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Abstract

This paper deals with an optimization based method for synthesis of adjustable planar four-
bar, crank-rocker mechanisms. For multiple different and desired paths to be traced by a point
on the coupler, a two stage method first determines the parameters of the possible driving
dyads. Then the remaining mechanism parameters are determined in the second stage where
a least-squares based circle-fitting procedure is used. Compared to existing formulations, the
optimization method uses less number of design variables. Two numerical examples demonstrate
the effectiveness of the proposed synthesis method.

Keywords: Adjustable four-bar mechanism, Approximate multi-path generation, Optimal synthe-
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1 Introduction

The classic path generation problem in four-bar mechanisms deals with obtaining linkage parame-
ters such that a given point on the coupler of the four-bar mechanism follows a prescribed path [1].
There are two types of path generation problems namely, point-to-point path generation and contin-
uous path generation. In the case of a planar four-bar mechanism, there are at most nine parameters
and one Boolean value which defines the mode of the linkage assembly [2] and in point-to-point
path generation the coupler point can be made to pass exactly through at most nine prescribed
precision points [3]. In continuous path generation the path is specified by a large number of points
(more than nine) and the coupler point may or may not pass through all of them exactly. The
continuous path generation problem is solved as an optimization problem, and one can obtain the
four-bar mechanism parameters [4, 5] which minimizes a desired objective function.

Adjustable mechanisms are capable of generating multiple paths with change in one or more
mechanism parameters and with essentially the same hardware. The changeable parameter can
either be length of one or more links or a change in the position of a fixed pivot [6]. As adjustments
are incorporated in the simple four-bar mechanism, the number of design parameters become more
than ten. The concept of adjustable four-bar mechanisms has a long history and one of the earliest
mention of an adjustable four-bar mechanism appeared in the text book by Tao [7] which showed
how an adjustable crank pivot in a four-bar mechanism can be used to generate variable straight
line motion.
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One of the first approaches towards synthesis of adjustable four-bar mechanisms was using
the well-known complex number method [8]. An analytical method with closed-form solution and
utilizing complex numbers to synthesize a four-bar path generator to generate two different paths
was suggested by McGovern and Sandor [9]. The method used three precision points on each path
with one point in common and the mechanism had an adjustable fixed pivot location. A graphical
procedure using the geometrical properties of the four-bar mechanism to generate variable coupler
curves, with cusps and double points, was suggested by Tao and Krishnamoorthy [10, 11]. Ahmad
and Waldron [12] presented an analytical technique for the synthesis of four-bar linkages with
adjustable driven crank pivot location to obtain variety of outputs. The two “phases” of motion
were obtained by different combinations of the given five design positions. Four-bar linkages with
fixed ground pivots and adjustable lengths for input and output links were synthesized by the use
of Burmester curves [13]. A novel method using a seventh-order polynomials for the synthesis
of four-bar adjustable slider-crank mechanism was suggested by Russell and Sodhi [14]. Their
method used radial displacement, velocity, acceleration and jerk profiles with prescribed boundary
conditions. A new procedure to synthesize variable coupler curve mechanism with one link replaced
by an adjustable screw-nut link and driven by servomotor was presented by Soong and Wu [15].
Different coupler curves are obtained by controlling the angular displacement of the driving link
and adjusting the length of adjustable links.

The continuous path design problem is non-linear in nature. With the advent of fast computers
and efficient algorithms for optimization, these non-linear design problems can be easily solved using
suitable numerical techniques. A genetic algorithm (GA) based optimization method was used by
Zhou and Ting [16] to design adjustable four-bar slider-crank mechanisms capable of multiple path
generation. The objective function for optimization was based on the position structural error
of the slider guider. Zhou and co-workers have also used genetic algorithms on objective function
based on driven link length structural error [17], optimal slider adjustment [18], and structural error
in the orientation of the fixed link [19]. Adjustable four-bar linkages with continuous adjustment in
one of the driven side links were also synthesized by Zhou et al. [20]. In a recent work on adjustable
four-bar mechanisms [6], a two stage design method was proposed. In the first stage, the driving
dyad is determined and in the second stage the driven dyad is obtained. Both design stages used
sequential quadratic optimization (SQP) algorithm [21] to search for the optimal design variables.

The most important step in the use of optimization based methods for continuous paths is the
formulation of an appropriate objective function and a choice of an efficient optimization method
to solve the synthesis problem. From the review of literature above, genetic algorithm based
optimization has been proposed by Zhou and co-workers. Genetic algorithms based optimization
is known to be slow and the objective functions used in GA based approaches uses large number
of variables. The work reported in this paper is closest to the work of Peng and Sodhi [6] and
we also use a two stage approach with sequential quadratic optimization (SQP) algorithm. In the
first stage, possible driving dyads are obtained which are then passed on to the second stage where
all other four-bar mechanism parameters are obtained. The objective functions of both stages are
based on the geometry of the four-bar mechanism. The main difference between this work and
reference [6] is that we use a least-squares based circle fitting procedure in the second stage which
results in less number of search variables which in turn results in more efficient optimization. In this
work, we propose a novel way to choose an initial guess making the optimization independent of
the initial guess. The method presented in this work can also be used for adjustment of all possible
four-bar parameters except the location of the fixed pivot – objective functions are provided for
adjustment of crank length, coupler length and angle and rocker length, and are directly formulated
in terms of linkage parameters. Finally, to the best of our knowledge this work presents the first
attempt in optimal design of adjustable four-bar mechanisms with adjustments in the driving side.
The proposed approach is illustrated with the help of two examples.

The paper is organized as follows: In section 2, for the sake of completeness, we define all the
variables associated with a planar four-bar mechanism and present well-known kinematic formulas
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dealing with position analysis. In section 3, we present the formulation of optimization schemes
and in section 4, we present a discussion on the choice of driving or driven side adjustments. In
section 5, we present numerical examples to illustrate our approach and in section 6, we present
the conclusions.

2 A Planar Four-Bar Mechanism

Figure 1: Schematic of a four-bar mechanism

The four-bar mechanism ABCDP with its parameters is shown in figure 1. The angles θ and δ
are measured relative to the X-axis and the angles φ and ψ are measured relative to the base AD.
The coupler angle β is measured relative to BC. The parameters l2 and l5 are referred to as the
driving side parameters, and the parameters β, l3, l4 and D(xD, yD) are referred to as the driven
side parameters throughout the paper. The location of the driving crank pivot A(xA, yA) remains
unchanged in our approach. Figure 1 also shows the sketch of a typical coupler curve traced by
P (xP , yP ). We assume that 50 to 1001 points are prescribed for each desired coupler path and we
use a superscript on the mechanism parameters to indicate the particular path. If lesser number of
points are prescribed, we can use spline interpolation to generate additional points in the desired
path.

For any dyad (or a planar 2R manipulator) shown in figure 2, the workspace of the end-point
lies in between two concentric circles [22]. The point A is the optimized crank pivot location and A
lies inside the desired coupler path if l2 > l5 and outside the path if l2 < l5 [6, 19]. This fact helps
in choosing fixed pivot A. For N given points, Pi(xPi , yPi), i = 1, 2, ..., N , on each coupler curve,

1The proposed methods also work for less number of points but larger number of points help in increasing the
accuracy of circle fitting used in Stage II of the design process. After extensive simulations we have found that 50-100
points give sufficient accuracy.
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we define
lmax = max {lP1 , lP2 , . . . , lPN

}
lmin = min {lP1 , lP2 , . . . , lPN

}

where, lPi =

√
(xA − xPi)

2 + (yA − yPi)
2 for i = 1, 2, . . . , N

(1)

Since the coupler point P is on the driving dyad, the curve traced by P must lie in the area between
two concentric circles with radii l2 + l5 and |l5 − l2| centered at the crank pivot A. The lengths l2
and l5 are computed such that the above two concentric circles are tangential to the coupler curve.
Hence, we must have,

lmax = l2 + l5

lmin = |l5 − l2|
(2)
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Figure 2: Driving dyad, workspace and crank angle

As the coupler point P moves along the path, the points B and C also change their positions
accordingly. For each Pi, θi, Bi and Ci, can be computed as follows:

The crank angle θi (∠BAX) is given as

θi = αi ± γi (3)

where αi is the orientation of
−−→
APi in XY -plane relative to the positive fixed X-axis and γi is given

by

γi = cos−1

(
l22 + l2Pi

− l25
2l2lPi

)
(4)

where lPi = ||
−−→
APi||, 0 ≤ (θi, αi) ≤ 2π and 0 ≤ γi ≤ π. The two possible values of the crank angle

in equation (3) are as shown in figure 2.
It may be noted that in one crank rotation, the crank crosses each of lmax and lmin lines once,

thus dividing the rotation into two parts. The sign of γi in one lmax to lmin part is opposite to that
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in the remaining lmin to lmax part. Thus for each phase we have two sets of θi. The positive sign
in equation (3) represents anti-clockwise rotation of crank and the negative sign in equation (3)
represents clockwise rotation of crank. If direction of rotation is not specified, appropriate θi must
be chosen.

For each path point Pi, using the crank angle θi, we can now find coordinates of B(xBi , yBi) as,

xBi = xA + l2 cos(θi)

yBi = yA + l2 sin(θi)
(5)

and the coordinates of point C(xCi , yCi) are given as,

xCi = xBi +
l3
l5

[(xPi − xBi)cos(β) + (yPi − yBi) sin(β)]

yCi = yBi +
l3
l5

[(yPi − yBi)cos(β)− (xPi − xBi) sin(β)]

(6)

where β is the angle in the coupler link as shown in figure 1.
With the above definition and kinematic equations, we next formulate the objective functions

used in our formulation.

3 Formulation of Objective Function

As mentioned earlier, the adjustable four-bar mechanisms can be broadly classified as a) driving
side adjustable, and b) driven side adjustable. The driving side adjustable mechanisms can be
sub-classified as adjustable crank length mechanism and adjustable l5-link length mechanism. The
driven side adjustable mechanisms can sub-classified as adjustable rocker link pivot mechanism,
adjustable rocker link length mechanism, adjustable coupler link length mechanism and adjustable
coupler angle mechanism. The design process for each of these types is divided into two stages.
The first stage is to design the driving dyad and in the second stage the design of the remaining
elements of the mechanism is done. In driving dyad design we find optimal location of crank pivot
A (xA, yA), length of crank, l2, and the length l5 in the coupler such that the workspace boundaries
are tangential to the paths under consideration.

The main idea used in the formulation of the minimization objective function in the second
stage is that the locus traced by the point C, as the point P moves along the coupler path, is a
circular arc. The minimization objective function is the residual error obtained by circle fitting all
the points Ci corresponding to coupler path points Pi. The algorithm used for least-squares circle
fitting is from Gander et al. [23].

3.1 Driving side adjustable mechanisms

Stage I
In this stage the driving dyad parameters and fixed crank pivot location is determined. The
workspace for the driving dyad changes with the adjustment on the driving side which is achieved
by changing l2 or l5. The optimal location of the driving crank pivot A is to be determined. The
objective functions for each type of adjustment are given below.

Type I: Adjustable crank length mechanism
The length, l5, remains fixed for all the paths traced by the coupler point P . The change in the
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workspace of the driving dyad is achieved by changing the length of the crank, l2. For the case
l2 < l5, the formulation of the objective function, for the ith path, is given below.

li5 =
limax + limin

2

li2 =
limax − limin

2
l5 = max

{
l15, l

2
5, . . . , l

m
5

}
li21 = limax − l5 and li22 = l5 − limin

(7)

where m is the total number of given paths to be traced by the coupler point of the four-bar
mechanism and the lengths limax and limin are calculated using equation (2).

Since length l5 remains fixed even after adjusting the mechanism, we must have for the ith and
jth coupler paths,

li5 − l
j
5 = 0 ∀i 6= j and i, j ∈ {1, 2, . . . ,m}

For each individual ith coupler path the corresponding crank length li2 remains fixed. Hence, we
must have

li2 − li21 = 0 and li2 − li22 = 0

From above we can write the optimization problem with i, j, and k indices representing different
coupler paths as2,

Minimize :

S (xA, yA) =
m−1∑
i=1

m∑
j=i+1

(
li5 − l

j
5

)2
+

m∑
k=1

(
lk21 − lk2

)2 (8)

Subject to the following constraints:
Constraint 1 : Search space restriction for xA and yA

xA ∈ [xmin, xmax] and yA ∈ [ymin, ymax] (9)

Constraint 2 : The crank angle should always increase or decrease as P advances along the coupler
curve. The conditions for the counter-clockwise and clockwise rotation of the crank respectively
are,

θi(q+1) − θ
i
q > 0

θi(q+1) − θ
i
q < 0

for q = 1, 2, . . . , N − 1

(10)

where, N is the total number of points P i
q on the given ith coupler path and each θq is calculated

using equation (3). It may be noted that one of the conditions in equation (10) also needs to be
satisfied.
Constraint 3 : The maximum l5 must satisfy

li5 < l5max (11)

Type II: Adjustable l5-link length mechanism
In this type of adjustment, the crank length l2 remains fixed for all the paths traced by the coupler

2In the objective function
(
lk22 − lk2

)2
can also be used in place of

(
lk21 − lk2

)2
.
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point P . The change in the workspace of the driving dyad is achieved by changing the length l5 in
the coupler link. For l2 < l5 case, the formulation of the objective function is given below. For the
ith path, we have

li5 =
limax + limin

2

li2 =
limax − limin

2
l2 = max

{
l12, l

2
2, . . . , l

m
2

}
li51 = limax − l2 and li52 = l2 + limin

(12)

where, m is the total number of given paths to be traced by the mechanism. The lengths limax and
limin are calculated using equation (2). Since l2 remains fixed even after adjusting the mechanism,
we must have for the ith and jth coupler paths,

li2 − l
j
2 = 0 ∀i 6= j and i, j ∈ {1, 2, . . . ,m}

For each individual ith coupler path, the corresponding length li5 remains fixed. Hence, we must
have

li5 − li51 = 0 and li5 − li52 = 0

From above we can write the optimization problem with i, j, and k indices representing different
coupler paths as3,

Minimize :

S (xA, yA) =

m−1∑
i=1

m∑
j=i+1

(
li2 − l

j
2

)2
+

m∑
k=1

(
lk51 − lk5

)2 (13)

Subject to the constraints (9), (10), and (11) given above.
In both types of adjustment, (xA, yA) are the optimization variables. The optimization is carried

out using the SQP algorithm. It is known that the SQP converges to the local minimum nearest
to the starting point. Hence, to get the best solutions the search space is divided into several
sub-intervals and the mid-point of the each sub-interval is taken as the starting point for the opti-
mization in the corresponding sub-interval. The method gives a single solution for each sub-interval
and hence we get a large number of solutions for all the sub-intervals. To sort out the best driving
dyads we select solutions which have objective function value, S, less than a user chosen maximum
value of error Smax. The Constraint 3 given in (11) above may be applied separately after the
optimization. The best solutions for the driving dyad are used to synthesize the remaining part
of the four-bar mechanism. It should be noted that Stage I optimization only gives the possible
locations of fixed pivot A. The exact location of A and the remaining mechanism parameters are
determined after performing Stage II optimization.

Stage II
In this stage, the dimensions of the coupler link l3, rocker link l4 and coupler angle β as well as
the location of the fixed pivot D are determined. For the adjustable type of mechanisms stated
above, the location of the fixed pivot is independent of the path and remains fixed throughout. The
locus of C will be circular arcs belonging to a common circle for all the paths traced by point P of
the four-bar mechanism. The common circle will be centered at D and has radius l4, and a single
circle is fitted through all the points C obtained from all the given coupler paths. Using the crank
length and length l5, the location of point C corresponding to each of the jth path point P i

j on the

3In the objective function
(
lk52 − lk5

)2
can also be used in place of

(
lk51 − lk5

)2
.
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ith coupler path can be found out using the formulation in equation (6). The coupler angle β and
the coupler link length l3 are the parameters which are optimally determined. The optimization
problem can be formulated as,

Minimize :

f (l3, β) =
m∑
i=1

N∑
j=1

(√(
xiCj
− a
)2

+
(
yiCj
− b
)2
− r

)2
(14)

where, (a, b) is the center and r is radius of the circle on which the locus of C lies.

Subject to the following constraints:
Constraint 1 :

li2 < l3 ≤ l3max (15)

Constraint 2 :
0 ≤ β < 2π (16)

Constraint 3 :
li2 < l4 and li2 < l1 (17)

Constraint 4 : For link CD to be a rocker, the angular sweep of link CD should be less than π
radians.

ψmax − ψmin < π (18)

Constraint 5 :
Grashof’s criterion for crank-rocker type mechanism [4] should be satisfied for each ith path.

The objective function f in (14) is the least-squares error obtained by circle fitting the points
Cj . The least-squares circle fitting algorithm given in Gander et al. [23] is used to determine
(a, b, r). As mentioned earlier, the SQP algorithm is used for optimization with the search space
divided into several sub-intervals with mid-point of the each sub-interval is used as the starting
point of optimization in the respective sub-interval. Once the optimal circle is determined we get
the remaining parameters as,

fixed pivot D = (a, b)

l4 = r

l1 =

√
(xA − a)2 + (yA − b)2

δ = atan2 (b− yA, a− xA) with δ ∈ [0, 2π)

(19)

The Stage II is performed for each of the selected driving dyad. The combined best solution
after performing Stages I and II is the minimum sum of both cost functions, i.e., (S + f)min.
Miscellaneous constraints related to the actual physical characteristics of the application in which
the mechanism is applied may also be incorporated during the optimization process or during the
selection of mechanism.
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3.2 Choice of Smax

As stated in (3) and (4), θi depends on l2 and l5 through γi. Once the optimal location of pivot A is
determined, l2 and l5 are calculated for a particular coupler curve. In adjustable crank-length case,
pivot A is optimally determined such that the parameter l5 calculated as in (7) remains same for all
the coupler curves. The changeable crank-length parameter for a particular coupler curve can be
l21 or l22 and we choose the value used in the corresponding objective function to ensure least error
in γi. Pivot A is searched in multiple sub-intervals and a list of solutions with objective function
values less than Smax is passed to Stage II. The value of Smax decides the number of solutions we
want to pass to the Stage II and Smax is chosen by the examining the list of solutions obtained
after Stage I4 so that the above mentioned conditions are approximately satisfied. The value of
Smax for adjustable l5 is chosen in a manner similar to the adjustable crank case.

3.3 Driven side adjustable mechanisms

The driven side adjustable mechanism is also designed in two stages. Referring to [6], the Stage I
is given as below.

Stage I
To first design the driving dyad ABP , the optimal driving crank pivot location A needs to be
determined. As the workspace of the driving dyad remains fixed for all the given paths, lmax and
lmin, remain fixed throughout. The optimization problem with i and j indices representing different
coupler paths can be formulated as follows

Minimize :

S (xA, yA) =

m−1∑
i=1

m∑
j=i+1

[(
limax − ljmax

)2
+
(
limin − l

j
min

)2] (20)

Subject to the constraints (9), (10), and (11) given earlier.
The optimization variables are (xA, yA). The procedure for search and selection of best driving

dyads is same as described in Stage I of driving side adjustable mechanisms given in sub-section 3.1
with li2 = l2 and li5 = l5 as l2 and l5 are same for all coupler curves. Once the optimal pivot point
A is determined, we can find l2 and l5 for the case l2 < l5 as

l2 =
lmax − lmin

2
and l5 =

lmax + lmin

2

where lmax = max
{
l1max, l

2
max, . . . , l

m
max

}
and lmin = min

{
l1min, l

2
min, . . . , l

m
min

}
.

Stage II
The remaining mechanism parameters are optimally determined in the same way as described in
Stage II of driving side adjustable mechanisms but, the objective functions are different for different
type of adjustment. The sub-classifications and optimization problem for each sub-type are given
below.

Type I: Adjustable rocker link pivot mechanism
In this type, the position of fixed pivot D is variable, but the length of link CD remains same. Since
m-paths are to be traced, the movable pivot C will trace m−different circular arcs on m−different

4After extensive simulation it was found that Smax ≤ 10−2 was adequate.
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circles with centres D1, D2, . . . , Dm but with the same radius r. The number of unknown parame-
ters is 9 + (D2, D3, . . . Dm) or 9 + 2(m− 1) or 7 + 2m and optimization variables are, u = (l3, β).
The optimization problem with index i representing the coupler path, index j representing the path
point on the ith coupler path, (ai, bi) denoting the center of the circles and r denoting the common
radius on which the loci of C lies, can be stated as,

Minimize :

f (l3, β) =

m∑
i=1

N∑
j=1

(
√

(ai − xiCj
)2 + (bi − yiCj

)2 − r)2
(21)

Subject to the constraints (15), (16), (18), satisfaction of Grashoff’s criterion for crank-rocker given
above and (17) replaced by l2 < l4 and l2 < li1. The points Cj

(
xCj , xCj

)
are determined using

equation (6) given above. The cost function f is the least-square residue error obtained during cir-
cle fitting. To get the minimum f in the sub-interval, we need to get (a1, b1, a2, b2, . . . , am, bm, r) at
the optimum point in the sub-interval. During each iteration in the sub-interval, the optimization
problem is converted into a non-linear least-squares problem with (a1, b1, a2, b2, . . . , am, bm, r) as
unknowns. The non-linear least-squares problem is solved using Gauss-Newton method [24] which
needs a starting value for the unknowns. The procedure for obtaining the unknowns is as follows:

Step 1: The set of Cis for each coupler paths are separately circle fitted to obtain (ais, bis, ris) for
each path.

Step 2: Non-linear least-squares problem given in (21) is formed with (a1, b1, a2, b2, . . . , am, bm, r)
as unknown variables. The starting value of the unknowns for the centre are the output of the
Step 1. The starting value for the radius r may be either min{r1s, r2s, . . . , rms} or mean ris. Step 2
gives the values for the unknowns for the corresponding optimization iteration in the sub-interval.
Using these values and equation (21) we can calculate cost function f for each optimization iteration.

The remaining mechanism parameters can be calculated using,

Di = (ai, bi), l4 = r,

li1 =

√
(xA − ai)2 + (yA − bi)2,

δi = atan2 (bi − yA, ai − xA) with δi ∈ [0, 2π)

(22)

Type II: Adjustable rocker link length mechanism
In this type, the length of link CD is variable but fixed pivot D remains unchanged for all the
m paths. Hence, the movable pivot C will trace m different circular arcs on m different circles
with same center D but different radii. The number of unknown parameters are 9 + (l24, l

3
4, . . . l

m
4 )

or 8 + m, and the optimization variables are u = (l3, β). The optimization problem with index i
representing the coupler path, index j representing the path point on the ith coupler path, (a, b)
denoting the common center of the circles and ri denoting the radius of the circles on which the
loci of C lies, can be stated as

Minimize :

f (l3, β) =
m∑
i=1

N∑
j=1

(
√

(a− xiCj
)2 + (b− yiCj

)2 − ri)2
(23)

Subject to the constraints (15), (16), (18), satisfaction of Grashoff’s criterion for the crank-rocker
mechanism given above and (17) replaced by l2 < li4 and l2 < l1. The points Cj

(
xCj , xCj

)
are
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determined using equation (6) given above.

Similar to Type I formulation, here we have to find the values of unknowns (a, b, r1, r2, . . . , rm).
The task is to find the starting values of the unknown variables for the Gauss-Newton method.
The Step 1 to find the starting values is same as for Type I above. The Step 2 is as given below:

Step 2: Non-linear least-squares problem formed using equation (23). The starting values for the
unknowns are (as, bs, r1s, r2s, . . . , rms) , where,

as =

m∑
i=1

ais

m
and bs =

m∑
i=1

bis

m

The remaining mechanism parameters can be calculated using

D = (a, b) li4 = ri,

l1 =

√
(xA − a)2 + (yA − b)2,

δ = atan2 (b− yA, a− xA) with δ ∈ [0, 2π)

(24)

Type III: Adjustable coupler link length mechanism
In this type, the length of link BC is variable and all the other parameters remain unchanged for
all the m paths. Hence, the movable pivot C will trace circular arcs belonging to the same circle.
The number of unknown parameters are 9 +

(
l23, l

3
3, . . . , l

m
3

)
or 8 +m and the optimization variables

are, u = (l13, l
2
3, . . . , l

m
3 , β). The optimization problem can be stated as

Minimize :

f
(
l13, l

2
3, . . . , l

m
3 , β

)
=

m∑
i=1

N∑
j=1

(
√

(a− xiCj
)2 + (b− yiCj

)2 − r)2
(25)

Subject to the constraints (16), (17), (18), satisfaction of Grashoff’s criterion given above and (15)
replaced by l2 < li3 ≤ l3max and where Cj

(
xCj , xCj

)
are determined using equation (6) given above.

The remaining mechanism parameters can be calculated using equations (19).

Type IV: Adjustable coupler angle mechanism
In this type, the coupler angle β is variable and all the other parameters remain unchanged for all
the paths. Hence, the movable pivot C will trace circular arcs belonging to the same circle. The
number of unknown parameters are 9 + (β2, β3, . . . , βm) or 8 + m, and the optimization variables
are, u = (l3, β1, β2, . . . , βm). The remaining procedure is same as in Type III except constraint
in (16) is replaced by 0 ≤ βi < 2π. The solution selection criterion is same as for driving side
adjustable mechanisms given in sub-section 3.1.

The above optimization formulations are for l5 > l2. The same formulations are also valid for
l5 < l2 case.

4 Selection of Adjustment Type

In this section we provide some rationale for the designer in the selection of the adjustment method.
The selection can be based on the qualitative nature of the coupler curves and their change when
one of the parameter is changed. The selection can also be based on minimizing the error between
the desired and the path actually obtained by the adjustable mechanism. Both these aspects are
discussed next.
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4.1 Qualitative Behavior of Coupler Paths

The effect of various parameters on the coupler curve have been studied by several authors (see,
for example the Atlas of coupler curves of planar four-bar mechanism by Hrones and Nelson [25]
and the work in the references [26, 27]). The main observations are summarized below.

• The workspace boundaries are changed whenever crank-length l2 or length l5 is changed.
For crank-length adjustable mechanisms for the case l5 > l2 using equation (2) we have,
l2max > l1max and l2min < l1min for l22 > l12. The first workspace is completely enclosed by the
second workspace.

• The increase or decrease in crank-length correspondingly increases or decreases the size (height
and width) of the coupler curve but the shape of the curve is not much changed. In this case,
the bigger coupler curve completely encloses the smaller one as shown in figure 3(a). The
observation regarding crank-length adjustment also hold for the l5 < l2 with the difference
that l2min > l1min.

• For l5 length adjustable mechanisms for the case l5 > l2 using equation (2) we have, l2max >
l1max and l2min > l1min for l25 > l15. The first workspace and the second workspace have some
area in common.

• The change in l5 also changes the size of the coupler curve but the shape is almost retained.
The bigger size coupler curves do not completely enclose the smaller size coupler curves (see
figure 3(b)). The observation regarding l5 length adjustment also hold for the l5 < l2 with
the change that l2min < l1min.

• By changing only the base link-length, the shape is changed but the size is not much changed.
This is shown in figure 3(c).

• By changing the base link angle δ, both the shape and size of the coupler curve is retained
but the position of the curve in the plane is changed as shown in figure 3(d).

• By changing both the base link-length and base angle, the shape, size and position of the
curve in the plane is changed (see figure 3(e)).

• By changing the output side link-length i.e length of rocker l4, the shape and size of the curve
are almost retained but the position of the curve in the plane is changed as shown in figure
3(f).

• By changing the coupler link-length l3, the shape and position of the curve in the plane is
almost retained, but the size of the curve changed markedly as shown in figure 3(g).

• By changing the coupler angle β, the shape, size and position of the curve in the plane are
all changed markedly (see figure 3(h)).

It maybe noted that all the cases are qualitative and the figures are for a typical four-bar
mechanism. The chosen fixed as well as the variable dimensions are stated in the respective figures.
The above cases often help in deciding the type of adjustment required in a four-bar mechanism to
achieve multiple path generation.
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Figure 3: Qualitative behavior of coupler curves with adjustments of parameters
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4.2 Error Computation

This sub-section deals with the quantitative approach towards selection of the adjustable mecha-
nism. This is useful when the selection of adjustment method cannot be ascertained qualitatively.
For example, in case of driven side adjustment when the workspace remains the same and we cannot
qualitatively identify the adjustment method then, the Stage II optimization process is applied for
each type of adjustment and adjustment type with minimum optimization cost function value f
is chosen. It may happen that one or more of the optimization constraints in Stage II of design
procedure may be violated disqualifying the particular adjustment method. The procedure is il-
lustrated in example 2 in section 5. With respect to figure 1, input-output equation [4, 28] for the
planar four-bar mechanism is given as,

ψi = −δ + 2 tan−1

(
−R±

√
Q2 +R2 − S2

S −Q

)
(26)

where,
Q = 2l1l4 cos(δ)− 2l2l4 cos(δ + φi)

R = 2l1l4 sin(δ)− 2l2l4 sin(δ + φi)

S = l21 + l24 + l22 − l23 − 2l1l2 cos(δ) cos(δ + φi)− 2l1l2 sin(δ) sin(δ + φi)

(27)

The coordinates of point B(xBi , yBi), D(xD, yD) and C(xCi , yCi) can be written as,

xBi = xA + l2 cos(δ + φi)

yBi = yA + l2 sin(δ + φi)

xD = xA + l1 cos(δ)

yD = yA + l1 sin(δ)

xCi = xD + l4 cos(δ + ψi)

yCi = yD + l4 sin(δ + ψi)

(28)

The coordinates of coupler point PCi(xPCi
, yPCi

) (i = 1, 2, . . . , 100) can be written as,

xPCi
= xBi +

l5
l3

[(xCi − xBi) cos(β)− (yCi − yBi) sin(β)]

yPCi
= yBi +

l5
l3

[(xCi − xBi) sin(β) + (yCi − yBi) cos(β)]

(29)

where we assume that the generated path using the synthesized mechanism is given in terms of
1005 points.

Let P (xPj , yPj ) be a data point of a coupler path. The error in the jth data point for the kth

coupler path is given by,

ekj = min{ej1, ej2, . . . , eji, . . . , ej100}

eji =
√

(xPCi
− xPj )

2 + (yPCi
− yPj )

2, i = 1, 2, . . . , 100, j = 1, 2, . . . , Nr, k = 1, 2, . . . ,m

(30)

5The number 100 is arbitrarily chosen for determining the maximum error between the coupler curves obtained
from the given path points and the coupler curves obtained from the synthesized adjustable mechanism. It can be
chosen to be more or less depending on the complexity of the coupler curve. The number 100 was found to be
reasonable after extensive simulations.
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where Nr is the number of data-points given initially to represent each coupler path and m is the
number of coupler paths to be traced. The maximum error and the total error for the kth coupler
path is given as,

Ek
max = max{ek1, ek2, . . . , ekj , . . . , ekNr

}

Ek
path =

Nr∑
j=1

ekj
(31)

The total error for all the m coupler paths is given by,

ETotal =
m∑
k=1

Ek
path (32)

If the adjustment cannot be chosen from using the minimum value of f then once the mechanism
parameters are obtained from the optimization procedures (see sections 3.1 and 3.3), the total
error for each adjustment can be computed as above and the adjustment method with minimum
ETotal can be used.

5 Results and Discussion

To demonstrate the use of the proposed method we give two examples, one for each adjustable
driving side mechanism and adjustable driven side mechanism. Simulations were done using 64-bit
MATLAB R2011b on computer with Intel Core-2-Quad 2.40 GHz processor and 4 GB RAM. The
optimization was done using ’fmincon’ function of MATLAB [29].

5.1 Example 1

The first example we present is the simulation of a human stride. This may be used for designing the
adjustable four-bar mechanism needed to generate the basic stride path for an exercising machines
such as the one given in [30]. The human stride traces an approximate “D” shaped curve [26].
The straight portion of the “D” represents the stride-length. In this example, we design a single
adjustable mechanism which can trace three different stride-lengths. The stride lengths are selected
as 40 cm, 54 cm and 70 cm and the height of the “D” is chosen to be one-fifth of the stride-length
with reference to the Hoecken’s mechanism (see [26]). Since the workspace is different for each
different stride-length, we need a crank or an adjustable mechanism where l5 is changeable (see
section 4) and we choose to design a crank-length adjustable mechanism. The curved portion of the
“D” is assumed to be part of an ellipse and for the three paths, the curved portions are represented
as below.

Path 1 = (a1 cos t, 4 + b1 sin t)

Path 2 = (a2 cos t, 2.25 + b2 sin t)

Path 3 = (a3 cos t, b3 sin t)

with ∈ [0, π] , a1 = 20, b1 =
2a1
5

a2 = 27, b2 =
2a2
5
, a2 = 35, and b3 =

2a3
5

The straight portion of the “D” for the three paths are on y = 4 for Path 1, y = 2.25 for Path 2
and y = 0 for Path 3. Each path is specified by 20 data points. The path is further refined to 50
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Figure 5: Example 1 – Locus of C

points using spline interpolation.

Stage I optimization
We have xA ∈ [−100, 100] and yA ∈ [−100, 100]. Both intervals are divided into 40 sub-intervals
each. Applying the theory given in sub-section (3.2), the value of Smax is chosen to be 0.01,
l5max < 90 and li2 < 20 which results in 21 possible locations of pivot A. Output of the optimiza-
tion are:
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Value of the cost function, S = 0.0023
Coordinates of A (15.271,−80.0000) l12 = 5.2428, l22 = 6.991, l32 = 9.236, l5 = 89.246

If we apply coupler extension-link adjustment method, the lowest value of function S is 25.563
which contradicts the theory given in sub-section (3.2) and is disqualified immediately This also
shows the importance of qualitative analysis of the adjustable methods.

Stage II optimization
In this case, l3 ∈ [20, 150] is divided into 15 sub-intervals and β ∈ [0, 2π] is divided into 4 sub-
intervals. The output of the second optimization are:
Value of the cost function, f = 11.0268
l1 = 19.980, l3 = 29.740, l4 = 24.750, β = 0.3146 rad, δ = 2.3803 rad where all dimensions
are in centi-metres (cm).

The three coupler paths share all the parameters except the crank-length l2. Figure 4 shows the
generated and desired paths and figure 5 shows the locations of point C corresponding to the points
P on the coupler curves at the optimum point. The circle plotted is the best fitting circle as per
[23] for the distribution of C’s at the optimum point. The error at each path point is calculated as
per section 4.2. The maximum error for each path is as follows:
For path 1, E1

max = 2.8592 which is 7.15% of the stride length,
For path 2, E2

max = 3.0108 which is 5.58% of the stride length, and
For path 3, E3

max = 1.5172 which is 2.17% of the stride length.
The time taken for Stage I is 67 seconds and for Stage II is 1150 seconds.

5.2 Example 2

This second example has been originally studied in [6]. We show that our approach using less
number of search variables yields similar results. The given 20 data points are refined to 50 points
using spline interpolation. Both the coupler curves have the same workspace but, the method of
adjustment is not clear. To choose the adjustment method we apply Stage II for each type of
adjustment.

Stage I optimization
We have xA ∈ [−20, 20] and yA ∈ [−20, 20]. Both intervals are divided into 20 sub-intervals each.
Applying the theory given in sub-section (3.2) the value of Smax is chosen to be 0.003 which results
in 9 possible locations of pivot A.

Stage II optimization
The interval l3 ∈ [3, 20] divided into 4 sub-intervals and β ∈ [0, 2π] is divided into 4 sub-intervals.
The value of cost function and total error for each type is given in Table 1.

Type I and Type II mechanism give acceptable result but Type III and Type IV are disqualified
due to constraint violation in Stage II optimization. Output after both stages of optimization for
each type of adjustment is tabulated in Table 1. Since, value of f as well as ETotal is the least for
adjustable pivot or Type I adjustment, we choose it to synthesize the mechanism.

The two coupler paths share all the parameters except the fixed rocker link pivot D. Figure 6(a)
shows the generated and desired paths and figure 6(b) shows the locations of point C corresponding
to the points P on the respective coupler curves at the optimum point. The circles plotted is the
best fitting circles as per [23] for the distribution of C’s at the optimum point for both the paths.
The error at each path point is calculated as per section 4.2.

The time taken by Stage I is 11 seconds and by Stage II is 54 seconds. The optimization in Stage
II has been carried out with 5, 6, 7 and 8 sub-intervals for the variable β and it was observed that
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Parameter
Mechanism Type I Mechanism Type II

Path 1 Path 2 Path 1 Path 2

Pivot A (0.000,−18.000) (0.000,−18.551)

l1 9.850 15.290 10.739

l2 3.0562 3.0645

l3 9.874 10.000

l4 9.992 7.1874 5.0508

l5 19.398 19.9342

β 6.266 rad 0.0000 rad

δ 2.583 rad 2.451 rad 2.2026 rad

Pivot D (−8.352,−12.771) (−11.783,−8.259) (−6.3422,−9.8856)

S 0.000733 0.000641

f 0.157 34.884

Epath 1.987 1.813 15.532 12.673

ETotal 3.800 28.205

Table 1: Comparison of Type I and Type II adjustments
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the final solution does not change. However, as expected the time taken for optimization increases
with the increase in the number of sub-intervals.

6 Conclusion

The article presents a new optimization based methodology for synthesising adjustable planar four-
bar mechanisms for approximate multi-path generation. The adjustments can be made in both the
driving side and driven side of the mechanism. The objective functions used in the optimization
process for synthesising various parameters uses the least possible number of variables – the most
common type of adjustments, the crank and coupler extension length adjustment for the driving side
and rocker-link and rocker-link fixed pivot adjustment for the driven side of a four-bar mechanism
uses only two optimization variables for optimization at each stage. The method uses least-squares
based circle fitting technique. Various constraints are suggested to sort the appropriate mechanism
and the method does not require starting point to be given by the user for the SQP optimization
used. Several criteria regarding selection of the choice of adjustment method has been discussed
and presented. The suggested method is capable of synthesising adjustable mechanism for more
than two paths. The proposed method is illustrated using two examples and for these examples,
the results are within reasonable error limits.
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Figure 1: Schematic of a four-bar mechanism
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(d) Base link angle adjustment
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(e) Base link-length and angle adjustment
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(f) Rocker link-length adjustment
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(g) Coupler link-length adjustment
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Figure 3: Qualitative behavior of coupler curves with adjustments of parameters
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Figure 4: Example 1 – Generated and desired paths

27



−30 −20 −10 0 10 20 30
−90

−85

−80

−75

−70

−65

−60

−55

−50

−45

x

y

 

 

Locus of C

Figure 5: Example 1 – Locus of C

28



−6 −4 −2 0 2 4
−4

−3

−2

−1

0

1

2

3

4

5

x

y

 

 

Path 1
Path 2
Generated Path

(a) Generated and desired path
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Figure 6: Example 2

29


