<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Start Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1.2</td>
<td>Brief History</td>
<td>1</td>
</tr>
<tr>
<td>1.3</td>
<td>Types of Robots</td>
<td>7</td>
</tr>
<tr>
<td>1.4</td>
<td>Technology of Robots</td>
<td>9</td>
</tr>
<tr>
<td>1.5</td>
<td>Basic Principles in Robotics</td>
<td>12</td>
</tr>
<tr>
<td>1.6</td>
<td>Notation</td>
<td>15</td>
</tr>
<tr>
<td>1.7</td>
<td>Symbolic Computation and Numerical Analysis</td>
<td>15</td>
</tr>
<tr>
<td>2.1</td>
<td>Mathematical Representation of Robots</td>
<td>19</td>
</tr>
<tr>
<td>2.2</td>
<td>Position and Orientation of a Rigid Body</td>
<td>19</td>
</tr>
<tr>
<td>2.2.1</td>
<td>Some Properties of Rotation Matrices</td>
<td>22</td>
</tr>
<tr>
<td>2.2.2</td>
<td>Successive Rotations of a Rigid Body</td>
<td>25</td>
</tr>
<tr>
<td>2.2.3</td>
<td>Representation of Orientation by Three Angles</td>
<td>27</td>
</tr>
<tr>
<td>2.2.4</td>
<td>Other Representations of Orientation</td>
<td>30</td>
</tr>
<tr>
<td>2.3</td>
<td>Transformation Between Coordinate Systems</td>
<td>32</td>
</tr>
<tr>
<td>2.3.1</td>
<td>Homogeneous Transformation</td>
<td>34</td>
</tr>
<tr>
<td>2.4</td>
<td>Properties of $A_b^a[T]$</td>
<td>34</td>
</tr>
<tr>
<td>2.5</td>
<td>Representation of Joints</td>
<td>36</td>
</tr>
<tr>
<td>2.5.1</td>
<td>Rotary Joint</td>
<td>38</td>
</tr>
<tr>
<td>2.5.2</td>
<td>Prismatic Joint</td>
<td>39</td>
</tr>
<tr>
<td>2.5.3</td>
<td>Screw Joint</td>
<td>40</td>
</tr>
<tr>
<td>2.5.4</td>
<td>Cylindrical Joint</td>
<td>41</td>
</tr>
<tr>
<td>2.5.5</td>
<td>Spherical Joint</td>
<td>41</td>
</tr>
<tr>
<td>2.5.6</td>
<td>Spherical–Spherical Joint Pair</td>
<td>42</td>
</tr>
<tr>
<td>2.5.7</td>
<td>Other Joints</td>
<td>43</td>
</tr>
<tr>
<td>2.6</td>
<td>Representation of Links Using Denavit–Hartenberg Parameters</td>
<td>43</td>
</tr>
<tr>
<td>2.6.1</td>
<td>Link Parameters for Intermediate Links</td>
<td>44</td>
</tr>
<tr>
<td>2.6.2</td>
<td>First and Last Links</td>
<td>45</td>
</tr>
<tr>
<td>2.6.3</td>
<td>Summary of Link Parameters</td>
<td>46</td>
</tr>
<tr>
<td>2.7</td>
<td>Link Transformation Matrices</td>
<td>47</td>
</tr>
<tr>
<td></td>
<td>Example 2.1: The planar 3R manipulator</td>
<td>48</td>
</tr>
</tbody>
</table>
Example 2.2: The PUMA 560 manipulator 51
Example 2.3: A SCARA manipulator 53
Example 2.4: The planar four-bar mechanism 55
Example 2.5: A three-DOF parallel manipulator 56
Example 2.6: A six-DOF parallel manipulator 58

2.8* Homogeneous Coordinates, Lines, Screws, and Twists 60

3. Kinematics of Serial Manipulators 69

3.1 Introduction 69
3.2 Degrees of Freedom of a Manipulator 69
3.3 Direct Kinematics of Serial Manipulators 71
 Example 3.1: The planar 3R manipulator 72
 Example 3.2: The PUMA 560 manipulator 72
 Example 3.3: A SCARA manipulator 73
3.4 Inverse Kinematics of Serial Manipulators 73
 Example 3.4: The planar 3R manipulator 74
 Example 3.5: The PUMA 560 manipulator 76
3.5 Manipulator With Non-intersecting Wrist 82
3.6* Inverse Kinematics of a General 6R Robot 85
3.7 Inverse Kinematics for Manipulators With $n < 6$ 88
3.8 Inverse Kinematics of Redundant Manipulators 89
3.9* Solution Methods for Non-linear Equations 92

4. Kinematics of Parallel Manipulators 102

4.1 Introduction 102
4.2 Degrees of Freedom 103
4.3 Loop-closure Constraint Equations 103
4.4 Direct Kinematics of Parallel Manipulators 110
 Example 4.1: The planar four-bar mechanism 111
 Example 4.2: A three-DOF parallel manipulator 114
 Example 4.3: A six-DOF parallel manipulator 117
4.5* Direct Kinematics of Stewart–Gough Platform 119
4.6 Mobility of Parallel Manipulators 123
 Example 4.4: The planar four-bar mechanism 124
 Example 4.5: A three-DOF parallel manipulator 126
4.7 Inverse Kinematics of Parallel Manipulators 127
 Example 4.6: A six-DOF hybrid manipulator 129
 Example 4.7: The Stewart platform 131

5. Velocity Analysis and Statics of Manipulators 137

5.1 Introduction 137
5.2 Linear and Angular Velocities of a Rigid Body 138
5.3 Linear and Angular Velocities of Links in Serial Manipulators 143
 Example 5.1: The planar 3R manipulator 144
5.4 Serial Manipulator Jacobian 146
5.5 Parallel Manipulator Jacobians 152
 Example 5.2: The planar four-bar mechanism 155
 Example 5.3: A three-DOF parallel manipulator 155
5.6 Singularities of Serial and Parallel Manipulators 158
 Example 5.4: The planar four-bar mechanism 162
 Example 5.5: A three-DOF parallel manipulator 163
5.7 Statics of Serial Manipulators 166
 Example 5.6: The planar 3R manipulator 168
5.8 Statics of Parallel Manipulators 171
5.9 Singularity in Force Domain 173
5.10 Resolution of Redundancy at Velocity Level 177

6. Dynamics of Manipulators 183
 6.1 Introduction 183
 6.2 Inertia of a Link 185
6.3 The Lagrangian Formulation 187
 Example 6.1: Equations of motion of a planar 2R manipulator 192
 Example 6.2: Equations of motion of a planar four-bar mechanism 196
6.4 Dynamic Equations in Cartesian Space 201
6.5 Inverse Dynamics of Manipulators 202
 Example 6.3: Inverse dynamics of planar 2R manipulator 202
6.6 Simulation of Equations of Motion 204
 Example 6.4: Simulation of a planar 2R manipulator 207
 Example 6.5: Simulation of a planar four-bar mechanism 208
6.7 Recursive Formulations of Dynamics of Manipulators 210
 6.7.1 Newton–Euler Formulation for Inverse Dynamics 210
 6.7.2* Algorithms for Forward Dynamics 213
 6.7.3* Recursive Algorithms for Parallel Manipulators 216

7. Trajectory Planning and Generation 220
 7.1 Introduction 220
 7.2 Joint Space Schemes 221
 Example 7.1: A cubic trajectory 223
 7.3 Joint Space Schemes With Via Points 226
 Example 7.2: A cubic trajectory with a via point 226
 Example 7.3: A cubic trajectory with matching velocity and acceleration at a via point 228
7.4 Cartesian Space Schemes
- **7.4.1 Cartesian Straight Line Motion**
- **7.4.2 Cartesian Circular Motion**
- **7.4.3 Trajectory Planning for Orientation**

7.5 Some Additional Issues in Trajectory Planning

8. Position and Force Control of Manipulators

8.1 Introduction

8.2 Feedback Control of a Single-link Manipulator
- **8.2.1 Usefulness of Feedback**
- **8.2.2 First-order System**
- **8.2.3 Second-order System**
- **8.2.4 PID Control of a Single-link Manipulator**
- **8.2.5 Digital Control of a Single-link Manipulator**

8.3 PID Control of a Multi-link Manipulator

8.4 Non-linear Control of Manipulators
- **8.4.1 Time Required to Compute the Model**
- **8.4.2 Lack of Knowledge of Model Parameters**

8.5 Simulation and Experimental Results
- **8.5.1 Simulation Results**
- **8.5.2 Experimental Results**

8.6 Non-linear Control of Constrained and Parallel Manipulators

8.7 Cartesian Control of Manipulators

8.8 Force Control of Manipulators
- **8.8.1 Force Control of a Single Mass**
- **8.8.2 Partitioning a Task for Force and Position Control**
- **Example 8.1: Peg-in-hole assembly**

8.9 Hybrid Position/Force Controller

8.10 Stability Analysis of Non-linear Control Schemes
- **8.10.1 Stability Analysis Using Lyapunov’s Method**
- **Example 8.2: Stability analysis of a single-link manipulator**
- **8.10.2 Stability Analysis of PD-and Model-based Control**

8.11* Advanced Topics in Non-linear Control of Manipulators

9. Modelling and Control of Flexible Manipulators*

9.1 Introduction

9.2 Modelling of a Flexible Joint

9.3 Euler–Bernoulli Beam Model
- **9.3.1 Rotating Flexible Link**
- **9.3.2 Translating Flexible Link**

9.4 Kinematic Modelling of Multi-link Flexible Manipulators

9.5 Discretization Methods
9.5.1 Assumed Modes Method 319
9.5.2 Finite Element Method 325
9.5.3 Comparison of Discretization Methods 329
9.6 Equations of Motion of Multi-link Flexible Manipulators 331
9.6.1 Kinetic Energy 332
9.6.2 Potential Energy 333
9.6.3 Symbolic Equations of Motion 336
9.7 Control of Flexible Link Manipulators 337
9.7.1 Controllability of Flexible-link Manipulators 339
9.7.2 Model-based Control for Trajectory Following 340
9.7.3 End Position Vibration Control 343
9.7.4 A Two-stage Control Algorithm 347
9.7.5 Effect of Uncertainty in Mass and Stiffness 349
9.7.6 Numerical Simulation of a Flexible Manipulator 351
9.8 Other Topics in Flexible Manipulators 355

10. Modelling and Analysis of Wheeled Mobile Robots* 362
10.1 Introduction 362
10.2 Motion of a Single Wheel on Uneven Terrain 365
10.2.1 Model of a Torus-shaped Wheel 365
10.2.2 Representation of Uneven Terrain in \mathbb{R}^3 368
10.2.3 Kinematics of Contact 372
10.2.4 Kinematics of a Single Wheel 374
10.3 Dynamics of a Torus-shaped Wheel on Uneven Terrain 378
10.4 Kinematic Modelling of a Three-wheeled Mobile Robot 383
10.4.1 Direct and Inverse Kinematics of the 3-DOFWMR 385
10.4.2 Numerical Simulation Results 388
10.5 Dynamic Modelling of a Three-wheeled Mobile Robot 394
10.5.1 Equations of Motion of a Three-wheeled Mobile Robot 394
10.5.2 Algorithm for Solving the Equations of Motion 397
10.5.3 Numerical Simulation Results 398
10.6 Traversability of a Single Wheel 401
10.7 More on Modelling of Wheeled Mobile Robots 407

Index 413