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Abstract

This paper presents a constraint Jacobian matrix based approach to obtain the
stiffness matrix of widely used deployable pantograph masts with scissor like elements
(SLE). The stiffness matrix is obtained in symbolic form and the results obtained agree
with those obtained with the force and displacement methods available in literature.
Additional advantages of this approach are that the mobility of a mast can be evaluated,
redundant links and joints in the mast can be identified and practical masts with
revolute joints can be analysed. Simulations for a hexagonal mast and an assembly
with four hexagonal masts is presented as illustrations.
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1 Introduction

Deployable structures can be stored in a compact configuration and are designed to expand

into stable structures capable of carrying loads after deployment. In their general form,
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they are made up of a large number of straight bars (links) connected by revolute joints
and with one or more cables used for deployment or increasing the stiffness of the deployed
structure (see, for example, [1]-[2]). Initially, the whole assembly of bars can be stowed
in a compact manner and, when required, can be unfolded into a predefined large-span,
load bearing structural form by simple actuation of one or more cables. This characteristic
feature makes them eminently suitable for a wide spectrum of applications, ranging from
temporary structures that can be used for various purpose in ground to the large structures
in aerospace industry. Deployable/collapsible mast are often used for space applications since
in their collapsed form they can be easily carried as a spacecraft payload and expanded in
orbit to a desired size. Many deployable systems use the pantograph mechanism or scissor-
like elements (SLE’s). Typically, an SLE has a pair of equal length bars connected to each
other at an intermediate point with a revolute joint. The joint allows the bars to rotate
freely about an axis perpendicular to their common plane. Several SLE’s are connected to
each other in order to form units which in plan view appear as regular polygons with their
sides and radii being the SLE’s. Several such polygons, in turn, are linked in appropriate
arrangements leading to deployable structures that are either flat or curved in their final
deployed configurations. The assembly is a mechanism with one degree of freedom from the
stowed /folded configuration till the end of deployment. The deployment is through an active
cable and after deployment the assembly is a pre-tensioned structure. Active cables control
the deployment and pre-stress the pantograph and passive cables are pre-tensioned in the
fully deployed configuration. These cables have the function of increasing the stiffness in the

fully deployed configuration [3].

1.1 Kinematics and mobility

The kinematics of multi-body mechanical systems can be studied by use of relative co-

ordinates [4], reference point coordinates as used in the commercial software ADAMS [5]



or Cartesian coordinates (also called natural/basic coordinates) [6]. In references [7], [8],
Garcia and co-workers have used Cartesian coordinates to obtain the constraints equations
for different types of joints and for kinematic analysis of mechanisms. Typical pantograph
masts are over-constrained mechanisms according to Griibler-Kutzbach criteria, and in ref-
erence [9], Cartesian coordinates have been used to study the kinematics and mobility of
deployable pantograph masts — the authors use the derivative of the constraint equations
and develop an algorithm to obtain redundant link and joints in over-constrained deployable
masts, perform kinematic analysis and obtain global degrees of freedom. The key advantage
of Cartesian coordinates is that the constraint equations are quadratic (as opposed to tran-
scendental equations for relative coordinates), and, hence their derivatives are linear. As
shown in [9], these features allows easier manipulation and simplification of expressions in
a computer algebra system to obtain symbolic expressions and closed-form solutions for the
kinematics of pantograph masts. A disadvantage of Cartesian coordinates is that the number
of variables is typically larger and tends to be (on average) in between relative coordinates
and reference point coordinates. However, for analysis of pantograph masts, the number is
not too large and could be handled without much difficulty in the computer algebra system,
Mathematica, used in this work.

The masts in their deployed configuration become pre-tensioned structures. For pre-
stressed structures with pin jointed bars, the necessary condition for the structure to be

statically and kinematically determinate is given by the Mazwell’s rule
3j—b—c=0 (1)

where, j is the number of joints, b is the number of bars or links and ¢ is the number of

kinematic constraints. Calladine [10] generalized the Mazwell’s rule as



m = 3j—c—r

3j—b—c = m-—s (2)

where, m is the number of internal mechanisms, s is the number of states of self stress,
and r is the rank of the equilibrium matrix. This equation is referred to as the extended
Mazwell’s rule. The values m and s depends on the number of bars and joints, topology
of the connection and on the geometry of the frame work. The numerical values of the
vectors describing s and m, for a given system, can be determined from the singular value
decomposition (SVD) of the equilibrium matrix. The concept of using a Jacobian matrix
to evaluate the mobility was first presented by Freudenstein [11] for an over-constrained
mechanism. Later, the first and higher order derivatives of constraint equations has been
used for under constrained structural systems to evaluate mobility and state of self-stress by

Kuznetsov [12, 13]

1.2 Structural matrix

The mechanism at the end of deployment becomes a pre-tensioned structure and the struc-
tural matrices are useful for evaluating the stiffness/displacement of the SLE masts in the
deployed configuration. In literature, researchers have used various methods for formulat-
ing the structural matrix for an SLE. These are termed as force method [14], displacement
method [15] and equivalent continuum model [16]. We describe each of these methods in brief
below.

Force method: In the force method, as used by Kwan and Pellegrino [14], the SLE is
discretised into four beam elements. The equilibrium, compatability and flexibility matrices

are derived for a typical beam element in a local coordinate system using shear force and



bending moment relationships. These equations are transformed to the global coordinate
system by using the rotation matrices and are assembled for the four beam elements, which
make up the SLE. The equilibrium matrix is reduced in size by matrix partitioning and
by setting the end moments to zero [18]. In this approach one can evaluate the number of
self-stress states and the number of infinitesimal mechanisms of the given system by using
singular value decomposition (SVD) of the equilibrium matrix [19].

Displacement method: The displacement method is used by Shan [15] to formulate stiff-
ness matrix for the SLE. In his approach, each link of the SLE is called an uniplet. One
uniplet of the SLE is modeled as an assembly of two beam elements with mid node at the
pivot point of SLE. The stiffness matrix was partitioned to have the translation terms and
rotational terms in order. The final reduced stiffness matrix is obtained by condensing and
removing the rotational degrees of freedom of all the three nodes. In the reference [20], the
authors have formulated the stiffness matrix for two uniplets, called as a duplet, by using
the stiffness matrix of the uniplet developed above. Matrix partitioning is used to get the
reduced stiffness matrix which condenses the translational degrees of freedom of the pivot
node.

Equivalent continuum model: This approach was used to predict the stiffness charac-
teristics of deployable flat slabs when they are subjected to normal loads [16, 17]. In this
method, the SLE is considered as an equivalent uniform beams that deflects identically to
the given loading as that of an SLE. The flat large deployable structure is substituted with
an equivalent grid of uniform beams running in particular directions The beams are rigidly
connected to each other. This arrangement is reduced to an equivalent orthotropic plate of
constant thickness and stiffness matrix is obtained. The results predicted by this method
are approximate unlike above methods and hence can only be used for initial design phase
which reduces the computational time. In an exact finite element modeling the storage

space requirements are large for large number of SLE units due to the complicated pivotal



connections and hinged connections that require more than one nodal point to be described
accurately. The equivalent approach can significantly reduce the computational effort during
preliminary design stage.

Comparison of existing methods: The force method gives the additional information
about the states of self stress and infinitesimal mechanisms. The displacement method or
equivalent continuum model does not give this information. The force method uses two
matrix reductions which reduces the matrix of dimension 18 x 14 to 12 x 8 in the first step.
Further in the second step the matrix dimension is reduced from 12 x 8 to 10 x 6, to obtain
the final reduced equilibrium matrix. The displacement method has a stiffness matrix of
dimension 18 x 18 for the two assembled beam elements with six degrees of freedom at each
node. By condensing the rotational degrees of freedom at all the nodes the matrix dimension
reduces to 9 X 9. The reduced matrix has only translational degrees of freedom at each node.
The equivalent continuum approach is useful for very large repetitive structures. However,
this method does not give the accurate results when compared to other two methods and,
hence, can be used only for initial design phase to reduce computational time.

As mentioned earlier, at the end of deployment we get a structure capable of bearing
loads, and in this paper, we extend the approach in [9] to the static analysis of deployable
pantograph masts. We present a new approach to formulate the structural matrices for a
typical SLE using Cartesian coordinates, the kinematic equations of the SLE/pantograph
element, and the constraint Jacobian matrix. These matrices are derived by using the sym-
bolic computation software Mathematica [21]. The results of formulations obtained by this
approach matches exactly with the results of force and displacement based methods. Our
approach has the advantages of the force method in evaluating the states of self-stress and
infinitesimal mechanisms. However, in our approach, the final reduced equilibrium matrix
can be obtained in a single step unlike in the force and displacement methods. In addition,

the constraint equations of the links and joints are useful in studying the kinematics behavior



of pantograph masts during deployment, in evaluating the redundancy in the links/joints of
these over-constrained systems, and in obtaining the final degrees of freedom of the deploy-
able masts. In literature the successive SLE joint connection are assumed to be spherical
joints. In a practical pantograph mast, two revolute joints with intersecting axis are used. In
this work, we have used the revolute joint constraints for the SLE connected to the successive
SLEs by revolute joints.

This paper is organized as follows: In section 2, we present a brief description of the
deployable masts considered for the analysis. and present the constraint equations for the
links, joints and the SLE with the Jacobian matrix. In section 3, we present the mathematical
approach for the evaluation of stiffness matrix for the SLE and the detailed equations are
presented in an Appendix. In section 4, we present the stiffness matrix for the cables used
in pantograph masts. In section 5, we present the additional constraints and the stiffness
matrix due to revolute joints. In section 6, we illustrate our approach by using a planar
stacked mast and three dimensional SLE based masts. Finally, in section 7, we present the

conclusions.

2 Kinematic description of the SLE masts

In this section a brief description of the SLE masts and formulation of the constraint equa-
tions are presented for the sake of completeness (see, [9], for details). In the next section,
we use these equations to derive stiffness matrices.

The simplest planar SLE is shown in figure 1. The revolute joint in the middle connects
the two links of equal length. The assembly has one degree of freedom. Figure 2 shows a two
dimensional stacked SLE mast [3]. This consists of four SLEs stacked one above the other.
The deployment angle 8 can vary continuously from g = 0°, when the assembly is fully
folded, i.e. lying flat on its base and all links are collinear, to 8 = 45° which corresponds to

the fully deployed configuration. This has eight passive cables connecting the adjacent joints
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Figure 1: Basic planar module of SLE

of the SLEs. The cables are taut in the fully deployed configuration and slack at all other
configurations. One active cable which is firmly connected to the joint 3 of SLE mast, runs
over a pulley at joint 4, zig-zags down the SLE following the route shown in the figure (it
runs over a pulley at each kink) and, after passing over a pulley at joint 1, is connected to the
motorised drum located below the base. This mast remains stress free during folding. It can
be deployed simply by turning the drum below the base and thus winding in the active cable.
When the passive cable is taut the deployment is complete. At this stage the active cable
is wound in little more to set up a state of self stress in the system. Usually it is desirable
that all the passive cables be in a state of pretension while the structure is operational to
avoid the possibility of some of them might going slack when the mast is subjected to the
action of external loads; it is easiest to aim for uniform state of prestress in all cables. The
uniform pre-stress can be obtained by introducing the second active cable [3].

The triangular SLE mast can be created with three SLE’s. The stacked triangular SLE
mast [2] is shown in figure 3. This has twelve passive cables and an active cable. The active

cable is firmly attached to joint 5. The double loops are connected at the intermediate joints
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Figure 2: Stacked planar SLE mast — (a) Fully deployed and (b) Partially deployed

as shown in figure 3. This pre-tensions uniformly all the cables in the mast. A drum is used
to wind the active cable.

The function of passive cables are a) for termination of deployment, b) increasing the
stiffness of fully deployed structure, and c) setup a state of pre-stress in the fully deployed
structure resulting in pre-tensioning of all passive cables. An active cable is such that its
length reduces monotonically as the structure deploys. The functions of active cable is to a)
control the deployment process, b) setup a state of pre-stress in a fully deployed structure
resulting in pre-tensioning the whole system, and c¢) elimination of backlash at all joints.
More than one active cable is often introduced in some structure. In practice it is advisable
to have no less than two active cables to ensure minimum level of redundancy should an
active cable fail. However it is impractical to introduce many active cables in the structure
because different cables may require independent winding mechanisms and control units. A
structure with passive and active cables remains essentially stress free in folded/partially

folded configurations and is pre-stressed in the fully deployed state. These structures have



Active
cable

Passive
cable

Fixed | ‘

Figure 3: Stacked triangular SLE mast — (a) Full mast, (b) Passive cables, and (c) Active
cable

high stiffness when fully deployed.

2.1 Formulation of constraints

In this section we derive the kinematic constraint equations for the SLE. We will use the
Cartesian/natural coordinates [6] to model the SLE. The natural or Cartesian coordinates
are defined at the locations of the joints and unit vectors along the joint axis to define the
motion of the link completely. In the natural coordinate system the constraint equations
originate in the form of rigid constraints of links and joint constraints.

Consider a SLE shown in figure 1. This is considered as an assembly of two links 1 — 2

and 3 — 4 with a pivot p. The link 1 — 2 with pivot p is considered as an assembly of two
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link segments 1 — p and p — 2 with lengths [; and [, respectively. Likewise, the link 3 — 4
with pivot p is considered as an assembly of two link segments 3 — p and p — 4 with lengths

l3 and l4, respectively.
2.1.1 Rigid link constraint

A rigid link is characterized by a constant distance between two natural coordinates ¢ and
j. This is given by

rij Ty = LY (3)
where r;; = [(X; — X;), (Vi = Y)), (Z; — Z;)|" with (X,,Y;, Z}), (X;,Y},Z;) are the natural
coordinates of 7, j, respectively, and L;; is the distance between 7 and j.

Using this equation for the SLE of figure 1 we get the following systems of equations for

the four segments:

(Xp =X+ (Y, V) + (%4~ Z1) =1} = 0
(Xo = X))’ + (Vo= Yp) ' + (£~ 2Z,)" =15 = 0
(X3 = X))’ + (Y3 =Y,)" + (23— 2,)" =15 = 0
(Xp = X0+ (Y, —Ya)’ + (%, — Zu)* = 1f = 0 (4)

2.1.2 Constraint for SLE

Referring to figure 1, the node p is a pivot, the link segments 1 — p and p — 2 of link 1 — 2
are aligned at pivot. Hence, the cross product of the two adjacent link segments 1 — p and
p — 2 is given by

Iy X Ty — llesing; =0 (5)
where, ¢ is the angle between the two link segments (equal to 0 degrees for a pantograph

mast). Similarly the constraint equation for the link 34 is given by
I3p X Tpg — lgl4 sin d)g =0 (6)
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where, ¢, the angle between the two link segments (0 degree in our case). The equa-
tions (5), (6) along with rigid link constraint equations (equation (4)) of the four link seg-

ments 1p, p2, 3p and p4 form the complete set of equations for a single SLE.
2.1.3 System constraint equations

The rigid constraint equations and joint constraints of SLE can be written together as
fj(Xl,}/l,Zl,XQ;"'aZn):O forj:1,...,nc (7)

where, n. represents the total number of constraint equations including rigid link and joint
constraints of SLE, and n; = 3n is the total number of Cartesian coordinates of the system.
The derivative of the constraint equations give the Jacobian matrix and can be symbolically
written as

[J]6X =0 (8)

Since, equation (8) is homogeneous, one can obtain a non-null §X if the dimension of

the null-space of [J] is at least one. The existence of the null-space implies that the

neXny
mechanism possess a degree of freedom along the corresponding 6X [6]. The null space of
[J] can be obtained numerically.

The dimension of the null space is the degree of freedom/mobility of the deployable
system. The deployable systems will have large number of links and joints arranged in a
repetitive pattern. Using the above equations one can evaluate the possible change in degree
of freedom of the deployable system with addition of each link/joints and also can identify
the redundant links/joints in the system [9].

The deployable systems at the end of deployment lock and the cables attached to the
successive joints get prestressed there by reducing the mechanism to a structure. Using the

null space dimension of the Jacobian matrix one can evaluate the minimum number of cables

required to reduce the mechanism to structure.
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3 Stiffness matrix for the SLE

In this section we present a method to evaluate the stiffness matrix for SLE from the con-
straint Jacobian matrix discussed in the previous section. The SLE is considered to have
constant cross sectional area and uniform material properties. The cross section of the SLE
remains plane and perpendicular to the longitudinal axis during deformation. The longitu-
dinal axis which lies within the neutral surface does not experience any change in length.
The SLE beam is long and slender and the transverse shear and rotary inertia effects are

negligible. These assumptions allows the use of Euler-Bernoulli beam theory.

3.1 Stiffness matrix from length constraints

From the length constraint equations, the elongation in the structural members, éL, can be

related to the system displacements, X, as

[J,,]6X = oL 9)

where the Jacobian matrix, [J,,], can be obtained from equations (4) (see Appendix) and

0X, 0L are given by

§X = [6X1,6Y1,07Z,,6Xs,6Ys,075,6Xs,0Ys,073,6X4,6Ya,024,6X,,0Y,,07,]"

(SL == [5l17 6l2a 513, 5l4]T

If the elongation JL are elastic, the member forces, §T, can be expressed with a diagonal

matrix of member stiffnesses as given below.
[Sp]0L = 46T (10)

where, the member stiffness matrix [S,,| for the length segments of SLE is given by

13
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0 42 o g0
[Sm] = 0 la AsFE3 0

AsE
N

In the above equation E is the Young’s modulus, A the cross sectional area the diagonal
elements correspond to the axial stiffness due to elongation of the link segments, and 0T =
[6T%, 6Ty, 6T3,8Ty]" are the forces in the link segments.

The equilibrium matrix for the reference configuration can be written in terms of the

transpose of the Jacobian matrix and we can write
[J,.] 6T = 6F (11)
where OF is given by
6F = [6F\y, 0Fyy, 0F1,, 6 Foy, 0Fyy, 6 Fy,, 6 Fyy, 0 Fsy, 6 Fsyy 0 Fyyy 6 Fyy, 6 Fyy, 0 By 6 Fpy, 6 ] ”

with the right-hand side denoting the load components at nodes.
To be statically determinate, the load must be in the column space of the equilibrium
matrix, in which case it is the equilibrium load. Substituting the equations (9) and (10) in

equation (11), we get

[Jm]T[Sm] [Jm](SX = JF (12)

The above equation can be written as
[K,,]0X = 0F (13)

where, [K,,] = [Jn]7[Sm][Jm] is the elastic stiffness matrix of four length segments of the

SLE.
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3.2 Stiffness matrix due to bending

The rotations d¢ in the structural members can be obtained from the cross-product equa-
tions (5)-(6) of SLE. The rotations are the constraint variations related to the system dis-

placements dX and in terms of the Jacobian matrix [J] are given as

[J12] 0X12 = 60y

[J34]5X34 == 6(]52 (14)

The detailed matrix is given in Appendix.

In the above equation 6X, is the vector [0X1,8Y7,021,6Xo, 8Ys,022,0X,,08Y,, 07,7 and
6X34 is the vector [6X3,0Y3,073,0X4,0Y,624,6X,p,8Y,, 6Z,]7. These are the displacements
of the link 1 — p — 2 and 3 — p — 4, respectively. Finally, 6¢1 = [0¢,,,0¢,,,0¢,,]" and
dppa = [6hay, 00y, d¢,,]" are the rotations in the global coordinate system.

The transformation matrix relating the global and local coordinate system is given by

5‘15,1 = [R]do,
0¢y = [R]dg, (15)
where 0¢) and d¢}, are the rotations in the local coordinate system and [R] is the trans-

formation matrix relating the local and global coordinate systems [22]. The transformation

matrix [R] is given by

[R] = [Re][Rs][Ry] (16)
where, . o
[Ry] = 0 1 0

VCr2+C,2 0 vV Cz2+C,2
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VG2 + .2 c, 0

[Ro] = —C, C2+C2 0
0 0 1
1 0 0
[Ro]=] 0 cosO sin®©
0 sin® cos©

where, for the nodes 7 and j with length L, C, = @,Cy = @, C, = @ and © is
the angle from one of the principal axis of cross section of SLE beam. Using equations (14)

and (15) we get
61 = [R][J12]0X12
0y = [R][J54]0Xs (17)

Considering the bending deformation of the links and neglecting torsion the above equa-

tions can be written as
o) = [J1]0Xy,

0dy = [Jo]0Xa4 (18)

where, 661" = [0¢},, 6¢1,]" and 5" = [5¢h,, 6}, ]".

Combining the above equations, we can write
0¢" = [Jn])0X (19)
where, 6¢" = [6¢1",5¢2"]". The relation between the forces and moments is given by
6F = [JT])6M" (20)

Where, 5M” = [6M,12y; 5M112z: 5Mg4y7 5M§i4z]T
If the rotations d¢” are elastic, the member moments dM"” can be expressed with a

diagonal matrix of member stiffnesses as given below.
[S,]d¢" = oM" (21)
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where, the member stiffness matrix [S,] for the SLE is given by

P 0 00

it
Yo S 0 0
_ it
[Sa] = oA
0 0 L g
3+l SE L
21y
0 0 0 ot

In the above equation F is the Young’s modulus, I, and I, are the second moment of area
of cross section about Z and Y axes, respectively, and the diagonal elements correspond to
the bending stiffness of the links 1 — p — 2 and 3 — p — 4 about Z and Y axis.

By using a similar procedure as given in previous section, the final equations can be

obtained by substituting the equations (19), (21) in (20). We get

and this equation can be written as
[K,]0X = oF (23)

where, [K,] = [J,]7[S.][J.] is the elastic stiffness matrix for the SLE. By combining the
stiffness matrix due to length constraint equations (13) and SLE constraint equations (23),
we get

[K;]6X = 0F (24)
where, [K;] = [K;,] + [K,] is the elastic stiffness matrix due to length and SLE constraints
3.3 Rank of stiffness matrix

The stiffness matrix is given by

(K] = [L]71S:]13] = BT (S:1 (S DIs) = (IS (9](S3)) (25)

where [S,"] is a diagonal matrix whose elements are square root of [S;], [J,] is the Jacobian

matrix of the single SLE. Since for a regular bar frame works all elements from [S;] are
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positive, the rank of [J][S¥] takes it value from the rank of [J,]. Furthermore
rank([K]) = rank(([J][S.])" ([J:[S:]) = rank([3,][S;]) = rank([J,]) (26)

3.4 Comparison with other methods

In reference [15], the displacement method was used to derive the stiffness matrix. The
link 1 — 2 is also called as an uniplet in the reference paper. By using the first two length
constraint equations in (4) of the link 1 — p — 2 and the SLE constraint equation (5) we
can formulate the Jacobian matrix. The stiffness matrix for the uniplet can be computed by
using equation (24). It can be observed that the stiffness matrix, obtained by our method,
matches exactly with the matrix formulated in reference [15] by the displacement method.
In reference [14], the authors have used force method to arrive at the stiffness matrix.
Using the length constraint equations (4) and SLE constraint equations (5), (6) we can
formulate the Jacobian matrix as described in the previous section. By using the coordinate
system of reference [14] and making the substitutions in Jacobian matrix equation (8), we
can observe that matrix obtained by our method is same as the matrix shown in equation(37)
of reference [14] obtained by the force method. It can be observed that the transpose of this

matrix relates the forces and the moments of SLE.

4 Equation for the cable

As already described earlier, cables are added in the masts to enhance their stiffness. These
cables are slack in the stowed configuration and are taut at the end of deployment. A cable
can be assumed to be bar in the taut configuration. The stiffness matrix for the bar may
be found in many textbooks and is described below for completeness. For the bar shown in

figure 4 connecting the joints ¢ and j, the stiffness matrix is given by
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Figure 4: Typical truss element with coordinates

[ 2 rs ot —1r? —rs —rt ]
rs s st —rs —s® —st
K] = AE. | rt st t2 —rt —st —t?
¢ I, —r? —rs —rt 1 rs rt
—rs —s?> —st rs §* st
| -t —st —t> rt st *

X —X. Y,—Y; Z.—7: . . .
where, r = ==L, s = ==L and t = = ~L. In the above equation cross sectional area is
(¢} C C

denoted by A., Young’s modulus is denoted by E, and the bar/cable length is denoted by
le-

By combining the stiffness matrix of SLE elements and the cable we can write
[K]6X = 0F (27)
where the total stiffness matrix [K] is given by [K;] + [K,].
5 Revolute joint constraints

The two adjacent SLE’s are connected by revolute joints as shown in figure 5. This enforces

additional constraints of the form
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Figure 5: A spherical joint replaced by two revolute joints

Tip - Upn — Lipcos(ay) = 0

rjo- Uy, — Ljzcos(az) = 0 (28)

where the unit vectors U, and U,, are along the revolute joint axis as shown in figure 5. The
angles o and «y are the angles between the unit vectors and r. In our approach, Lagrange
multiplier is used to enforce these constraints on the stiffness matrix equations presented in

the previous section.

5.1 Lagrange multiplier method

For a steady state discrete linear system with potential energy functional IT* expressed by

1
IT* = 5UT[K]U ~-U'F (29)
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where, U is the displacement of the structural system, [K]| is the stiffness matrix and F is
the external load, the equilibrium equations can be found for the condition which make the

variation of IT* stationary. We get
SII* = §UT([K]U — F) =0 (30)

with respect to the admissible virtual displacements dU. Since dU is arbitrary the above
equation yields

K]U =F (31)

The constraint equations due to revolute joints can be written in the general form as
4(U) = [CJU-D =0 (32)

where [C],x, is the constraint matrix, p is the number of constraint equations, ¢ is the
number of variables and D is a vector of constants.
In the Lagrange multipliers method the potential function is appended with the revolute

joint constraints and we get

II = II* + AT¢(U) (33)
where, A = [A1,..., \,] are the Lagrange multipliers. The stationary of this functional II is
S = §T1* + sUT(CTA) + 60\ T (CU - D) =0 (34)

For arbitrary 6\ and JU the above equation gives

K 7T U F
RN 5
The advantage of Lagrange multiplier method is that the constraints are satisfied exactly

but this is at the expense of larger set of equations. This method also gives the magnitudes

of constraint forces since the Lagrange multipliers can be obtained by solving equation (35).
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6 Results and discussions

In this section, the degree of freedom and the redundancy of the joints/links are first obtained
for a hexagonal mast. The stiffness of the mast is then evaluated and the variation in stiffness
with addition of cables is presented. We also present the stiffness evaluation for an assembly

of four hexagonal masts.

6.1 Degree of freedom and redundancy evaluation

The hexagonal mast built out of SLE’s,is presented in figure 6. The mast has six SLEs.
Each SLE has 4 rigid link constraints and 6 SLE constraint equations at the pivot point.
Fixed boundary conditions are used at joint 1. The coordinates of joints of the mast are
presented in Table 1. The results of null space analysis of the constraint Jacobian matrix are
presented in Table 2. It is observed from the table that the dimension of null space reduces
on adding each SLE and the null space does not change for the last SLE. Hence, the last
SLE is redundant. The above analysis assumes spherical joints for the points connected by
the adjacent SLEs. The revolute joint constraints are added further for each face and null
space is evaluated. It can be observed from the table that the null space reduces for addition
of revolute joints on each face. The null space does not change for the revolute joints added
for the face 5 and face 6. Hence these joints are redundant.

By adding the boundary condition the mast will be a single degree of freedom system.
It can be observed that the last SLE and the revolute joints on the face 5 and face 6 are
redundant from the kinematic point of view. In order to reduce this mast to a structure
a cable can be added at any two successive joints. The simulation is further continued by
adding a cable between the joint 1 and joint 2. The null space dimension of the Jacobian

matrix is zero indicating that the mast a structure.
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Joints | X Coordinate(mm) | Y Coordinate(mm) | Z Coordinate(mm)
Joint 1 0.0 0.0 0.0
Joint 2 500.0 -866.0254 0.0
Joint 3 1500.0 -866.0254 0.0
Joint 4 2000.0 0.0 0.0
Joint 5 1500.0 866.0254 0.0
Joint 6 500.0 866.0254 0.0
Joint 7 0.0 0.0 700.0
Joint 8 500.0 -866.0254 700.0
Joint 9 1500.0 -866.0254 700.0
Joint 10 2000.0 0.0 700.0
Joint 11 1500.0 866.0254 700.0
Joint 12 500.0 866.0254 700.0

Table 1: Input data: coordinates of joints for hexagonal mast

Contents Size of [J] | Null Space Remarks
FSLE1 (20,39) 21
+ SLE 2 (28,42) 18
+ SLE 3 (36,45) 15
+ SLE 4 (44,48) 12
+SLE 5 (52,51) 10
+ SLE 6 (60,54) 10 SLE - 6 is redundant
+ FACE 1 (62,54) 8
+ FACE 2 (64,54) 6
+ FACE 3 (66,54) 5
+ FACE 4 (68,54) 4
+ FACE 5 (70,54) 4 Revolute joints are redundant
+ FACE 6 (72,54) 4 Revolute joints are redundant
+ Boundary conditions
(X1 =Y1=2,=0) (75,54) 1 Mechanism
+ Cable 1-2 (76,54) 0 Structure

Table 2: [J] matrix details for hexagonal mast
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Figure 6: Hexagonal SLE mast in the deployed configuration
6.2 Stiffness evaluation

In this section the stiffness matrix( see equation (24)) developed in previous section for the
SLE is used along with the Lagrange multiplier (see equation (35)) to evaluate the stiffness
of the mast.

Figure 7 shows the two-dimensional straight deployable structure consisting of four panto-
graph units presented in reference [14] and an active cable zig-zagging across the pantograph.
A constant tension spring keeps the active cable pre-tensioned in all configurations. The
structure is deployed from nearly flat 5 = 1.0 degree to the configuration shown in figure 7,
B = 45 degrees, by shortening gradually the active cable. The cables have AE = 1.5 x 10° N
and the pantograph units have AE = 3.5 x 10° N and EI, = 9.6 x 10'Nmm?. The length of
arm is 1000 mm. The tip stiffness of the assembly as it deploys is evaluated by applying two
forces of 0.5 N to top joints in X and Y directions. Figure 8 presents the axial and lateral
stiffness of the system. These results matches with those presented in literature [14].

Figure 9 shows a hexagonal mast in the deployed configuration. This mast has six SLEs

and the six cables in the top, six cables in the bottom and six vertical cables are connected
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Figure 7: Stacked SLE units of reference [14]

as shown in the figure. These cables are slack during deployment and becomes taut at the
end of deployment. The SLE and cables have the cross sectional area, A, of 138.23mm? and
1.0mm? respectively. the Young’s Modulus E of the SLE and cables are 70000.0 N/mm?
and 63000.0 N/mm? respectively. The second moment of inertia I,, of SLE is 8432.0 mm*.
An unit load is applied at joint 10. The stiffness of the mast due to these loads were found
to be 31.73N/mm, 138.72N/mm and 23.85N/mm in X, Y and Z direction respectively.

In order to study the sensitivity of the mast stiffness with cables the simulations were
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Figure 8: Axial and lateral stiffness during deployment

carried out by adding top, bottom and vertical cables individually and in combinations. The
results are presented in Table 3. It can be observed that the stiffness does not increase
significantly when either top, bottom or vertical cables are used individually. The stiffness
increases by more than 50% when top and bottom cables are used together. The stiffness
further increases by additional 30% or more when all three cables, namely top, bottom and
vertical, are used together. The stiffness in Y direction is found to be higher than in the

other two directions.
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Figure 9: Hexagonal SLE mast in the deployed configuration with cables

Figure 10 shows a deployed mast consisting of four hexagonal masts. This mast has

nineteen SLEs and the nineteen cables in the top, nineteen cables in the bottom and sixteen

vertical cables are connected as shown in the figure. Fixed boundary conditions are used

at joint 1. The coordinates of the bottom joints of the mast are presented in Table 4. The

other coordinates are symmetrical. The top coordinates are located at 700 mm along Z axis.

The cables are slack during deployment and becomes taut at the end of deployment. The

geometrical and material properties of the SLE and cables are same as in the example of the

single hexagonal mast presented earlier. An unit load is applied at joint 31. The stiffness of

the mast due to these loads were found to be 114.23N/mm, 326.64N/mm and 39.26N/mm

in X, Y and Z direction respectively.

In order to study the sensitivity of the mast stiffness with cables the simulations were

27



Stiffness in Stiffness in Stiffness in
X direction (N/mm) | Y direction (N/mm) | Z direction (N/mm)
Mast with top 24.27 53.24 11.32
or bottom cables
Mast with only 27.88 30.48 7.39
vertical cables
Mast with 28.61 98.36 18.33
top and bottom cables
Mast with 31.73 138.72 23.85
all cables

Table 3: Variation of stiffness with addition of cables for hexagonal mast

Joints | X Coordinate(mm) | Y Coordinate(mm) | Z Coordinate(mm)
Joint 1 0.0 0.0 0.0
Joint 2 200.0 -866.0254 0.0
Joint 3 1500.0 -866.0254 0.0
Joint 4 2000.0 0.0 0.0
Joint 13 2000.0 -1732.10 0.0
Joint 14 3000.0 -1732.10 0.0
Joint 15 3500.0 -866.0254 0.0
Joint 16 3000.0 0.0 0.0
Joint 27 4500.0 -866.0254 0.0
Joint 28 5000.0 0.0 0.0

Table 4: Input data: coordinates of joints for assembled hexagonal mast
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Figure 10: Assembly of four hexagonal masts in the deployed configuration with cables

carried out by adding top, bottom and vertical cables individually and in combinations. The
results are presented in Table 5. It can be observed that the stiffness does not increase
significantly when either top, bottom or vertical cables are used individually. The stiffness
increases by more than 55% when top and bottom cables are used together. The stiffness
further increases by additional 45% or more when all three cables, namely top, bottom and
vertical, are used together. The stiffness in Y direction is found to be higher than in the

other two directions.

7 Conclusions

In this paper, Cartesian coordinates and symbolic computations have been used for kinematic

and static analysis of three dimensional deployable SLE masts. The mobility of the masts
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Stiffness in Stiffness in Stiffness in
X direction (N/mm) | Y direction (N/mm) | Z direction (N/mm)
Mast with top 32.01 104.31 17.56
or bottom cables
Mast with only 40.46 81.17 10.28
vertical cables
Mast with 65.44 175.42 27.25
top and bottom cables
Mast with 114.23 326.64 39.26
all cables

Table 5: Variation of stiffness with addition of cables for assembled hexagonal mast

were evaluated from the dimension of null space of the Jacobian matrix formed by the
derivative of the constraint equations. The stiffness matrix for the SLE was obtained from the
constraint Jacobian. The stiffness matrix obtained by our approach is same as those obtained
with the force and displacement methods of literature. The main advantage of the constraint
Jacobian based approach are a) ease of obtaining the stiffness matrices, b) determination of
mobility and the redundant joints/links of the mast, and c) ease of incorporating revolute
joint constraints by using Lagrange multipliers. The stiffness due to cables, an integral part
of deployable masts, are also considered. The constraint Jacobian approach was used for the
analysis of a hexagonal mast and a assembled hexagonal mast, and the stiffness of the masts
in different directions were obtained. The approach presented in this paper can be extended

to masts of different shapes and to stacked masts.
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APPENDIX : STIFFNESS MATRIX FOR THE SLE

The matrices [J,,] and [J,] associated with the stiffness matrix for SLE are given by

X1-X, Yi-Y, Zi1-Z,
A I I . OX y OY ; OZ 0 0 0
a=| 0 0 X Yy Lk 0 0
m| = Xs-Xp, Ys-Y, ZsZ,
0 0 0 0 0 0 B & G
0 0 0 0 0 0 0 0 0
0 0 0 Xp—-X1 Yo-Yi  Zy—71
I 11 15
0 0 0 Xp—Xy Yp—Ys Zpy—Zo
l2 l2 2
0 0 0 Xp—X3 Yp—Ys Zp—Zs
! l l
XamX, YiVy Z4-Z, XpoXs YooVi Z,-Z4
la la lg la 4 la
0 Zp—Zn Yn—Yp 0 Zm—Zp Yp—Ym 0 Zn—"Jm Y —Y,
Iml Iml Iml Iml Inl Iml
[Jon] = Zin—Zp "6" Xp=- Xy Zp—Zim "6" Xon=Xp Ly — T ”Om XX,
mn Iml Imln Iml Imln Imln Imln
1/13'_?7"74 X"_XP 0 Yi— p XP_Xm 0 Yo—Ym Xm—=Xp O
Imln Imln lmln Imln Imln ImIn
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