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Abstract

An optimization based method is presented for the synthesis of adjustable spherical four-link
crank-rocker mechanisms for approximate multi-path generation. The synthesis is done in two
stages, first the driving dyad of the spherical mechanism is determined and then the remaining
parameters are determined. The method uses a least squares based plane fitting procedure and
this result in less number of design variables for optimization than existing approaches. Two
numerical examples, including one dealing with generating two different trajectories of a flapping
wing micro air vehicle, are presented to demonstrate the effectiveness of the proposed synthesis
method.

Keywords: Approximate synthesis, Adjustable spherical four-link mechanism, Multi-path gener-
ation, Optimization, Least-squares based plane fitting.

1 Introduction

In spherical mechanisms, the motion all links as well as the coupler path traced by the mechanism
lie on the surface of a sphere and, at any moment, each link of the mechanisms is part of a
great circle on the sphere. In this paper, we deal with the simplest spherical mechanism with
four links and revolute (R) joints (also known in literature as a 4R-spherical mechanism) with all
R joint axes intersecting at the centre of the sphere [1, 2]. Spherical mechanisms have a wide
variety of applications such as spherical wrists [3], surgical robots [4], flapping- wing micro air-
vehicle [5], grippers [6], in the swiveling fans [7], camera orienting device [8] (“Agile Eye”) and space
applications [9]. In all these applications, orientation of an object is the principle requirement, and
instead of using complex multi-degree-of-freedom robots, it is often possible to use a single degree-
of-freedom spherical mechanism to perform the orientation task.

Path generation is a classical problem in spherical four-link kinematics. It consists of designing
for linkage parameters such that a given point of the mechanism, usually the coupler point, follows
a prescribed path [1, 10]. There are two types of path generation problems namely, point-to-point
path generation and continuous path generation. In point-to-point path generation the coupler
path is specified by small number of points and the coupler point is made to exactly pass through
all of them. For a spherical four-link mechanism the coupler point can exactly pass through nine
points on the surface of the sphere [11]. In continuous path generation, the coupler path is specified
by large number of points (much more than nine) and the task is to design the mechanism such
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that the path traced by the coupler point approximately passes through all of them. Spherical
path generation is a non-linear design problem which is generally difficult to solve. In this paper,
we convert the non-linear design problem into a simpler optimization problem and solve using
appropriate numerical techniques.

Compared to the extensive work done in synthesis and design of planar mechanisms, a more
modest amount of work has been done in design of spherical mechanism for point-to-point and con-
tinuous path generation. The design of 4R-spherical mechanisms using instantaneous screw axes
(ISAs) and curve matching techniques are mentioned in the work by Sodhi and co-workers [12, 13].
Synthesis of 4R-spherical path generators using the pole method was done by Tong and Chiang [14].
Spherical four-link mechanisms for finite positions are synthesized by combining traditional preci-
sion theory with modern approximate position synthesis in work by Bodduluri and McCarthy [15].
Computer aided design software for 4R-spherical mechanism design based on Burmester’s theory
is described in Ruth and McCarthy [16]. Four-link path generators were synthesized using method
based on numerical continuation [17] and constrained least square optimization [18]. A triangular
nomogram for symmetrical coupler curves generated by spherical four-link crank-rocker mecha-
nisms with special dimensions was presented in the work by Lu [19]. The harmonic properties of
coupler curves have been used to prepare an atlas of spherical four-link generators to aid mecha-
nism design [20, 21] and optimization based on differential evolution algorithm has been used for
synthesis spherical 4R mechanism [22]. A computer aided methodology for the manufacture of
spherical mechanisms is discussed in reference [7] and a review of recent advances and trends in
spherical mechanisms research are listed in the work by Liu and Yang [23].

Adjustable mechanisms are a class of mechanisms in which different paths (orientations in
case of spherical mechanisms) can be achieved by changing one of the mechanism parameters [24].
Very little work on adjustable spherical mechanism synthesis is available in literature. Adjustable
spherical 4R linkages with fixed ground pivots and adjustable lengths for input and output links
for five position synthesis by the use of Burmester curves was proposed by Hong and Erdman [25].
The method can be extended to six position synthesis with adjustable ground pivot locations. A
method based on plane-to-sphere and sphere-to-plane projections was developed by Lee [24]. Lee et
al. [26] describes a least squares minimization technique to synthesize two phase adjustable spherical
mechanisms for approximate path generation and path generation using adjustable crank-lengths
of spherical four-link mechanisms is suggested in [27]. A new chaos fractal based algorithm for
path synthesis of adjustable spherical 4R mechanism is presented in reference [28].

The synthesis of four-link adjustable mechanisms has been done in the planar domain by an op-
timization based two stage process [29]. The first stage determines the driving dyad and the second
stage determines the driven dyad. The sequential quadratic programming (SQP) algorithm [30] is
used to search for the optimal design variables which are the Cartesian coordinates of the joints.
In a more recent work, an efficient two stage optimization process based on circle fitting has been
proposed [31]. A similar kind of optimization based approach is suggested for synthesis of spherical
4R mechanism in this work. In this paper, a least squares plane fitting based formulation is sug-
gested. The paper deals with single adjustment, either on the driven or driving side, in one of the
spherical 4R mechanism parameters (except the crank pivot) to approximately generate multiple
paths. This paper also presents a novel technique to indirectly calculate some of the mechanism
parameters thereby reducing the number of variables required for optimization. The SQP opti-
mization algorithm involving minimum number of optimization variables is used in the formulation
of objective function for each type of adjustment. To the best of our knowledge this work presents
the first attempt in optimal design of adjustable spherical four-link mechanisms for approximate
multi-path generation. The proposed formulation is illustrated with the help of two examples – one
example deals with the generation of an oval and ‘8’ shaped path similar to the flapping motion of
a bird wing in forward motion and in the hovering mode.

The paper is organized as follows: In section 2, for the sake of completeness, all the parameters
associated with the spherical four-link mechanism are defined and we present a procedure for
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calculating the necessary parameters. In section 3, the mechanism synthesis problem needed is
presented and the rationale behind the selection of the adjustment method is presented. In section
4, examples illustrating our approach are presented and in section 5, conclusions are presented.

2 A spherical four-link mechanism
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Figure 1: Schematic of a spherical 4R mechanism

The four-link spherical mechanism OABCDP with its parameters is shown on figure 1. The
mechanism has four revolute joints at A, B, C and D with their axes intersecting at the center
of the sphere O. The links of the mechanism are the arcs of great circles of the sphere and the
spherical link length is the arc-length measured on the great circle between two ends of the link.
For a sphere of unit radius, the link length is same as the central angle subtended at O by the arc
on the great circle. In figure 1, AD is the base or fixed link, AB is the crank, BC is the coupler
link, CD is the rocker link, BP is the α5-link and P is the coupler point. In spherical domain all
angles are dihedral angles, i.e., angles are measured between two great circle planes. The line of
intersection of the two circular planes is the axis about which the angle is measured. The variable
β is the coupler angle measured about the axis OB in counter-clockwise direction, ABP is the
driving dyad and DCB is the driven dyad. The crank angle ϕ and the rocker angle ψ are measured
with respect to the base link AD and about OA and OD, respectively. The center of the sphere
is O (0, 0, 0) and x2 + y2 + z2 = 1 is the equation of the sphere. The symbols A (xA, yA, zA), α2

and α5 denote the driving side parameters and D (xD, yD, zD), α3, α4 and β are the driven side

parameters. The vector rp =
−→
OP =

[
rPx rPy rPz

]T
is the position vector of point P , and [Tn

δ ] is
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the rotation matrix, n = [nx ny nz]
T is an unit vector corresponding to the axis of rotation and

δ is the angle of rotation about n in counter-clockwise direction. From [32], the rotation matrix is
defined as,

[Tn
δ ] =

 cos δ + n2x (1− cos δ) nxny (1− cos δ)− nz sin δ nxnz (1− cos δ) + ny sin δ
nxny (1− cos δ) + nz sin δ cos δ + n2y (1− cos δ) nynz (1− cos δ)− nx sin δ

nxnz (1− cos δ)− ny sin δ nynz (1− cos δ) + nx sin δ cos δ + n2z (1− cos δ)

 (1)

The driving crank pivot A (xA, yA, zA) remains unchanged in our approach. The desired paths
are represented by 50 to 1001 points and if lesser number of points are prescribed then spline
interpolation can be used to generate additional points on the path. The super-script of the
mechanism parameter indicates the path to which it belongs.

In planar domain, the workspace of the end-point of a dyad lies between two concentric cir-
cles [32]. Drawing parallels from the planar case, the workspace of the end-point of a spherical
dyad lies between two coaxial spherical small circles2, i.e., spatial circles about the same axis. All
the coupler paths generated by the mechanism must lie inside the boundaries of the workspace of
the dyad where the boundaries are dependent on the dimensions of the driving dyad ABP . The
dimensions of the driving dyad are chosen such that the workspace boundaries are tangential to
the given coupler paths. It can be seen that the small circles with spherical radii3 αmax and αmin
form the boundary of the workspace of the driving dyad. Similar to the planar case [31], for a
spherical four-link mechanism the location of the pivot A on the sphere is outside the coupler path
if α5 > α2 and inside the coupler path if α5 < α2. This fact helps in choosing fixed pivot A.

For N given points Pi (xPi , yPi , zPi) , i = 1, 2, . . . , N , on each coupler path, we define

αmax = max {αP1 , αP2 , . . . , αPN
}

αmin = min {αP1 , αP2 , . . . , αPN
}

(2)

where, αPi = cos−1 (rPi · rA) for i = 1, 2, . . . , N and

rA = [xA yA zA]
T

xA = cos τ sinκ, yA = sin τ sinκ, zA = cosκ

κ ∈ [0, π] and τ ∈ [0, 2π]

(3)

where (τ, κ) are the spherical polar coordinates of A. The quantity κ is the polar angle with respect
to the +Z-axis and τ is the azimuthal angle in the XY -plane with respect to the +X-axis. We are
designing for 0 < αmax < π. The quantities α2 and α5 are chosen such that,

αmax = α2 + α5

αmin = |α5 − α2|
(4)

For each Pi of the coupler path there is a corresponding Bi and θi. The points Bi represent the
two configurations of the crank to reach Pi and θi is the angle between ABi and APmax where Pmax

1The proposed methods also work for a lesser number of points but larger number of points help in increasing
the accuracy of plane fitting used in Stage II of the design process. After extensive simulations we have found that
50-100 points give sufficient accuracy.

2A spherical small circle is any circle other than the great circle on the surface of the sphere.
3The spherical radius is the angle between

−→
OA and

−−→
OQ with Q being any point on the small circle.
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is the coupler point on the spherical surface farthest from pivot A (see figure 2). There are two
possible values of θi, as shown in figure 2, and these can be computed as,

θi = αi ± γi (5)

where γi determine the two configurations of the crank for a particular Pi. It should be noted that
the angles θ and ϕ (see figure 1) are two different quantities although they are related to the crank.
As shown in figure 1, the angle ϕ is between the crank and the fixed link whereas angle θ is between
the crank and APmax. The angles are also with respect to two different planes – the angle ϕ is with
respect to the great circular plane containing the fixed link AD and centre of the sphere whereas
θi is with respect to fixed pivot A, the sphere centre O and the coupler point P farthest from A.

γ
γ
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θ�

A

α

i

max

Coupler Path
O

Center of 

Sphere
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Figure 2: Crank angle and a spherical dyad

From the above, we can write the following:

nmax =
rA × rPmax

||rA × rPmax ||

nPi =
rA × rPi

||rA × rPi ||
αi = cos−1 (nmax · nPi)

γi = cos−1

(
cosα5 − cosα2 cosαPi

sinα2 sinαPi

)
0 ≤ (αi, θi) ≤ 2π and 0 ≤ γi ≤ π

A notable fact here is that in one crank rotation, the coupler point P crosses αmax and αmin once,
thus dividing the rotation into two parts. The sign of γi in one αmax to αmin part is opposite to
that of the remaining αmin to αmax part. Thus each given coupler path will have two sets of θi and
if the direction of rotation is not specified, appropriate θi must be chosen. For the reference plane,
αPi = αmax, which means that A, B and Pmax lie in the same great circle. For the path point Pmax,
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the corresponding θi = 0 and position vector of B is rBmax . Using equation (1), we find Bi from

rBmax =
[
Tnmax
α2

]
[xA yA zA]

T

rBi =
[
T rA
θi

]
rBmax

(6)

The position of the corresponding point Ci is,

nCi =
rBi × rPi

||rBi × rPi ||

rCi =
[
T
rBi
−β

] [
T
nCi
α3

]
rBi

(7)

With the above definitions and kinematic equations, we next formulate the adjustable mecha-
nism synthesis problem.

3 The spherical mechanism synthesis problem

The synthesis problem is to find the dimensions of the adjustable mechanism such that the given
coupler paths can be traced as closely as possible. The spherical four-link adjustable mechanism
can be classified based on the adjustment parameter as follows:
a) Adjustable crank mechanism, b) Adjustable α5-link mechanism, c) Adjustable rocker pivot mech-
anism, d) Adjustable rocker link mechanism, and e) Adjustable coupler link mechanism.

The design process is divided into stages. In Stage I all the possible locations of crank pivot A
are determined. The Stage II is used to complete the synthesis of the mechanism using the output
of Stage I. In the following, the objective functions are derived for α5 > α2. The formulations are
also valid for α5 < α2 with equation (4) as αmin = α2 − α5.

3.1 Stage I: Computation of possible locations of A

Since the number of path points are much more than 9, optimization is used to determine the pos-
sible locations of crank pivot A. Using the facts stated above regarding pivot A, the optimization
problem for the computation of pivot A can be set for each type of adjustable mechanism.

Adjustable crank length mechanism
The crank length α2 is changed with all other mechanism parameters remaining the same to get
multiple paths. The change in the crank length α2 causes a change in the size of the workspace
boundaries as well as the size of the coupler path on the surface of the sphere but the shape of
the path remains almost the same. For the α5 > α2 type mechanisms, consider two coupler paths
denoted by superscripts ‘1’ and ‘2’. Using equation (2), for α2

2 > α1
2, α

2
max > α1

max and α
2
min < α1

min,
the first workspace is completely enclosed by the second workspace and the bigger coupler path
completely encloses the smaller coupler path4. For the case α5 > α2, using equations (2), (3) and

4For α5 < α2, the same behaviour is observed except α2
min > α1

min.
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(4), for the ith path, we can write

αi5 =
αimax + αimin

2

αi2 =
αimax − αimin

2
α5 = max

{
α1
5, α

2
5, . . . , α

m
5

}
αi21 = αimax − α5

αi22 = α5 − αimin

(8)

where m is the total number of given paths to be traced by the mechanism.
Since link length α5 is not changed during adjustment, we must have,

αi5 − αj5 = 0 ∀i ̸= j and i, j ∈ {1, 2, . . . ,m}

For each individual ith coupler path the corresponding crank length remains fixed. Hence we can
write,

αi2 − αi21 = 0 and αi2 − αi22 = 0

From above the optimization problem with i, j, and k indices representing different coupler paths
can be written as5,

Minimize

S (κ, τ) =

m−1∑
i=1

m∑
j=i+1

(
αi5 − αj5

)2
+

m∑
k=1

(
αk2 − αk21

)2 (9)

Subject to the following constraints,
Constraint 1 : Search space restriction for κ and τ

κ ∈ [0, π] and τ ∈ [0, 2π] (10)

Constraint 2 : The crank angle should always increase or decrease as P advances along the coupler
path. The conditions for the counter-clockwise and clockwise rotation of the crank respectively are,

θi(q+1) − θiq > 0

θi(q+1) − θiq < 0

for q = 1, 2, . . . , N − 1

(11)

where, N is the total number of points P iq on the given ith coupler path and each θq is calculated
using equation (3). It maybe noted that one of the conditions in equation (11) also needs to be
satisfied.
Constraint 3 : The maximum length of the coupler link α5 must satisfy

αi5 < α5max (12)

5In the objective function, the term
(
αk
22 − αk

2

)2
can also be used instead of

(
αk
21 − αk

2

)2
and the chosen α21 (or

α22) should be used in subsequent computations.
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Adjustable α5-link length mechanism
The adjustment in the α5-link length changes the workspace boundary dimensions. For α5 > α2

type mechanisms, changing α5 (with α2
max > α1

max and α2
min > α1

min and α2
5 > α1

5) results in a
common space between the original workspace and the workspace after the change6. The bigger
coupler path does not enclose the smaller coupler path but they may intersect. The size of the
coupler path changes but the shape is almost unchanged. From equation (2), we can write

αi5 =
αimax + αimin

2

αi2 =
αimax − αimin

2
α2 = max

{
α1
2, α

2
2, . . . , α

m
2

}
αi51 = αimax − α2

αi52 = α2 + αimin

(13)

where m is the total number of given paths to be traced by the mechanism.
Since link length α2 remains fixed throughout the adjustment then we must have,

αi2 − αj2 = 0 ∀i ̸= j and i, j ∈ {1, 2, . . . ,m}

For each individual ith coupler path the corresponding crank length remains fixed. Hence we can
write,

αi5 − αi51 = 0 and αi5 − αi52 = 0

From above the optimization problem with i, j, and k indices representing different coupler paths
can be written as7,

Minimize

S (κ, τ) =

m−1∑
i=1

m∑
j=i+1

(
αi2 − αj2

)2
+

m∑
k=1

(
αk5 − αk51

)2 (14)

Subject to the constraints (10), (11) and (12) given above.

Adjustable rocker pivot, rocker length and coupler length mechanisms
All these type of adjustable mechanisms have fixed workspace boundaries and since the driving dyad
dimensions remain constant leading, αmax and αmin are fixed. The design is for 0 ≤ αmax, αmin ≤ π
with αmax and αmin found as in equation (2). The quantities αmax and αmin also correspond to
maximum and minimum Euclidean distances between pivot A and path points Pmax and Pmin,
respectively. Hence, for the coupler paths belonging to the same workspace we must have

limax − ljmax = 0 and limin − ljmin = 0 for i ̸= j

i, j ∈ {1, 2, . . . ,m}
(15)

As mentioned earlier, the workspace of the mechanism is chosen such that all the coupler paths are
tangential to the workspace boundaries. The optimization problem for determining the optimal

6For α5 < α2, the same behaviour is observed except α2
min < α1

min.
7In the objective function, the term

(
αk
52 − αk

5

)2
can also be used instead of

(
αk
51 − αk

5

)2
and the chosen α51 (or

α52) should be used in subsequent computations.
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location of crank pivot A with i and j indices representing different coupler paths for this case can
be formulated as:

Minimize

S (κ, τ) =

m−1∑
i=1

m∑
j=i+1

[(
limax − ljmax

)2
+
(
limin − ljmin

)2]
where lik = ||rA − riPk

||, limax = max
{
li1, l

i
2, . . . , l

i
N

}
, limin = min

{
li1, l

i
2, . . . , l

i
N

} (16)

Subject to the constraints (10), (11) and (12) given earlier.
In the above, P ik is the kth path point on the ith coupler path and N denotes the total number

of given path points on each coupler path. Once the optimal location of A is determined, the
corresponding α2 and α5 are computed using equations (2) and (4).

In this work, the optimization is carried out using the SQP [30] algorithm and it is known that
SQP converges to a local minimum closest to the initial guess. To obtain other possible minima,
we divide the search space of optimization variables (κ, τ) into several sub-intervals and take mid-
point of the sub-interval as the starting point of the optimization and we get one optimal solution
for each sub-interval. To reduce the number of solutions, all solutions whose objective function
value, S, is less than some user defined Smax are selected. In this work Smax is chosen ≤ 10−3 for
reasonable accuracy. The driving dyads parameters determined in Stage I are passed to Stage II
to determine all the other 4R spherical mechanism parameters.

3.2 Stage II: Synthesis of the complete 4R spherical mechanism

In this stage the complete mechanism is determined using the driving dyads computed in Stage
I. The central idea of the synthesis is that the locus traced by the point C as the point P moves
along the coupler path is an arc on a spatial circle where this spatial circle is a small circle on the
surface of the sphere. The intersection of a plane and a sphere is a circle, hence the locus of all the
points C is a plane. The minimization objective function formulated for the synthesis purpose is
the residual error obtained by plane fitting all the points Ci corresponding to coupler path points
Pi. The algorithm used for least squares plane fitting is similar to the algorithm used for circle
fitting given in [33]. For each of the types mentioned below, the optimization variables are coupler
link length α3 and coupler angle β. The points Ci can be computed using equations (5), (6) and
(7) for all adjustments. As in Stage I, the optimization is performed using SQP algorithm [30]
which converges to a local minimum. Similar to Stage I, the search space of optimization variables
(α3, β) is divided into several sub-intervals and the mid-point of each sub-interval is taken as the
starting point of optimization.

Adjustable crank and α5-link length mechanisms
Only the driven dyad is adjusted in these type of mechanisms and since the rocker pivot and rocker
length remain fixed, the point C will trace arcs corresponding to each given coupler path on the
same spatial circle. This spatial circle can be generated by the intersection of a fixed plane and
sphere. The required objective function can be written as,

Minimize

f (α3, β) =
m∑
i=1

N∑
j=1

(
axiCj

+ byiCj
+ cziCj

+ d
)2

a2 + b2 + c2

(17)

Subject to the following constraints:
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Constraint 1 :
αi2 < α3 ≤ α3max (18)

Constraint 2 :
− π ≤ β ≤ π (19)

Constraint 3 :
αi2 < α1 and αi2 < α4 (20)

Constraint 4 : For link CD to be a rocker, the angular sweep of link CD should be less than π
radians.

ψmax − ψmin < π (21)

Constraint 5 :
Grashof’s criterion for crank-rocker type mechanism [1] should be satisfied for each ith path.

The quantity f in (17) represents the error in the least squares plane-fitting of Ci on the plane
defined by parameters (a, b, c, d). The least squares fitting algorithm used above is similar to circle
fitting algorithm given in [33] where the algebraic fitting or linear problem in [33] is replaced by
the equation of a plane, namely f1 = ax + by + cz + d, and the geometric fitting or non-linear
least squares problem is replaced by f given in equation (17). The SQP algorithm is used for
optimization with the search space divided into several sub-intervals with the mid-point of the each
sub-interval used as the starting point of optimization in the corresponding sub-interval. Since from
Stage I, the crank pivot A and the driving dyad are already known, the remaining parameters are
computed using the optimal plane as follows,

fixed pivot D =

(
a√

a2 + b2 + c2
,

b√
a2 + b2 + c2

,
c√

a2 + b2 + c2

)
α4 = cos−1

(
||d||

a2 + b2 + c2

)
α1 = cos−1 (rA · rD)

(22)

fixed pivot D =

(
−a√

a2 + b2 + c2
,

−b√
a2 + b2 + c2

,
−c√

a2 + b2 + c2

)
α4 = π − cos−1

(
||d||√

a2 + b2 + c2

)
α1 = π − cos−1 (rA · rD)

(23)

The link length α4 calculated in equation (22) will always be in
[
0, π2

]
and α4 calculated in equa-

tion (23) will always be in
[
π
2 , π

]
. It should be noted that the assembly mode of the mechanism

synthesized in (22) is opposite to that synthesized using (23). The Stage II is performed on each
driving dyad passed on from Stage I. The mechanism having minimum sum of cost functions of
Stage I and Stage II, i.e., (S + f)min is selected. Miscellaneous constraints related to the specific
application of the mechanism may also be applied during or after optimization.

Adjustable coupler length mechanism
In this case the coupler length is the adjustable parameter with the driving dyad and crank pivot
remaining the same. The rocker point C will trace arc belonging to the same spatial circle like
the adjustable crank case. Since the coupler length α3 is required for the computation of points
C for each coupler path, the optimization variables for this case are (α1, α2, . . . , αm, β) unlike the
adjustable crank case. Since the formulation of the objective function depends only on the points
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Ci the objective function remains same as in (17) and the evaluation procedure for rest of the
mechanism parameters as in adjustable crank case. The constraints for the optimization are same
as in (19), (21), (18) modified as α2 < αi3 ≤ α3max and (20) modified as α2 < α1 and α2 < α4.
Additionally Grashof’s criterion for crank-rocker type mechanism needs to be satisfied.

Adjustable rocker pivot mechanism
In this type, the rocker pivot D is the adjustment parameter but the rocker length α4 and all other
mechanism parameters remains fixed. The rocker point C will trace different spatial circular arcs
with same radius but different axes corresponding to each given coupler path. These arcs will lie
in different planes which are at a same perpendicular distance d from the center of the sphere O.
The different planes have parameters (ai, bi, ci, di) corresponding to the ith coupler path.

||di||√
a2i + b2i + c2i

= d

Taking positive sign we can write,

di = d
√
a2i + b2i + c2i

Using above fact the objective function, the least squares plane fitting error, can be written as,

Minimize :

f (α3, β) =
m∑
i=1

N∑
j=1

aixCi
j
+ biyCi

j
+ cizCi

j√
a2i + b2i + c2i

+ d

2

(24)

Subject to constraints (18), (19), (21), satisfaction of Grashof’s criterion and (20) replaced by

α2 < α4 and α2 < αi1. The points Cij

(
xCi

j
, yCi

j
, zCi

j

)
are determined using equations (6) and (7).

The plane parameters (ai, bi, ci, d) are required to evaluate the objective function f in (24) dur-
ing each optimization iteration. To get the plane parameters for each optimization iteration, the
optimization problem is converted into a non-linear least squares problem for the corresponding
iteration. This non-linear least squares problem is solved using Gauss-Newton method [34] which
needs a starting value for the unknowns. The two-step procedure for solving this problem is given
as follows:

Step 1: Set of Cijs for each i
th coupler path are individually plane fitted to obtain (ais, bis, cis, dis)

for each ith coupler path.

Step 2: The non-linear least squares problem stated in equation (24) is formed using (ai, bi, ci, d) as
unknown variables is solved using the output of Step 1 given above as starting values. The starting
value for each (ai, bi, ci) set is the set (ais, bis, cis) and the starting value for d is min {d1s, d2s, . . . , dms}

or 1
m

(
m∑
i=1

dis

)
.

After getting the plane parameters, the corresponding Di, α
i
1 and α4 for the ith coupler path

can be computed using (22) or (23).

Adjustable rocker length mechanism
In this case, the rocker length α4 is the adjustment parameter but the rocker pivot D and all other
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mechanism parameters remain fixed. The rocker point C will trace different spatial circular arcs
with same axes but different radii corresponding to each given coupler path. These arcs will lie in
different parallel planes with different perpendicular distance from the center of the sphere O. The
different planes have parameters (a, b, c, di) corresponding to the ith coupler path. The objective
function for the optimization in this case can be written as,

Minimize :

f (α3, β) =

m∑
i=1

N∑
j=1

(
axCi

j
+ byCi

j
+ czCi

j√
a2 + b2 + c2

+ di

)2
(25)

Subject to constraints (18), (19), and (21), satisfaction of Grashof’s criterion and (20) replaced by
α2 < αi4 and α2 < α1.

Similar to adjustable rocker pivot formulation, the plane parameters (a, b, c, di) are required
to evaluate the objective function f in (25) during each optimization iteration. To get the plane
parameters for each optimization iteration, the optimization problem is converted into a non-linear
least squares problem for the corresponding iteration. Similar to earlier case, the non-linear least
squares problem is solved using the Gauss-Newton method [34] which needs a starting value for the
unknowns. The two-step procedure for solving this problem is as follows:

Step 1: Set of Cijs for each i
th coupler path are individually plane fitted to obtain (ais, bis, cis, dis)

for each ith coupler path.

Step 2: The non-linear least squares problem stated in equation (25) is formed using (a, b, c, di) as
unknown variables and is solved using the output of Step 1 given above as starting values. The
starting value for each (a, b, c, di) set is the set (as, bs, cs, dis), where

as =
1

m

(
m∑
i=1

ais

)
, bs =

1

m

(
m∑
i=1

bis

)
, cs =

1

m

(
m∑
i=1

cis

)

After getting the plane parameters, the corresponding Di, α
i
1 and α4 for the ith coupler path can

be computed using (22) or (23).

For each of 4R spherical mechanism type given above, the mechanism with minimum (S + f)
and satisfying all constraints given above must be selected. The qualitative study of variation
of planar four-bar coupler paths with changes in different mechanism parameters has been done
in [27, 35, 36]. Parallels can be drawn from this study to gain an insight of qualitative changes in
spherical 4R coupler paths with respect to each adjustment parameter. The quantitative effect of
the adjustment can be accounted by computing the error in the given and generated coupler paths.
The error can be calculated as below,

3.3 Error computation

The error computation assists us in choosing the adjustment type when we cannot ascertain the
choice qualitatively. With respect to figure 1, the input-output equation [37] for spherical four-link
mechanism is given as,

ψj = 2 tan−1

(
−Q±

√
Q2 +R2 − S2

S −R

)
(26)
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where,
Q = sinα2 sinα4 sinϕj

R = cosα2 sinα4 sinα1 − sinα2 sinα4 cosα1 cosϕj

S = cosα2 cosα4 cosα1 + sinα2 cosα4 sinα1 cosϕj − cosα3

The position vector of point B, rBj and C, rCj are given as,

rBbase
=
[
Tnbase
α2

]
rA

rBj =
[
T rA
ϕj

]
rBbase

rCbase
=
[
Tnbase
−α4

]
rD

rCj =
[
T rD
−ψj

]
rCbase

where nbase =
rA × rD

||rA × rD||

(27)

The position vector of desired path Pj is rCPj given by 100 points (say) is evaluated as,

rCPj =
[
T
rBj

β

] [
T
nPi
α3

]
rBj

where nPj =
rBj × rCj

||rBj × rCj ||
for j = 1, 2, . . . , 100

(28)

For the ith coupler path, let P ik, r
i
Pk

be the given kth data point. The error in kth data point is
given by,

eik = min
{
eik1, e

i
k2, . . . , e

i
kj , . . . , e

i
k100

}
eikj = ||riCPj

− riPk
||, j = 1, 2, . . . , 100, k = 1, 2, . . . , Nr, i = 1, 2, . . . ,m

(29)

where Nr is the number of data-points given initially representing each coupler path and m is the
number of coupler paths to be traced. The maximum error and the total error for the ith coupler
path is given as,

Eimax = max
{
ei1, e

i
2, . . . , e

i
k, . . . , e

i
Nr

}
Eipath =

Nr∑
k=1

eik
(30)

The total error for all the m coupler paths is given by,

ETotal =

m∑
i=1

Eipath (31)

If the adjustment cannot be chosen by (S + f)min, then ETotal must be evaluated for each ad-
justment type after obtaining all the optimal mechanism parameters. The adjustment type with
minimum ETotal must be chosen.

The steps in the optimal synthesis of an adjustable spherical mechanism for multi-path gener-
ation is shown in the flowchart given in figure 3. In the next section we present examples which
illustrates the developed approach.
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Figure 3: Flowchart of the synthesis process
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4 Results and discussion

To demonstrate the use of the proposed methodologies we present two examples, one for an ad-
justable driving side mechanism and one for an adjustable driven side mechanism. Simulations were
done using 64-bit Matlab [38], version R2011b on a PC with Intel Core-2-Quad 2.4 GHz processor
and 4 GB of RAM. The optimization was done using ’fmincon’ function of Matlab.

4.1 Example 1

The first example presented is for synthesis of adjustable crank length mechanism. The data points
are taken on the XY -plane and then projected on the sphere x2 + y2 + z2 = 1. The qualitative
behaviour of coupler paths with change in crank length has been taken into account. The two
elliptical paths on XY -plane are represented by,

Path 1 = (1 + 0.25 cos t, 0.02 + 0.15 sin t)

Path 2 = (1 + 0.4 cos t, 0.22 sin t) , t ∈ [0, 2π]

The points inside the circle x2 + y2 = 1 in the XY -plane are used to generate the spherical
path as shown in Figure 4a. These points are projected on both the hemispheres of the sphere
x2 + y2 + z2 = 1. A total 46 data points are taken on each path. The optimization results are as
follows:
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(a) Desired paths in XY -plane
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Figure 4: Example 1

Stage I optimization
The search space, κ ∈ [0, π] is divided into 5 intervals and τ ∈ [0, 2π] is divided into 10 intervals.
From the approach described in section 3, Smax is chosen to be 10−6 which results in 36 possible
dyads.
Stage II optimization
In this case, α3 ∈ [0.9 rad, π] is divided into 3 intervals and β ∈ [−π, π] is divided in 4 intervals.
The results of the optimization and values of selected mechanism parameters are as follows:
Value of the cost function, S = 10−7.
κ = 2.5133 rad, τ = 0.0066 rad, Coordinates of A = (0.5878, 0.0038,−0.8090), α1

2 = 0.7222 rad,
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Figure 5: Example 1 – Generated and desired paths

α2
2 = 0.9271 rad, α5 = 0.9427 rad.
f = 0.0150, α1 = 1.6381 rad, α3 = 1.9518 rad, α4 = 1.3367 rad, β = 2.9961 rad, and Coordinates
of D = (−0.1635, 0.9861,−0.0310).
The optimal spatial circle for rocker point C is shown in Figure 4b and the generated and desired
paths are shown in Figure 5. The maximum error for each path are:
Path 1, Emax = 0.0280, and
Path 2, Emax = 0.0379.

4.2 Example 2

In the second example, we present the synthesis, kinematic design, prototype manufacturing and
testing of a driving mechanism for a planned flapping wing micro air vehicle. The goal for the
synthesized mechanism is to mimic the wing-tip path for a bird in flight. It is known from liter-
ature [39, 40, 41, 42] that to generate lift, the orientation of the wing of a bird is such that the
wing-tip makes a ‘8’ shaped path when the bird is hovering and an oval shaped path when the
bird is in forward flight. This example uses the qualitative nature of the wing-tip paths given in
the above references to synthesize an adjustable 4R spherical mechanism whose coupler point can
generate the two mentioned paths. The ‘8’ shaped path is bi-symmetrical and is generated by
reflecting the half lobe of the ‘8’ path shown in Figure 6a on the hemisphere across the XZ-plane.
The ‘8’ shaped path is generated using the atlas given in reference [19]. The second oval path is
generated by increasing the base angle of the same mechanism to 60 degrees.
We follow the two stage optimization presented in this work and the optimization results are as
follows:
Stage I optimization
The search space, κ ∈ [0, π] is divided into 5 intervals and τ ∈ [0, 2π] is divided into 10 intervals.
Following the approach in section 3, Smax is chosen to be 10−5 which results in 10 possible dyads.
Stage II optimization
In this case, α3 ∈ [0.6 rad, 2.5 rad] is divided into 4 intervals and β ∈ [−π, π] is divided in 4 inter-
vals. The results of the optimization and the parameters of the selected mechanism are as follows:
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Figure 7: Example 2 – Generated and desired paths

Value of the cost function, S = 10−7.
κ = 1.5708 rad, τ = 1.5708 rad, Coordinates of A = (0, 1, 0), α2 = 0.5236 rad, and α5 = 1.5708
rad. f = 0.0787, α1

1 = 1.5708 rad, α2
1 = 0.7982 rad, α3 = 1.5708 rad, α4 = 1.5708 rad, β = 1.5708

rad, Coordinates of D1 = (−1, 0, 0) and D2 = (−0.7161, 0.6980, 0).
The optimal spatial circle for rocker point C is shown in figure 6b. The generated and desired
paths are shown in figure 7.

A prototype of the spherical mechanism, with the parameters obtained from optimization as
mentioned above, was manufactured using 3D printing technique and was tested for the generation
of the ‘8’ and oval shaped coupler paths. The mechanism is expected to generate the figure of
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‘8’ shape when the base link α1 is 1.5708 rad and the oval shape path when the base link α1 is
0.7982 rad. The CAD model of the mechanism in the two configurations is shown in figure 8. The
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Figure 8: CAD model of adjustable spherical 4R mechanism

manufactured prototype is shown in figure 9. The wing is attached at the coupler point P and
other various links as well as the adjustment parameter are marked in figure 9. The adjustment
is done using a small stepper motor placed at the center of the sphere and as the stepper motor
rotates the base link OD gradually, the position of the rocker pivot D changes. The driving motor
and the small stepper motor can be remotely controlled. As the stepper motor changes the location
of the pivot D, one can observe that the coupler path changes from an ’8’ shape to an oval shape
and vice-versa. These transformations can be seen in the attached video where the path traced is
shown with a light emitting diode (LED). In an actual flapping wing micro air vehicle, a solenoid
can be used for achieveing the two positions of the rocker pivot D and only one driving motor
will be required. This work is continuing and we are attempting to make the flapping wing micro
air vehicle exhibit forward and hovering motion using the adjustment mechanism presented in this
example.

5 Conclusion

This paper presents a novel optimization based methodology for synthesising adjustable spherical
four-link mechanisms for approximate multi-path generation. The adjustments are made in the five
different parameters of the mechanism. The objective functions used in the optimization process
for obtaining the various parameters uses the least possible number of variables – in the most
common type of adjustments, only two parameters in each of the two stages, namely the crank
and coupler length adjustment for the driving side and rocker-link and rocker-link fixed pivot
adjustment of the driven side, are involved. The method uses a modified least-squares based plane
fitting technique and is found to be very efficient. Various constraints are suggested to sort the
appropriate mechanism and the method does not require a starting point to be given by the user for
the SQP optimization. The method presented in this work is also capable of synthesizing adjustable
mechanism for more than two paths. The kinematic design of a practical adjustable mechanism
for a flapping wing micro air vehicle, capable of forward and hovering motion, has been designed,
manufactured and tested and the method proposed in this work appears to yield satisfactory results.
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(a) Driving 4R spherical mechanism (b) Prototype of flapping wing micro air vehicle

Figure 9: Manufactured prototype
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sity, Montréal, November 1988.

[12] R. S. Sodhi and T. E. Shoup, ‘Axodes of the four revolute spherical mechanisms’, Mechanism
and Machine Theory, Vol. 17, pp. 173-178, 1982.

[13] R. S. Sodhi, A. J. Wilhelm and T. E. Shoup, ‘Design for a four revolute spherical function
generator with transmission effectiveness by curve matching’, Mechanism and Machine Theory,
Vol. 20, pp. 577-585, 1985.

[14] S. -H. Tong and C. H. Chiang, ‘Synthesis of planar and spherical four-bar path generators by
the pole method’, Mechanism and Machine Theory, Vol. 27, pp. 145-155, 1992.

[15] R. M. C. Bodduluri and J. M. McCarthy, ‘Finite position synthesis using the image curve of a
spherical four-bar motion’, Trans. ASME, Journal of Mechanical Design, Vol. 114, No. 1, pp.
55-60, 1992.

[16] D. A. Ruth and J. M. McCarthy, ‘The design of spherical 4R linkages for four specified
orientations’, Mechanism and Machine Theory, Vol. 34, pp. 677-692, 1999.

[17] C. -C. Lin, ‘Complete solution of the five-position synthesis for spherical four-bar mechanisms’,
Journal of Marine Science and Technology, Vol. 6, No. 1, pp. 17-27, 1998.

[18] J. Angeles and Z. Liu, ‘The constrained least-square optimization of spherical four-bar path
generators’, Trans. ASME, Journal of Mechanical Design, Vol. 114, No. 3, pp. 394-405, 1992.

[19] D. -M. Lu, ‘A triangular nomogram for spherical symmetric coupler curves and its applications
to mechanical design’, Trans. ASME, Journal of Mechanical Design, Vol. 121, No. 2, pp. 323-
326, 1999.

[20] J. Chu, J. Sun, ‘Numerical atlas method for generation of spherical four-bar mechanism’,
Mechanism and Machine Theory, Vol. 45, pp. 867-879, 2010.

[21] G. Mullineux, ‘Atlas for spherical four-bar mechanisms’, Mechanism and Machine Theory,
Vol. 46, pp. 1811-1823, 2011.
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Figure 3: Flowchart of the synthesis process
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(a) Driving 4R spherical mechanism (b) Prototype of flapping wing micro air vehicle

Figure 9: Manufactured prototype
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