the passive rotary joints in 
the R~P2S2SsPsR3 loop to zero. Then, the line SzS3 is fixed and the tangent at Sip must be 
perpendicular to the platform. So, if a common tangent exists, the line SsSI and the line $2S~ must 
intersect the joint RI axis. This is similar to Condition (1) described in the previous section, applied 
to the first and third loops. In this case, the mechanism gains one degree of  freedom and this 
particular singularity occurs along three curves corresponding to the three legs. Figure 6 shows this 
singular configuration. 
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4.1.3.  C a s e  3. Singularity may  also occur when two terms of  [J*], which are neither in the 
same row nor  in the same column,  are zero. This also results in three symmetrical  curves. For  
D~2 = F36 = 0, the equat ion o f  the curve is 

_ 256k2x  2 + 32k4x 2 _ k6x  2 _ _  256k2x 3 + 16k4x 3 + 256x 4 - 128k2x 4 + 3k4x  4 + 256x 5 - 32k2x  5 

+ 96x 6 - 3k2x  6 + 16x 7 + x 8 q- 4 8 k 2 x z  2 _ 12k4xz  2 + 32x2z 2 _ 2k2x2z ~ _ 6k4x2z 2 _ 48x3z  2 

q-2X47, 2 q- 4k2x4g 2 "t- 12xSz 2 + 2x6z  2 + 7- 4 - 2k2z 4 + k4z 4 - 4xg 4 + 4k2xg  4 + 6x2g 4 

- - 2 k Z x 2 z  4 - -  4x3z  4 + x4z  4 = O. (29) 

To give a geometric interpretat ion o f  this case, we consider the case o f  singularity due to more  
than one spherical joint. We consider c o m m o n  tangents at the spherical joints $2 and $3. Since the 
distance between $2 and $3 cannot  change,  the two c o m m o n  tangents must  be parallel and the line 
$2S3 moves  in a plane. Sl has to maintain a constant  distance f rom $2 and $3 and f rom the axis 
o f  R~. Hence, S1 must  be fixed in space. For  this singular configuration, the line S~$2 intersects the 
axis o f  R~ and the line S~$3 intersects the axis o f  R3. This is equivalent to Condi t ion (1) applied 
to two different loops and two different ro tary  joints. Mathematical ly,  the partial derivatives o f  
the first and third loop-closure functions with respect to 0~ and 02, respectively, are equal to zero. 
This singularity also occurs along a curve, but  the mechanism gains two degrees o f  freedom in this 

X 

, //] 

Fig. 7. Singularity corresponding to case 3 for $2 and $3. 

Fig. 8. Alignment of the platform with the base-special case. 
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case. This is the curve where the singularity surfaces of the spherical joints $2 and $3 intersect. 
Figure 7 shows the singular configuration. 

4,1.4. A special case. Lastly, the singularity caused by all three spherical joints together is worth 
mentioning. In this case, the three common tangents are parallel to each other and all are 
perpendicular to the platform. Therefore, the platform is in the same plane as the base. In this case, 
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Fig, 9. Plot of singularity curve for case 2. 
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Fig. 10. Plot of singularity curve for case 3. 
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Fig. 11. Singularity surface for the RPSSPR-SPR mechanism. 

the mechanism gains three degrees of freedom and this singularity can happen at a finite number 
of points. All the elements of the Jacobian matrix are zero in this case. Figure 8 shows the four 
possible ways the mechanism can be assembled with the platform in the same plane as the base. 

4.2. Numerical results 

For numerical results, the RPSSPR-SPR 'wrist' mechanism was assumed to have a base with 
unit sides and the platform with sides of 0.5 units. The ranges of all of the prismatic joints are 
assumed such that each leg can vary between 0.5-0.9 units. To obtain the singularity surface, we 
solve numerically equations (20) and (27). These are four equations in six variables, 0,, Oz, 03, L,, 
L2, L3. It is difficult to solve these nonlinear equations numerically by brute force and the 
geometrical approach helped us obtain the initial guesses for the iterative solution method. 

We plot the singularities as the locus of the centroid of the moving platform. Figure 9 shows 
a plot of the singularity curve corresponding to Case 2 and spherical joint S,. Figure 10 shows 
the singularity curve for Case 3 and spherical joints $2 and $3. The singularity surface for the 
RPSSPR-SPR mechanism is shown in Fig. 11. From symmetry considerations, the mechanism has 
three identical singularity surfaces corresponding to the three spherical joints. Figure 11 shows only 
the singularity surface corresponding to S~. Each surface is also symmetric about the singularity 
curve of Case 2 and we plot only one half of the singularity surface for better clarity. The other 
curve shown in Fig. 11 is the intersecting curve with the singularity surface of $3. In Fig. 11, the 
numerically computed (X, Y, Z) coordinates are marked by the symbol e. 

5. CONCLUSIONS 

The singularities in multi-loop mechanisms associated with a gain of degree of freedom can be 
obtained by solving loop-closure equations together with the differential form of the loop-closure 
equation. It is, however, difficult to visualise the singularities from these equations. It is also 
difficult to arrive at the initial guesses required for numerical solution of these equations. In this 
paper, we have presented geometric conditions, based on the concept of a common tangent, which 
are useful in determining the singularities of multi-loop, platform type mechanisms containing 
spherical joints. The geometric conditions are equivalent to the conditions obtained from the 



Platform-type multi-loop spatial mechanisms 389 

different ia l  fo rm o f  the loop-c losure  equa t ions  and  they help in giving a geometr ic  in te rp re ta t ion  
o f  the a lgebra ic  results.  The  geometr ic  cond i t ions  also help in de te rmin ing  the s ingulari t ies  
numerical ly .  The  a lgebra ic  and  geometr ica l  app roa c he s  are  used to de termine  the s ingulari t ies  o f  
a para l le l  R P S S P R - S P R  'wris t '  mechanism.  

Acknowledgement--The authors wish to thank Bhaskar Dasgupta and the anonymous reviewers for their valuable 
comments. 
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