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Abstract

A rotating flexible beam undergoing large deforma-
tion is known to exhibit chaotic motion for certain
parameter values. This work deals with an approach
for control of chaos known as chaos synchronization.
A nonlinear controller based on Lyapunov stability
theory is developed and it is shown that such a con-
troller can avoid the sensitive dependence of initial
conditions seen in all chaotic systems. The proposed
controller ensures that the error between the con-
trolled and the original system, for different initial
conditions, asymptotically goes to zero. A numerical
example using the parameters of a rotating power
generating wind turbine blade is used to illustrate
the theoretical approach
Keywords: Multiple scales analysis, Chaos synchro-
nization, Lyapunov Stability

1 Introduction

A nonlinear dynamical system characterized by sen-
sitivity to initial conditions for certain parameter val-
ues is termed as a chaotic system. This phenomenon
is seen in several physical, chemical, biological and
engineered systems. Some of the most well-known ex-
amples are the Duffing’s equation [1, 2] with a nonlin-
ear (cubic) spring stiffness term, a double pendulum
and two-degree-of-freedom robot manipulators [3, 4].
Chaotic motions are also seen in a rotating flexible
beam [5] undergoing large deformation. Chaos in a
system leads to unpredictability and, in engineered
systems, can lead to failure. Controlling chaos sys-
tems has thus received a significant amount of atten-
tion and many approaches [6, 7, 8, 9, 10, 11, 12, 13]
have been proposed. In the recent past, a form of
chaos control termed chaos synchronization has also
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received attention [14, 15]. In chaos synchronization
approaches, a system with one given set of initial
conditions is termed as the drive system and another
identical system with a different set of initial con-
ditions is termed as the response system. In the
absence of a controller, the drive and response sys-
tems will diverge due to the property of sensitivity
to initial conditions. The central idea of synchro-
nization is to design a controller such that the re-
sponse system asymptotically tracks the drive sys-
tem. A number of approaches have been proposed for
synchronizing chaotic systems such as back-stepping
design [16], adaptive control [17], sliding mode con-
trol [18] and robust feedback control [19]. Global
chaos synchronization was studied using sliding mode
control [20, 21] on the Li-Wu and the Zhu systems
respectively. Chaos synchronization of chaotic Chua
system with cubic nonlinearity in complex coupled
networks [22] and modified projective synchroniza-
tion of different order chaotic systems with adaptive
scaling factor [23] were also studied. In this paper we
use active nonlinear control and Lyapunov stability
theory to design a controller for the chaotic system
arising from a model of a power generating wind tur-
bine blade. In this paper, following the development
in reference [5], the rotating wind turbine blade is
modeled as four first-order ordinary differential equa-
tions (ODEs) in a non-dimensional form using two
characteristic velocities. The non-dimensional equa-
tions of motion of a rotating beam undergoing large
deformation follows from the work in reference [24].
The method of multiple scales [25] is used to analyze
these four first-order ODEs at various time scales to
obtain four first-order autonomous slow flow equa-
tions. These equations are shown to be chaotic for
certain ranges of values of these characteristic veloci-
ties [5]. The main and new contribution of this paper
is the development of control laws which synchronize
the chaotic system. The control laws are obtained
by designing a nonlinear controller using nonlinear
control and Lyapunov stability theory. Numerical
simulation results are used to validate the approach
described in this paper.
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The paper is organized as follows. In section 2,
for the sake of completeness, we present the model
of a rotating wind turbine blade as a flexible rotat-
ing beam undergoing large deformation and the four
first-order ODEs which model this nonlinear system.
In section 3, we perform an analysis of the slow flow
equations obtained for the equations of the beam us-
ing the method of multiple scales, and explain certain
insights which are relevant to chaos synchronization.
In section 4, we design the nonlinear controller using
Lyapunov stability theory for chaos synchronization.
In section 5, we present numerical simulation results
of the controller. In section 6, we present the conclu-
sions to this paper.

2 Modeling of a wind turbine
blade as a rotating flexible
beam

The modeling of a rotating flexible link, undergoing
large deformation and the detailed derivation of its
equations of motion in a non-dimensional form are
available in reference ([24, 5]). These are presented
in brief in this section for the sake of completeness.
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Figure 1: Schematic of a rotating flexible beam(from
[5])

The rotating flexible link is schematically shown in
figure 1(a), discretized into N number of elements,
OA, AB and so on. The equation of motion of the
rotating link, modeled as a slender rotating beam
undergoing transverse bending vibration, can be de-
rived as a partial differential equation using Euler-
Bernoulli beam theory. In this work, we model the
beam as a single element (OB) and hence i = 1 in
both figure 1 (a), (b). Figure 1(b) shows the various
nodal degrees of freedom on the beam element OB.
The nodal variables (u1, v1, ϕ1, u2, v2, ϕ2), as de-
scribed in figure 1(b) are defined in the body fixed co-
ordinate system X1Y1. The variables (u1, v1, u2, v2)

represent the nodal displacements (along the X and
Y directions respectively, as shown in figure 1(b)),
while (ϕ1, ϕ2) represent nodal rotations. The co-
ordinate system OXY shown in figure 1(a) is the
global reference co-ordinate system and 0Pi is the
position vector of a point in the beam element.
The rotating flexible link is assumed to have con-

stant cross-sectional area and uniform material prop-
erties. It is assumed to undergo axial elongation in
addition to transverse bending. In figure 1(a), θ1 is
the rigid body (rotation) variable and for clamped
boundary conditions (u1 = v1 = ϕ1 = 0). The to-
tal number of variables describing the rotating beam
will be four – one rigid body variable (θ1) and three
flexible variables denoted by Qf = (u2, v2, ϕ2). We
denote the set of four variables (θ1, u2, v2, ϕ2) by Q.
The equations of motion in the non-dimensional

form can be written as (see reference [24])

[M(Qf )] {Q
′′
}+

(
K +∆K(Qf ,

Ua

Ug
)

)
{Q}+ C{Q′}

+ {H(Q,Q
′
)} =

{τ}
ρALU2

g

(1)

where (·)′ , (·)′′ represent the first and the second
derivative with respect to non-dimensional time T ,
M is the 4× 4 non-dimensional mass matrix, K and
∆K are the 4 × 4 non-dimensional conventional and
geometric stiffness matrices respectively, H is the
4×1 vector of non-dimensional centripetal and Cori-

olis terms, {τ} = [F sin(
ΩL

Ug
T ), 0, 0, 0]T with F and

Ω denoting the amplitude and the frequency of forc-
ing term (see [24, 5] for details of the terms in equa-
tion (1)) and C{Q′} represents an added Rayleigh
damping term of the form α[M] + β[K].
The non-dimensional equations of motion (1) con-

tain two characteristic velocities

Ug =
1

L

√
EI

ρA
, Ua =

√
E

ρ
, T = t/(L/Ug) (2)

where Ua is the phase speed of the longitudinal wave
or the speed of sound in the material and Ug is a char-
acteristic velocity associated with bending vibration
and the non-dimensional time T is given by t/(L/Ug).
For numerical simulations in section 5, we will use

the values given in Table 1 and we assume the value
of amplitude of forcing F = π/2 and the values of
the Rayleigh damping coefficients as α = 0.02 and
β = 0.02. It may be noted that the ρ and E values
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given in Table 1 are of E-glass which is used to make
the power generating wind turbine blades and the
value of L is given for a 50 kW wind turbine made
by Endurance Wind Power Ltd. [26]. The value of
Ω is the operating angular speed of the wind turbine
blade. It may be noted that in an actual wind turbine
blade the cross-section is not uniform, the blade un-
dergoes twisting in addition to bending and there are
other nonlinearities in the drive and control system
which are not considered in the model. In this work,
we show that the system of four nonlinear ODEs in
equation (1) can exhibit chaos for certain parameter
values and we present controllers to illustrate syn-
chronization of chaos.

3 Analysis of the equations of
the rotating beam

To analyze the behavior of the beam, we use the
method of multiple scales (MMS) [25] and derive the
slow flow equations (see [5] for details). These are
given by

ẋ = −αx

2
− σ1y + 2J32xy + 2J31

yw

z2 + w2

ẏ = −αy

2
+ σ1x− J2(z

2 + w2)− 2J32x
2 − 2J31xw

z2 + w2

ż = −J3dz − σ2w + J31 + J32(xw − yz) (3)

ẇ = −J3dw + σ2z − J32(yw + xz)

where (x, y, z, w) are the slow flow variables which
are dependent on original variables (θ1, u2, u2, ϕ2)
(as shown in figure 1), J3d is a function of Rayleigh
damping co-efficients (α, β), while (σ1, σ2) are the de-
tuning parameters. The complete expressions for the
terms are available in reference [5] and in this pa-
per we analyze equations (3) and present a scheme
to synchronize chaos in these equations.
We can make the following observations about the

above nonlinear differential equations (3).

1. The variables (θ1, V2, ϕ2) are functions of ampli-
tude a3 and phase b3, whereas global variable
U2 is a function of amplitude a2 and phase b2.
The slow flow variables (x, y) are functions of
(a2, b2, b3), whereas the variables (z, w) are func-
tions of (a3, b3). Thus, if variables (z, w) go to
zero, then the original variables (V2, ϕ2) (see fig-
ure 1) will also go to zero. It will be seen in
section 5 that the variables do go to zero irre-
spective of the value of parameter Ug.

2. The first two equations contain a factor
w

z2 + w2
.

As a result, as shown in simulation results (see

section 5), the behavior of x(t) and y(t) is very

different than the behavior of z(t) and w(t).

3. The undamped slow flow equations were found

to be chaotic for Ug < 150 and the damped slow

flow equations were found to be chaotic for Ug <

200 (see reference [5] for details).

4. The initial conditions for both the damped and

the undamped slow flow equations were taken as

(−0.3538,−1.5771, 0.2820,−1.3337).

In the next section, we present a scheme to control

chaos, namely chaos synchronization.

4 Chaos synchronization

The hallmark of chaotic systems is sensitivity to ini-

tial conditions and a small change in the initial con-

ditions can render the output unpredictable in the

long run. In practice, errors in initial conditions are

near inevitable and this makes it impossible to pre-

dict the state output as time increases. One approach

towards more predictability in the state output is by

chaos synchronization. This can be done by consid-

ering two systems – a drive system (theoretical model

of the system with given initial conditions) and the

response system (practical model of the system with

error in the initial conditions with respect to the ini-

tial conditions of the drive system), and designing a

controller to force the error between the state outputs

of the drive and response system to go asymptotically

to zero. In this way, the practical and the theoreti-

cal systems will be synchronized and the effect of the

change in initial conditions is negated.

For equation (3), the drive and response systems

can be written as

ẋd = −αxd

2
− σ1yd + 2J32xdyd + 2J31

ydwd

zd2 + wd
2

ẏd = −αyd
2

+ σ1xd − J2(zd
2 + wd

2)− 2J32xd
2

− 2J31
xdwd

zd2 + wd
2

(4)

żd = −J3dzd − σ2wd + J31 + J32(xdwd − ydzd)

ẇd = −J3dwd + σ2zd − J32(ydwd + xdzd)
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and

ẋr = −αxr

2
− σ1yr + 2J32xryr +

2J31yrwr

zr2 + wr
2
+ u1

ẏr = −αyr
2

+ σ1xr − J2(zr
2 + wr

2)− 2J32xr
2

− 2J31
xrwr

zr2 + wr
2
+ u2 (5)

żr = −J3dzr − σ2wr + J31 + J32(xrwr − yrzr) + u3

ẇr = −J3dwr + σ2zr − J32(yrwr + xrzr) + u4

where the lower subscript d and r stand for drive and
response system respectively, and ui, i = 1, 2, 3, 4
are the control which synchronizes the two chaotic
systems.
From equations (4) and (5), the error dynamics

can be given as

ė1 = −αe1
2

− σ1e2 + 2J32(xre2 + yre1 − e1e2)+

2J31
yrwr

zr2 + wr
2
− 2J31

(yr − e2)(wr − e4)

(zr − e3)2 + (wr − e4)2
+ u1

ė2 = −αe2
2

+ σ1e1 − J2(e3(2zr − e3)+

e4(2wr − e4))− 2J32(e1(2xr − e1))− 2J31
xrwr

zr2 + wr
2

+ 2J31
(xr − e1)(wr − e4)

(zr − e3)2 + (wr − e4)2
+ u2 (6)

ė3 = −J3de3 − σ2e4 + J32(xre4 + wre1 − e1e4

− yre3 − zre2 + e2e3) + u3

ė4 = −J3de4 + σ2e3 − J32(xre3 + zre1 − e1e3

+ yre4 + wre2 − e2e4) + u4

where e1 = xr − xd, e2 = yr − yd, e3 = zr − zd and
e4 = wr − wd.
For the two identical chaotic systems with-

out control or ui = 0, if the initial conditions
are not equal, i.e., (xd(0), yd(0), zd(0), wd(0)) ̸=
(xr(0), yr(0), zr(0), wr(0)), then the trajectories of
the two identical systems will diverge with respect
to each other. However under control, the two sys-
tems will synchronize with each other for any initial
conditions, implying that error states asymptotically
go to zero. For this end, we must propose the use of
a control input u = [u1, u2, u3, u4]

T which makes the
error states asymptotically go to zero.
Using the Lyapunov second method for stability,

consider the candidate Lyapunov function

V = (1/2)(e1
2 + e2

2 + e3
2 + e4

2) (7)

The differential of the Lyapunov function along the
trajectory of the system is

V̇ = e1ė1 + e2ė2 + e3ė3 + e4ė4 (8)

Using (6), we get

V̇ = −α

2
e1

2 − α

2
e2

2 − J3de3
2 − J3de4

2

+ J32(yr(2e1
2 − e3

2 − e4
2)− 2xre1e2)

+ (J32 + J2)e2(e3
2 + e4

2)− zr(e2e3(J32 + J2)

+ J32e1e4) + wr(e1e3J32 − (J32 + J2)e2e4)+ (9)

2J31(xre2 − yre1)Q1 + u1e1 + u2e2 + u3e3 + u4e4

where

Q1 =

(
wr − e4

(zr − e3)2 + (wr − e4)2
− wr

(zr)2 + (wr)2

)
(10)

For asymptotic stability according to Lyapunov
second method, we must have V > 0 and V̇ < 0.
It can be seen from equation (7) that V > 0. To
ensure V̇ < 0, the control input u = [u1, u2, u3, u4]

T

in equation (9) must be designed accordingly. Hence,
we propose the following control law,

u1 =
(α
2
− 1

)
e1 + J32(2e2xr − 2e1yr + e4zr−

e3wr) + 2J31yrQ1, u2 =
(α
2
− 1

)
e2 − (J32 + J2)

(e3
2 + e4

2) + (J32 + 2J2)(e3zr + e4wr)− 2J31xrQ1

u3 = (J3d − 1)e3 + J32yre3 (11)

u4 = (J3d − 1)e4 + J32yre4

Substituting (11) into (9), we have

V̇ = −e1
2 − e2

2 − e3
2 − e4

2 < 0 (12)

and we can obtain asymptotic stability in the sense
of Lyapunov, i.e., the chaotic systems (4) and (5) are
synchronized for any initial conditions with the use
of the control law (11).

Motivation for the choice of the control
law

Equation (12) shows that the control law (11) can
synchronize the chaotic systems (4) and (5) for any
initial conditions. The motivation for the choice of
the control law is based on the following observations.
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1. Equation (9) contains constant terms such as
(J2, J31, J32) and varying terms (xr, yr, zr, wr)
which could be negative or positive. Since, for
asymptotic stability we must have V̇ < 0, these
varying terms must be eliminated using the con-
trol input ui.

2. It can be seen from equation (9) that there
are coupled error and control input terms of
the form uiei. To eliminate the constant and
varying terms, the control law should not con-
tain fractions with an error or varying term
in the denominator. For example, a choice of

u3 =
2J32xre1e2

e3
can cancel (−2J32xre1e2) in

equation (9). However, if e3 → 0, then u3

would go to infinity. A better choice would be
u1 = 2J32xre2. In general, an ui should be cho-
sen to cancel out terms containing correspond-
ing ei to which it is coupled to. If the terms
contain combination of errors, such as the term
(−2J32xre1e2), then the controller u1 or u2 can
be designed to cancel out such a term.

3. The simpler the controller, the better.

In equation (9), the presence of terms such as
(e21, e

2
3, e

2
4) can be seen. This implies that in order to

cancel those terms out, we must make use of control
inputs (u1, u3, u4). There is only one term contain-
ing e22 and the control input u2 is necessary only to
cancel out that term. The control law (11) satisfies
all the above three conditions.
It is possible however to design other control laws.

Consider another control law of the form

u1 = (α/2− 1) e1 + J32(2e2xr − 2e1yr + e4zr − e3wr)

+ 2J31yrWx1, u2 = (α/2− 1) e2, u3 = (J3d − 1)e3

+ J32yre3 + (J32 + 2J2)zre2 − (J32 + J2)e2e3−
2J31xrWx2, u4 = (J3d − 1)e4 + J32yre4+ (13)

(J32 + 2J2)wre2 − (J32 + J2)e2e4 − 2J31xrWx3

where

Wx1 =
e3wr(2zr − e3) + e4(wr(wr − e4)− z2r )

((zr − e3)2 + (wr − e4)2)(z2r + w2
r)

Wx2 =
e2wr(2zr − e3)

((zr − e3)2 + (wr − e4)2)(z2r + w2
r)

(14)

Wx3 =
e2(wr(wr − e4)− z2r )

((zr − e3)2 + (wr − e4)2)(z2r + w2
r)

On substitution of equation (13) into equation (9), we
get V̇ < 0 and asymptotic stability can be obtained.

However, it can be seen that the control law (13) is
more complicated than (11). Since it is preferable
to have simpler controllers over complicated ones, we
prefer control law (11).

In the next section, we present numerical simula-
tion results illustrating synchronization.

5 Numerical Simulation

In this section we, verify the effectiveness of the con-
trol law proposed in section 4. We numerically sim-
ulate equations (4), (5), and (6) from section 4. To
perform the numerical simulation, we use the param-
eters given in reference [5]. All simulations are done
in MATLAB 2012Rb (Matlab Version 8.0) [27]and
ode15s solver was used to solve the differential equa-
tions. The relative and absolute tolerances were kept
at 10−6 and 10−9 respectively.

For all numerical simulations in this section,
we use the MATLAB command randi to generate
random initial conditions. For one such set of
initial conditions for (xd(0), yd(0), zd(0), wd(0))
and (xr(0), yr(0), zr(0), wr(0)) given by
(−0.3538,−1.5771, 0.2820,−1.3337) and
(−0.34,−1.5771, 0.2820,−1.3337), respectively,
figures 2 and 4 display the error variables without
control and figures 3 and 5 display the error
variables with control. As it can be seen, with
the controller the error converges to zero, implying
the response system is asymptotically tracking the
drive system. For both the undamped and damped
slow flow equations, we have used Ug = 100 in the
numerical simulations.

(a) Plot of e1(t) (b) Plot of e2(t)

(c) Plot of e3(t) (d) Plot of e4(t)

Figure 2: Synchronization errors without control for
the undamped equations
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(a) Plot of e1(t) (b) Plot of e2(t)

(c) Plot of e3(t) (d) Plot of e4(t)

Figure 3: Synchronization errors with control for the
undamped equations

(a) Plot of e1(t) (b) Plot of e2(t)

(c) Plot of e3(t) (d) Plot of e4(t)

Figure 4: Synchronization errors without control for
the damped equations

(a) Plot of e1(t) (b) Plot of e2(t)

(c) Plot of e3(t) (d) Plot of e4(t)

Figure 5: Synchronization errors with control for the
damped equations

It is evident from figure 2, that the undamped
slow flow equations have large differences in the state
variables without the use of the proposed controller.

With the use of the control law given in equation (11),
the errors converge asymptotically to zero as shown
in figure 3.

(a) Ug = 400 (b) Ug = 100

Figure 6: Phase plots for the damped equations
showing both the z, w state variables going to zero

It is interesting to observe that for the damped
slow flow equations, the errors e3(t) and e4(t) (re-
lated to z(t) and w(t)) go to zero even without the
controller (see figure 4 (c) and (d)). This can be seen
more clearly from figure 6, that irrespective of the
chaoticity, the two state variables z, w tend to zero
– the spiral trajectory in the z − w plane.

The numerical simulation results validate control
law (11) by successfully demonstrating asymptotic
convergence of errors between the drive and response
systems to zero.

6 Conclusions

In this paper, we demonstrate chaos synchronization
of a system of four nonlinear ordinary differential
equations. The equations are derived from a nonlin-
ear model of a rotating flexible beam and are related
to the rotating blade of power generating wind tur-
bine. The method of multiple scales is used to derive
the slow flow equations for a damped and undamped
rotating flexible link. The flexible rotating beam can
exhibit chaos for certain values of the parameter Ug.
A nonlinear control law for asymptotic chaos syn-
chronization is proposed. The nonlinear control law
is derived using Lyapunov stability theory and nu-
merical simulations show the effectiveness of the law
in negating the sensitivity to initial conditions for the
slow flow equations derived using method of multi-
ple scales. In the future, we aim to develop a unified
method for chaos synchronization, depending upon
the type of nonlinearity involved in the slow flow
equations.
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