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Abstract

This paper deals with the issue of robustness in control of robots using the proportional
plus derivative (PD) controller and the augmented PD controller. In literature, a variety of
PD and model based controllers for multi-link serial manipulator have been claimed to be
asymptotically stable for trajectory tracking, in the sense of Lyapunov, as long as the controller
gains are positive. In this paper, we first establish that for simple PD controllers, the criteria
of positive controller gains is insufficient to establish asymptotic stability, and secondly that for
the augmented PD controller the criteria of positive controller gains is valid only when there is
no uncertainty in the model parameters. We show both these results for a simple planar two-
degree-of-freedom robot with two rotary (R) joints, following a desired periodic trajectory, using
the Floquet theory. We provide numerical simulation results which conclusively demonstrate
the same.

Keywords: 2R planar robot, Nonlinear dynamics, Chaotic motion, Asymptotic Stability, Floquet
Theory

1 Introduction

An industrial robot is expected to perform accurate trajectory following often in a repetitive man-
ner. Typically trajectory following is achieved by advanced controllers and analysis and design of
such controllers are an important area of study [1]. A feedback controlled system, represented by

Θ̇ = f(Θ, u) where u(t) is the control input, is said to be stable if, for any R > 0, there exists r > 0,
such that if ||Θ(0)−Θd(0)|| = ||e(0)|| < r, then ||e(t)|| < R for all t ≥ 0. The feedback controlled
system is said to be asymptotically stable if it is stable and if in addition, ||e(0)|| < r implies that
||e(t)|| −→ 0 as t −→ ∞. For a stable tracking controller, the error e(t) must remain bounded,
although it may not go to zero. In the case of an asymptotically stable controller, the error e(t) goes
to zero as time tends to infinity, i.e., the system trajectory tracks the desired trajectory asymp-
totically. Research has been done in the stability of nonlinear dynamical systems [2, 3, 4, 5]. In
the case of a robot with joints, asymptotic stability implies that the joints of the robot, Θ(t), can
track a desired trajectory, Θd(t), and as t → ∞, Θd(t) − Θ(t) → 0. In most robotic applications,
trajectory tracking and asymptotic stability is required. In the literature on stability of robot
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controllers, extensive research has been done to design and implement controllers and asymptotic
stability of controllers has been demonstrated by numerical simulation [6, 7, 8, 9, 10, 11, 12, 13, 14].

In this paper, we focus on two well-known controller used in robots. These are the simple PD
control scheme and the augmented PD control law (see p. 194 in reference [15]) which uses a
dynamic model of the robot. The PD control law is said to be asymptotic stable for set point
control [1, 15]. Also, the PD control law (see [16]) is said to achieve exponential convergence for
trajectory tracking for all positive PD controller gains, provided that the desired trajectory, its
velocity and acceleration are all bounded. This claim is problematic because there exist numerical
studies conducted on PD control of a planar two-link (RR) robot, where researchers (see, for ex-
ample [17]) have demonstrated that for particular values of positive controller gains, the equations
of motions of the RR robot exhibit chaos - i.e., implying that for those values of controller gains,
the PD controller is not asymptotically stable. For the augmented PD control, the reference [15]
provides a proof of asymptotic stability for trajectory tracking provided that the controller gains
are positive. However, the authors themselves state that the controller is asymptotically stable only
if accurate models of the inertial parameters are available. In practice this is a strong requirement
since modeling errors are always present and the robustness of such a control law with respect to
parameter uncertainities need to be investigated.

In this paper, we analyze the stability of both the simple PD controller and the augmented PD
controller using Floquet theory. The ranges of controller gains where the robot is asymptotically
stable are obtained using numerical simulations and it is shown that for some values of positive
controller gains, the robot is not asymptotically stable. The results obtained using Floquet theory
are an improvement over of the approach using the method of multiple scales [18] since there is no
need to approximate the trigonometric terms using the Taylor’s series approximations as required in
the method of multiple scales. For the simplest possible planar two link (RR) robot, we demonstrate
the following:

1. The criteria of positive controller gains claimed in Reference [16] is not a sufficient criteria for
asymptotic stability of the simple PD controller – i.e., the controller gains need to be finitely
large for the controller to be asymptotically stable.

2. The augmented PD control law in Reference [15] (page 194) for the planar RR robot is not
robust – i.e., even for small errors in estimating the inertial parameters, the augmented PD
controller does not show asymptotic stability for certain values of positive controller gains.

This paper is organized as follows: in section 2 we present the dynamic equations of motion of
a planar two-link RR robot manipulator following a desired periodic trajectory under a simple
PD and a augmented PD control laws. In section 3 we describe briefly how Floquet theory can
be applied to analyze the stability of the simple and augmented PD controllers. In section 4, we
present numerical simulation results and observations based on the numerical results. Finally, in
section 6 we present our conclusions.

2 Modeling of the RR planar robot

Fig. 1 shows the schematic of a two-degree-of-freedom robot consisting of two rotary (R) joints
actuated by two actuators which can generate torques Γ1 and Γ2, acting on links 1 and 2 respectively.
The equations of motion of the planar two-link RR robot are available in standard textbooks on

2



Figure 1: A RR planar robot

robotics (see, for example, [19]) and are a set of two non-linear ordinary differential equations
(ODEs) of the form[

α1 + α2 cos(θ2) α3 + α2 cos(θ2)
α3 + α2 cos(θ2) α3

] [
θ̈1

θ̈2

]
+

[
−α2 sin(θ2)θ̇2 −α2 sin(θ2)(θ̇1 + θ̇2)

α2 sin(θ2)θ̇1 0

] [
θ̇1

θ̇2

]
=

[
Γ1

Γ2

]
where α1 = m1r

2
1 + I1 +m2r

2
2 + I2 +m2l

2
1, α2 = m2l1r2, α3 = m2r

2
2 + I2 (1)

where mj , lj , Ij , rj (j = 1, 2) are the masses, lengths, inertia and position of center of mass of
link j respectively, and (Γ1,Γ2) are the joint torques. We consider the case of the planar two-link
robot executing a periodic desired trajectory, Θd(t) = [θ1d , θ2d ]T=[Af sin(Ωt), Af sin(Ωt)]T where
Af is the amplitude and Ω is the frequency of the desired motion. To trace the desired trajectory,
a nominal torque needs to be applied at the joints and is given as

Γnom =

[
α1 + α2 cos(θ2d) α3 + α2 cos(θ2d)
α3 + α2 cos(θ2d) α3

] [
θ̈1d

θ̈2d

]
+

[
−α2 sin(θ2d)θ̇2d −α2 sin(θ2d)(θ̇1d + θ̇2d)

α2 sin(θ2d)θ̇1d 0

] [
θ̇1d

θ̇2d

]
(2)

As seen in equation (2), the nominal torque is obtained by replacing θ1 by θ1d and θ2 by θ2d in
equation (1) and this is the torque required to trace the desired trajectory in the absence of external
disturbances and parameter mismatch. Due to external disturbances, mismatch in parameters and
initial conditions, an error between the desired and actual trajectory e(t) given by (Θd(t)−Θ(t)) is
generated and a feedback part is required to drive this error to zero. A simple PD control scheme
is given by

Γpd = [KV ]ė+ [KP ]e (3)

where [KP ] and [KV ] are positive definite and diagonal matrices of the controller gains Kp and
Kv (assumed in this work to be same for both actuators). The augmented PD control law [15]
incorporates the dynamic model of the robot and the additional feedback torque required to drive
e(t) to zero is chosen as

Γaug = [M(Θ)]Θ̈d + [C(Θ, Θ̇)]Θ̇d + [KV ]ė+ [KP ]e (4)
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where M(Θ) denotes the mass matrix and C(Θ, Θ̇) represents the Coriolis/Centripetal terms as
defined in equation (1). It is shown in reference [15], that the above augmented PD control law is
asymptotically stable for trajectory tracking, provided there are no errors in estimating the model
parameters. Since modeling errors are inherent in practice, the robustness of this controller needs
to be investigated. To do so, we assume that the estimated model parameters differ from the actual
model parameters by a mismatch parameter ε and are given by

m̂i = (1 + ε)mi, r̂i = (1 + ε)ri, Îi = (1 + ε)Ii,∀ i = 1, 2 (5)

Hence matrices M and C in equation (4) can be replaced by M̂ and Ĉ, which denote the estimates
of the mass matrix and Coriolis matrix, which in turn are defined in equation (1). The value of ε
is assumed in this paper to be the same for i = 1, 2. Using the procedure given in reference [20],
we non-dimensionalize the equation (1) for the simple and augmented PD controllers given by
equations (3, 4). We have used the (˙) symbol shown earlier in equations (1-4) to represent dif-
ferentiation with respect to dimensional time. From now on we use the (′) symbol to represent
differentiation with respect to non-dimensional time. We get for simple PD control and augmented
PD control, respectively

[M(Θ)]Θ′′ + [C(Θ,Θ′]Θ′ = Γnom + [KPpd
]e + [KVpd

]e′

(6)

[M(Θ)]Θ′′ + [C(Θ,Θ′]Θ′ = Γnom + [M̂(Θ)]Θ′′d + [Ĉ(Θ,Θ′)]Θ′d + [KPaug ]e + [KVaug ]e′ (7)

3 Application of Floquet theory

In this section we show how Floquet Theory can be applied for analysing the problem of trajectory
tracking in robots. For more details on general Floquet theory, the reader is referred to textbooks
(see for example, chapter four of [21] and chapter three of [22]). Floquet theory deals with stability
of periodic solutions in dynamical systems and we follow reference [23] (and references (13, 14)
contained therein).

3.1 Stability of controllers for trajectory tracking in robot manipulators

A two-link serial robot manipulator moving on a horizontal plane (i.e., without the effects of gravity)
is described by

[M(Θ)]2×2Θ′′ + [C(Θ,Θ′)]2×2Θ′ = [Γ]2×1 = [Γnom]2×1 + [Γfeedback]2×1 (8)

The problem of trajectory tracking is to find a suitable control law Γ such that if we begin from
|Θ(0)−Θd(0)| ≈ 0, then Θ(t) ≈ Θd(t) as t→∞, i.e., the zero solution Θd(0) must be stable. Now
we consider a feedback control law, namely the simple PD control law used for tracking problems,
given by equation (3). To analyze the stability of zero solution, we consider a small perturbation
about Θd(t) as

Θ = Θd + e⇒
[
θ1

θ2

]
=

[
θd1

θd2

]
+

[
e1

e2

]
(9)

Substituting equations (2, 3, 9) into equation (8), we have

[M(Θd + e)](Θ′′d + e′′) + [C(Θd + e,Θ′d + e′)](Θ′d + e′) = Γnom − [KP ]e− [KV ]e′ (10)
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Equation (10) can be expanded as

([M(Θd)] +

[
∂M

∂θ1

∂M

∂θ2

]
Θ=Θd

[
e1

e2

]
)(Θ′′d + e′′)

+

(
C(Θd,Θ

′
d) +

∂C

∂θ1
e1 +

∂C

∂θ′1
e′1 +

∂C

∂θ2
e2 +

∂C

∂θ′2
e′2

)
(Θ′d + e′) = Γnom − [KP ]e− [KV ]e′ (11)

From equation (2), Γnom = [M(Θd)]Θ′′d+[C(Θd,Θ
′
d)]Θ′d and hence such terms in the above equation

cancel out. After simplification and writing in state space form, we get

y′ = [Jpd(Θd,Θ
′
d)] y (12)

where y = [e, e′]T and is of dimension 2n, whereas Jpd(Θd,Θ
′
d) is the Jacobian matrix of dimension

2n× 2n. It maybe noted that Θd and Θ′d are functions of time t. The stability of the system given

by equations (12) determine the evolution of y(t) and hence e(t) as t → ∞. If y(t) = [e e′]T → 0
as t→∞ for particular values of positive controller gains, then Θ(t)→ Θd(t) as t→∞ - implying
asymptotic stability. On the other hand if y(t) 6= 0 for t → ∞, then Θ(t) 6= Θd(t) as t → ∞
for those values of positive controller gains. The stability of equation (12) can be analyzed using
Floquet theory by computing the Floquet Multipliers [24] as follows.

1. Solve the following matrix differential equation over one period (t = 0 to t = T ) using initial
condition X(0) = I.

dX

dt
= J(t)X (13)

where J(t) is the Jacobian matrix as described in equation (12). The matrix X(t) is the fun-
damental solution matrix and the eigenvalues of X(T ) (monodromy matrix) are the Floquet
multipliers (for details, see references [24]).

2. If all Floquet multipliers have modulus less than one, then the zero solution is asymptotically
stable, i.e. some e(t)→ 0 as t→∞.

3. If any Floquet multiplier has modulus greater than one, then the zero solution is unstable,
i.e., e(t)→∞ as t→∞.

Similar to the PD control scheme, we can also determine the equations for the augmented PD
control law described in section 2. We get

y′ = [Jaug(t)]y (14)

where the terms in Jaug(t) can be calculated in a manner similar to that given above. Equations
(12) and (14) are the basis of the stability analysis of a planar two-link (RR) robot following a
desired periodic trajectory using Floquet theory.

3.2 Limits of Floquet Theory

We end this section by summarizing some of the limitations of the application of Floquet theory
solely with respect to stability of control laws for trajectory tracking (as described in section 3.1).
This section however, does not present all possible limitations of Floquet theory and the limitations
(if any) of the Floquet theory approach for other applications are beyond the scope of this work.
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Table 1: Parameters of the RR planar robot

Parameter Link1 Link2

Mass (kg) 20.15 8.25
Length (m) 0.5 0.4

Center of gravity (m) 0.18 0.26
Inertia (kg −m2) 6.3 1.64

1. The stability analysis using Floquet theory [25] requires that the matrices [Jpd(t)] and [Jaug(t)]
are time-periodic. Since these matrices are only functions of desired periodic Θd(t) or it’s
derivatives, the time-periodic nature of the matrices is satisfied.

2. Floquet theory only determines local stability, i.e., stability about the particular chosen pe-
riodic orbit and the results derived in this paper are valid for the particular desired orbit
Θd(t). To obtain global stability, all orbits Θd(t) must be asymptotically stable and we need
to apply Floquet theory to all periodic orbits. However, in this paper we are only interested
in demonstrating that the criteria of positive controller gains for the simple and augmented
PD control laws for any bounded Θd(t), is not true. Hence if we are able to show that there
exists a bounded Θd(t), with bounded velocity and acceleration, for which at some values
of positive controller gains the simple and augmented PD control laws give rise to Floquet
multipliers greater than 1.0, then we would have established the main objective of this paper.

3. Floquet theory is inherently a linearized stability analysis, i.e., it only reveals the consequences
of applying a small perturbation to an equilibrium or a periodic solution or some reference
solution (see page 164 in reference [26]). This analysis assumes that the error between the
perturbed solution and the reference solution, beyond the initial condition, either grows ex-
ponentially with time (unstable), or decays exponentially with time (asymptotic stability) or
it remains constant (Lyapunov stability). In some nonlinear chaotic systems, with sensitiv-
ity to initial conditions, the error between the reference and perturbed solution can remain
bounded and behave in an unpredictable manner visiting all points in a sub-space of the full
state space. In the numerical simulations presented in section 4, we obtain many instances
where the error between the desired and perturbed trajectories do not diverge exponentially,
remaining bounded and unpredictable for certain values of controller gains. For an indus-
trial robot executing a repetitive task, this unpredictability defeats the main goal of desired
asymptotic stability, and we use the phrase unstable in these situations.

In Sec. 4, the results obtained from numerical simulations conducted on the planar RR robot
equations driven by the simple and augmented PD controllers are presented.

4 Results obtained from Numerical Simulations conducted on the
planar RR robot equations

In this section, we present the numerical simulation results for the planar RR serial robot. To
perform the numerical study, we choose the physical parameters of a robot used in reference [17].
These are as given in Table 1.
The numerical simulations were performed in MATLAB R2014a using the in-built ode15s solver.
The relative and absolute tolerances were kept at 10−9 and 10−9, respectively. The results were
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checked for smaller values of tolerances and convergence was observed. The following procedure for
numerical simulation was adopted.

(a) Ω = 2 rad/s

(b) Ω = 5 rad/s

Figure 2: Maps showing instability in (Kp,Kv) space for the simple PD controller for different Ω
for Af = π rad

4.1 Comments on the instability maps for the simple PD controller

For the simple PD controller, we integrate equation (12) from t = 0 to t = T (T = 2π) for
various values of controller gains Kp and Kv and compute the largest floquet multiplier ρ[X(T )]
at those values (in the manner described in section 3.1 for equation 13). We plot those values of
Kp and Kv where one of the floquet multipliers are greater than one (implying lack of asymptotic
stability) in a 2D map (instability map) in (Kp,Kv) space, for varying values of desired amplitude
Af , desired frequency Ω. We have computed the instability maps for a large set of values of Af
(π/10 ≤ Af ≤ 2π) rad, but showed the instability maps for one case, namely for Af = π rad at
Ω = (2, 5)rad/s. Figure 2 shows the ranges of controller gains at which the simple PD controller
is unstable (marked in black). We can make the following comments from the figure and several
other numerical simulations conducted (not presented here).

1. The ranges of controller gains at which the simple PD controller is unstable vary with change
in amplitude Af . For lower values of Af , the controller is unstable for very low values
of (Kp, Kv). However, as Af increases, the regions of instability in (Kp, Kv) space also
increase.

2. As the value of Af is increased from π/2 to π rad, even for small values of Ω (for example
Ω = 2 rad/s), there were positive controller gains for which the controller was unstable.

3. For very low values of Ω (Ω ≤ 0.1 rad/s), the controller showed stability for all positive
controller gains even for high values of Af (for example, Af = 4π rad).
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4. Ranges of instability in (Kp, Kv) space also increases with increase in Ω. In Figure 2, for
Ω = 2 rad/s, the instability domain was 0.1 ≤ Kp ≤ 10, 43 ≤ Kp ≤ 50 and 0.1 ≤ Kv ≤ 5.
But as Ω increases to 5 rad/s, the instability domain was 0.1 ≤ Kp ≤ 15, 25 ≤ Kp ≤ 80 and
0.1 ≤ Kv ≤ 12.

5. It must also be pointed out that range of all Kp, Kv values in the plot is kept less than
the values for critical damping. The critical damping of a RR planar robot is given by
Kv = 2

√
Kp. Hence, if we consider Kp values from 0 to 100, then critical damping is given

by Kv = 20 and we consider Kv values from 0 to 20. The values of Kp and Kv outside
this range (overdamped case) were not considered in numerical simulation, as our object is
simply to show that there exist certain values of positive controller gains (underdamped or
overdamped) for which the system is not asymptotic stable.

(a) Ω = 5 rad/s and Af = π rad

(b) Ω = 5 rad/s and Af = 2π rad

(c) Ω = 2 rad/s and Af = 2π rad

Figure 3: Maps showing instability in (Kp,Kv) space for the augmented PD controller for ε=-0.3
at varying values of Ω and Af
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4.2 Comments on the instability maps for the augmented PD controller

For the augmented PD controller, we integrate equation (14) from t = 0 to t = T (T = 2π) for
various values of controller gains Kp and Kv, compute the largest floquet multiplier ρ[X(T )] at
those values and plot instability maps in (Kp,Kv) space, for varying values of desired amplitude
Af , desired frequency Ω and mismatch parameter ε. Shown below in Figure 3 are the instability
maps for particular values of mismatch parameter ε while varying the amplitude Af and frequency
Ω of the desired motion. We computed the instability map for large set of values of Af and Ω
(π/4 rad ≤ Af ≤ 2π rad and 0.1 rad/s ≤ Ω ≤ 50 rad/s). However, we have shown the instability
maps for only three particular cases, namely Af = π rad, Ω = 5 rad/s, Af = 2π rad, Ω = 5 rad/s
and Af = 2π rad and Ω = 2 rad/s. Figure 3 shows the ranges of controller gains at which the
augmented PD controller is not asymptotically stable (marked in black). We can make the following
comments from the figure and other numerical simulations (not presented here).

1. The ranges of controller gains for which the augmented PD controller is unstable varies with
Af and Ω. For example, we kept (Af = 2π rad) constant and varied Ω. For (Ω, ε) =
(5 rad/s, − 0.3), the range of instability was 0 ≤ Kp ≤ 5, 13 ≤ Kp ≤ 100 and 0.1 ≤ Kv ≤ 17,
whereas for (Ω, ε) = (2 rad/s, −0.3) the range of instability was 1 ≤ Kp ≤ 23, 33 ≤ Kp ≤ 73
and 92 ≤ Kp ≤ 100 and 0.1 ≤ Kv ≤ 6.5. Then we kept Ω = 5 rad/s constant and varied
Af . For (Af , ε) = (π rad, − 0.3) the range of instability was 0.1 ≤ Kp ≤ 43 and 0.1 ≤
Kv ≤ 10.1. Similar differences can be observed for other values of ε when we vary Af and Ω
(not presented here). This shows that apart from the controller gains Kp and Kv, amplitude
Af and frequency Ω of the desired motion also determine the extent of instability of the
controller.

2. For Ω ≤ 0.1 rad/s and Af ≤ π/8 rad, we did not find any regions of gains for which the
controller was unstable and all Floquet multipliers were within the unit circle.

3. From the above instability maps, it appears that the range of controller gains for which the
augmented PD controller is unstable, increases with an increase in Af and an increase in Ω.

4. There was no instability for ε > −0.03. The range of controller gains for which the augmented
PD controller is unstable increases with an increase in the underestimation between the actual
and estimated model parameters, i.e., as the mismatch parameter ε reduces further below
zero. For overestimation, i.e., ε > 0, the instability increases with increase in ε .The maps
for overestimation are not presented here.

5. Even for very small mismatch parameter (ε ≤ −0.03), we found instability at particular
values of controller gains, given certain values of Af and Ω. This implies that even for very
small errors in estimation of the model parameters, the augmented PD controller does not
show asymptotic stability. Hence, the augmented PD controller is not robust with respect
to modeling errors.

We numerically investigated the trajectory tracking of the two link planar RR robot, for simple
and augmented PD control, for various values of Kp and Kv at different values of forcing frequency
Ω and forcing amplitude Af and the motion was observed to be chaotic, i.e. implying a lack of
asymptotic stability. These numerical investigations match the results presented above, i.e., the
ranges of instability presented above at particular values of controller gains Kp and Kv at various
values of forcing frequency Ω and forcing amplitude Af matched the ranges of chaos obtained by
the numerical investigations. We present one result in the case of augmented PD control. From
figure 3 (b), we pick controller gains Kp = 50 and Kv = 1 at Ω = 5 rad/s and Af = 2π rad.
Figure 4 presents the Poincaré section (details on Poincaré section can be found in [27]) of robot
at the above mentioned values and it can be clearly seen that the motion is chaotic.
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Figure 4: Poincaré map showing chaos for (Kp,Kv) = (50,1) for the augmented PD controller at
Ω = 5 rad/s and Af = 2π rad

5 Possible Areas of Future Research

We evaluated the asymptotic stability of the simple and augmented PD controllers for trajectory
tracking using the method of Floquet Theory, which can be applied for other problems, two of
which are given below.

1. An alternative method to tuning of control parameters - The most commonly used
controller in industrial applications is the PID controller due to the simplicity of it’s use. But
tuning of controller gains is quite often time consuming. In this paper we showed maps of
controller gains where the simple and augmented PD controllers of the 2R planar robot are
unstable. The same way, ranges of controller gains where the controllers are asymptotically
stable can also be calculated. This may not necessarily eliminate trial and error as the gains
for stability still have to be numerically determined. However, with the approach presented in
this work, the integration of the Floquet equations is only from 0− 2π, whereas to determine
the asymptotic tracking stability by manual tuning of controller gains requires integration
of the equations of the system for longer time periods. In that sense, Floquet theory is
numerically faster. This could be explored in the future.

2. Application of Floquet theory to underactuated systems - Stability of underactuated
systems is an area of active interest in the robotics community. Underactuated systems
typically have lesser number of actuators than the degrees of freedom (DOF’s), i.e. certain
variables are passive. A control law could be devised to keep the passive variables tracking
a periodic trajectory (since floquet theory is applicable only for periodic motions), and then
another control law could be devised to control the active variables. Ranges of controller
parameters for asymptotic stability could then be determined by using Floquet Theory. This
could also be explored in the future.

6 Conclusions

In this paper, we have presented the stability analysis of a simple PD controller and the augmented
PD controller with modeling errors, for trajectory tracking, using Floquet theory. We show suc-
cessfully that the results in references [15, 16] are not sufficient to conclude asymptotic stability.
We perturb the dynamic equations of a feedback controlled robot around a desired solution and
compute the change in perturbation. We compute the Floquet multipliers for a range of gains
Kp and Kv for varying values of amplitude Af and frequency Ω of the desired motion and show
that for some particular positive values of the gains, the Floquet multipliers are outside the unit
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circle, implying that controllers are unstable (or not asymptotically stable) at those values. This
implies that the criteria of positive controller gains for trajectory tracking used in reference [16] is
insufficient to conclude asymptotic stability in the simple PD controller. For the augmented PD
controller (reference [15]), even small mismatches in model parameters will lead the controller to
be unstable, implying that it is not robust with respect to modeling errors. We further showed
that the unstable regions in (Kp, Kv) space were dependent on Af and Ω, meaning that controller
gains (Kp, Kv) are not the only parameters determining the stability of the controllers. Possible
areas of future research are also presented.
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