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Modeling and control of manipulators with flexible links having only revolute joints have been
discussed extensively in the literature [1], [2], [3], [4], [5], [6], while the research on modeling
prismatic jointed flexible-link manipulators is limited [7], [8], [9], [10], [11]. When a link
with the prismatic joint is modeled as flexible, the system becomes a moving boundary value
problem. Moving boundary value problems have been considered in other context such as
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axially moving beam problems [12], [13], [14], and deployment dynamics of flexible spacecraft
[15], [16].

Tabarrok et al.[13] studied the dynamics of an axially moving beam. They presented
certain properties of the mode shapes of clamped-free beams in flexure, as the beam length
varies with time. They also derived the equations of motion of a simple cantilever beam hav-
ing an axial motion on a stationary rigid base by using Newton’s second law. Buffinton and
Kane[12] studied the dynamics of a beam moving at a prescribed rate over two bilateral sup-
ports. Regarding the supports as kinematical constraints imposed on an unrestrained beam,
equations of motion were formulated by applying an alternative form of Kane’s method[17]
and using assumed modes technique to discretize the beam. Buffinton[7] later extended this
formulation to investigate the motion characteristics of a planar RP elastic manipulator con-
sidering the translational member as a slender beam. Tsuchiya[16] studied the dynamics of
a spacecraft during extension of flexible appendages under the assumption of small extension
velocity. Extensive discussions about this assumption were made by Jankovic[18].

In case of flexible link manipulators with prismatic joints, the complexity of the dy-
namic model increases many-fold as the length of the vibrating link that translates, changes
with time. Chalhoub and Ulsoy|8] investigated the interrelationship between the arm struc-
tural flexibility and a linear controller design of a spherical coordinate (RRP) robot arm.
The equations of motion were derived by the assumed mode/Lagrangian approach with the
last link considered as flexible. Wang and Wei[10] studied the vibration problem of a moving
slender prismatic beam using a Galerkin approximation with time-dependent basis functions
and by applying Newton’s second law. Yuh and Young[11] presented the experimental re-
sults to validate the approximated dynamic model derived using assumed modes method for
a flexible beam which has a rotational and translational motion.

In all the aforementioned works, it is invariably assumed that the translating flexible
links can be modeled as beams in flexure with clamped-free boundary conditions, leading to
a time-independent frequency equation[7], [12], [14]. The ‘free’ boundary condition however
may lead to inaccurate mode shapes and over-estimated eigen frequencies which may have
destabilizing effect when the translating flexible robot link carries a payload or when a wrist
is attached at distal end of the axially moving elastic beam[19]. In such cases the ‘clamped-
mass’ boundary conditions are more appropriate. Moreover, use of assumed modes method
to discretize flexibility of a translating elastic link may not be valid, as the principle of
separation of space-dependent eigenfunctions and time-dependent modal amplitudes is not
valid under the general conditions.

In this paper, we present a discussion on the applicability of using separation of vari-
ables for a translating flexible beam. We present the notion of group velocity for dispersive



waves and a non-dimensionalized Euler-Bernoulli beam equation based on this group veloc-
ity. We show that if the beam is translating at a constant, slow (compared to the group
velocity) speed, the assumed modes method can be used. The use of clamped-mass boundary
conditions lead to a time-dependent frequency equation for the translating flexible beam. We
present a novel method to solve this time-dependent frequency equation by using a differen-
tial form of the transcendental frequency equation. We then present a systematic modeling
procedure for spatial multi-link flexible manipulators having both revolute and prismatic
joints. The flexibility of links is approximated by using the assumed modes method. The
Lagrangian formulation of dynamics is employed to derive closed form equations of motion.
We show that the closed-loop dynamic response of modal variables become unstable during
retraction of a flexible link, compared to the stable dynamic response during extension of
the link by using a model-based control law. We present dynamic simulation results for a
spatial RRP(Stanford Arm) configuration robot with prismatic jointed link modeled as a
flexible link, and show that the results compare favorably with a finite element based model.

2 Modeling of a Translating Flexible Beam

Figure-1 shows a uniform flexible beam, of length [(¢), vibrating in the Z-X plane and moving
axially at a velocity U(t) along the Z direction. The portion of the beam to the left of origin
of the fixed coordinate system is assumed not to be vibrating and any point along the neutral
axis of the beam is located by s. We assume that the beam is inextensible along its neutral
axis and hence the axial velocity is independent of s[13]. The free vibration equation of such
a beam can be obtained by using the Euler-Bernoulli beam theory (neglecting the shear
deformation and rotary inertia effects), and is given by

4 2 2 2
p12glt s pa (T a0 ) O g

0s0t 0s2 dt Os

where s € (0,1(t)), u(s,t) is the lateral deflection, ET is the flexural rigidity, p is the density
of the material and A is the cross-sectional area of the link. The boundary conditions for
the above partial differential equation(1), for the clamped-mass case, are given as

B 0%u(s,t) . 0*u(s, 1)
[U(S’t)]s:() =0 El l?] s=I(t) B _JL [W s=U(¢)
3 2
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where My, Jr, are the mass and rotary inertia of the load at end of the link (see figure 1).
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The above equation(1l) contains the convective terms 2U 9 g(;; ), U 20 73(82’ ), and
S s
au o t
n us, ), and if the axial velocity(U) is zero, it reduces to the standard Euler-Bernoulli

beam equation with clamped-mass boundary conditions. The above equation also represents
a moving boundary value problem as the domain governed by this equation changes with
time. In this most general form, the above partial differential equation cannot be solved
using the separation of variables method, as this method requires the general shape of the
beam displacement not to change with time, while only the amplitude of this shape to change
with time[20]. Therefore, it is required that the numerical solution to the partial differential
equation(1) will have to be determined by using either finite difference or finite element based
schemes. It should be noted that these numerical schemes are however computationally very
expensive for a specified numerical accuracy and special programming considerations are
necessary. Moreover, as the finite element model uses polynomial mode shape functions
which do not belong to the class of complete set of functions, monotonic convergence to
actual solution cannot always be guaranteed[19]. However, convergence can be improved by
considering large number of elements in the model. In the rest of the section we present
conditions under which the separation of variables and the assumed modes method can be
used to solve the above problem.

Let us introduce the non-dimensional variables: n = s/1° and 7 = t/(I°/U,) with
1 [EI
U, = o p_A Note that n, 7, and U, are based on the fully extended length of the beam [°,

as this would give the worst case. The quantity Uy is the “group velocity” of the dispersive
waves of the Euler-Bernoulli beam equation[21] and [°/U, denotes the time taken for any
disturbance to travel a distance of I°. We observe that for a rigid body (EI — oo), the
time({°/U,) taken for the disturbance to travel over the entire domain(I°) approaches zero.
On the other hand, for a highly flexible beam (EI is small) or for a very long beam (I°
is large), the time for the disturbance to travel the entire domain will be large. It may
be mentioned that for times smaller than [°/U, the vibratory motion of the beam is not
governed by the equation(1) and the boundary conditions in equation(2). For times much
greater than [°/U, however, one can assume a ‘quasi-steady’ state, i.e., one can use the
instantaneous mode shapes of the cantilever beam.

Rewriting the partial differential equation in terms of the non-dimensional variables,
n, T and the ratio U/U,, we get

64u(n,7)+8ZU(77,T)+2<U> a?u(w)+<U>2M+<d (U>) Q1) _ g (3
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with the clamped-mass boundary conditions:
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We can make the following observations from the above equations(3-4):

1. The coefficients of the first two terms are unity and the third, fourth and fifth terms
are in terms of U/U, and the derivative of U/U, with respect to 7. For a constant axial
velocity, the term containing the derivative of U/U, with respect to 7 is zero. For the
third and fourth terms to be dominant U/U, should be large.

2. The ratio U/U,, for a given U, is largest for the smallest U,. The smallest U, is
obtained when the beam is fully extended, i.e. when [ = [°.

3. If U/U, < 1, then by dimensional analysis we can drop the third and fourth terms.
In typical simulations and experiments[11], U is approximately 0.1 m/sec, and U, is
approximately 3.03 m/sec giving U/U, ~ 0.033 < 1. Hence the convective terms
can be easily neglected. We have run simulations with various axial speeds U, upto
1 m/sec with U, = 59.34 m/sec, and have observed that the contribution of the con-
vective terms are much smaller compared to the first two terms. In particular, the tip
deflections obtained after neglecting the convective terms match quite accurately with
those obtained from a FEM based model derived from the complete partial differential
equation[19]. In this paper, we present numerical simulations, with U ~ 0.778 m/sec
and smallest U, = 59.34 m/sec.

4. Once the convective terms are dropped, we are left with the standard Euler-Bernoulli
beam equation for a clamped-mass cantilever. Separation of variables or the assumed
modes method can then be used with the eigen-frequencies based on the fully extended
length lo. Even if the length is changing continuously with time(slowly compared to
U,) we can still assume that the “eigen-modes” can be used, i.e., the mode shape
of the translating beam at every instant of time can be approximated by that of
a cantilever beam[11]. However, we have to solve for the slowly and continuously
changing “eigen-frequencies” (often called ‘quasi-frequencies’[18]) at each instant of
time. This procedure is illustrated below.

Let the lateral deflection be described as u(n, 7) = 4 (n)T€(7), where spatial admissible
functions ¥ (n) = [¥1(n), ¥2(n), ..., ¥a(n)]" are the complete eigen functions (in the
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sense that for arbitrary square-integrable u(n,7) : min || u(n,7) — ¥ (n)T€&(7) ||*= 0).
Then following the standard procedure of assumed modes method, we can write

d*ai(n) d?&(7)
o &(7) +i(n) )

=0 i=1,2,....n (5)

d2§;_(27_))/§i(7') = —(&giégn))/%(ﬂ) must be

constant. This constant is usually denoted by —w? and are called the ‘eigen-frequencies’

For separation of variables, the ratio (

of the system(5). These eigen-frequencies are related to the roots(3;) of the frequency
equation (also called the ‘wave number’ of system(5)) by the dispersion relation[21],

U,
w; = Tgﬁf. It can be seen that when length of the vibrating beam(l) changes con-

tinuously with time, these eigen-frequencies will also change continuously with time
irrespective of 3; which are determined by the end-conditions.

. We observe from the boundary conditions (equation(4)) that it is reasonable to use
Jr

pAl3

M

TLZ < 1, when the beam is fully extended (i.e. | = [°). On the other hand, if the
p

rotary inertia(Jy) and mass(M}) of the load are comparable to that of the vibrating

“free” end-conditions for the choice of eigen functions(¢;(n)) only if < 1 and

beam, it is more appropriate and correct to use the “mass” end-conditions. However,
this mass end-conditions lead to time-dependent frequency equation as shown below.

The eigen functions #(n)satisfying the “clamped-mass” boundary conditions are given
by,
Yi(n) = C;[ cos(Bin) — cosh(Bin) + v; (sin(Bin) — sinh(B;n)) | (6)
where,
o sin 3; — sinh §; + M ;(cos f3; — cosh 3;)
" cos B + cosh B; — M S;(sin 3; — sinh f3;)

and f; are solutions of the frequency equation,

(7)

(1 + cosh B;cos 3;) — M B;(cosh B;sin 3; — sinh f;cos ;)
— JB;%(cosh B;sin f; + sinh Bicos B;) + MJB;*(1 — cosh Bicos ;) = 0 (8)

My, Jr
here M = — = .
where AL J AT

functions. It can be seen from equation(8) that when ‘clamped-free’ end-conditions

The C; are constants which normalizes the eigen

are used the roots(f;) of the equation will be constants, however with the ‘clamped-
mass’ end-conditions they will change with time, albeit slowly. The slowly changing

nature of f; is shown in our numerical simulations (see section 5).
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6. The time dependent frequency equation can be solved by either using a root finding
algorithm at each instant of time or by using a “table look-up” approach[22]. The
former approach may lead to considerable increase in computational time, while the
latter requires a large storage space for the specified accuracy. In the following, we
present a novel method to solve time dependent frequency equation using differential
form of the equation, which then can be solved together with the dynamic equations

of motion.

Let us rewrite the clamped-mass frequency equation(8) as,

My B;
pAl

f(Bi, 1) = (1 + cosh Bicos ;) —

JLB?
pAl3

(cosh B;sin f3; — sinh f;cos ;)

jM'LJLBi4

W(l — cosh ficos ;) =0 9)

(cosh B;sin B; + sinh fS;cos 5;) +

Since the frequency equation is continuous in 5; and the roots of the frequency equation
are all distinct, we can differentiate equation(9) with respect to time,

df (Bi,1) _ 0f(Bi1) dBs n af (B, 1) dl
d 0B dt ol dt

(10)

and rearrange to obtain,

where
My,
B, = AlZﬁ ;(sinh B;cos 3; — cosh B;sin 3;)
3JL 3, . _
— AL Bi° (sinh B;cos B; + cosh B;sin ;)
4M
QAL;l]; Bt (1 — cosh p;cos ;) (12)
and

f2(Bi 1) = [1 + M7l (1 — ilLl?’ ﬁf)] (sinh B;cos B; — cosh B;sin f;)

3J
A1L3 3;*(sinh B;cos B; + cosh fB;sin 3;)

2J, 4 |2M, 2Mj,
: — (1
+ pAl?’B l pAl ( + pAl

2ML

) cosh B;cos ﬁzl
ﬁzsmh B;sin f3; (13)



This ordinary differential equation(11) on £;, which is now a function of the generalised

variables (I and %), can then be solved together with the dynamic equations of motion

of the system, with the initial condition 5;(¢ = 0) solved from the frequency equation(9)
for I(t = 0).

In summary, we can conclude that although the eigenfunctions v;(n) (see equation(6))
does not strictly satisfy the partial differential equation(3), the translating flexible beam can
be quite accurately modeled as an instantaneous clamped-mass cantilever beam if the axial
velocity U is constant and small compared to the group velocity U,. We can assume that
the separation of variables method can still be used, however, we need to take into account
the slowly changing “eigen-frequencies”. The time-dependent frequency equation due to the
clamped-mass boundary conditions can be solved using a differential form of the equation
together with the equations of motion.

3 Modeling of Flexible-Link Manipulators

The dynamics of rigid-arm manipulators is characterized by system of nonlinear, coupled,
ordinary differential equations[23], but manipulators with flexible links being continuous
(distributed) dynamical systems, are governed by nonlinear, coupled, ordinary and partial
differential equations[1]. In this section, we use the assumed modes model to approximate
the flexibility of links (see previous section). We consider only the bending vibrations of
flexible links'. The link deflections with reference to its rigid configuration are, however,
assumed to be small.

3.1 Flexible-Arm Kinematics

By convention, the links of a flexible manipulator are numbered consecutively from 0 to n
starting from base of the manipulator to tip of the end-effector, where n is the total number
of links. We define the coordinate system (X;, Y, Z;) on link j with origin O; at the distal
end (farthest from the base), oriented so that the Z; axis is along the axis of joint j + 1.
We also define the coordinate system ()?],}A/;,ZJ) on link j with origin @j in such a way
that when the link is in its undeformed configuration, the coordinate system (X;,Y;, Z;) is

exactly coincident on the coordinate system (X, Y;, Z;) (see figure 2).

1For most robotic manipulators in general, we can neglect the axial and torsional vibration components
of the links because of their much greater rigidity in the axial direction and due to the structural design of
robotic systems.
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The 4 x 4 homogeneous transformation matrix from coordinate system (X, Y;, Z;) to
coordinate system (X,;_1,Yj_1, Z;_1) is given by,

cos; —sinfjcosa; sinfjsino; ajcosb;
Al sinf; cosfjcosa; —cosb;sina; a;sinb; (14)
J 0 sin COS O d;
0 0 0 1

where, 0;, o, d;,

ship between coordinate systems (X, Y}, ZJ) and (X,_1,Y;j_1,Z;_1). Throughout this paper,

qr,; (t) denotes the joint variable: it is 6 if joint j is revolute, and d; if the joint is prismatic.

and a; are the Denavit-Hartenberg parameters[23] representing relation-

Note that for the link with prismatic joint, a; = 0. The 4 x 4 homogeneous transformation

matrix from coordinate system (X;,Y;, Z;) to ()/(\], ffj, Zj), caused by the deformation of link

j — assuming small elastic deformations(1] is given by,

1 _¢Zj gbyj 5$j

i , 1 —¢g, 0,

i | z; Oy 15

T 15)
0 0 0 1

where ¢; = (@, dy;, qﬁzj)T and §; = (6, 5yj,<5zj)T describe the rotation and translation

between the coordinate systems (X;,Y;,Z;) and (X;,Y;, Z;), respectively. Let TY and TY

—~ o~

be the 4 x 4 homogeneous transformation matrices from coordinate systems (X, Y}, ZJ) and
(X;,Y;, Z;) to the base coordinate system (X, Yy, Zp), respectively, then

~ RO o - . -
w0 = (T ) - At arte A (16
and o 0o
v (% %) - Atet-arinta e "

where ﬁ?(R?) is the 3 x 3 rotation matrix, pj(pj) is the 3 x 1 position vector, and 0 is the
1 x 3 zero vector.

Using this notation, the position vector of any point(s) along the neutral axis of link
j can be expressed with reference to the base coordinate system (Xy, Yy, Zp) as,

r} =p)_; + Rjr, (18)



where,

S 0
0 [+ | v(s:?) if joint j is revolute
0 wj(s,t)
r; = q (19)
0 u;(s,1)
+ | v;(s,1) if joint j is prismatic
0

and wu;(s,t),v;(s,t), w;(s,t) are displacements with reference to the neutral axis of flexible
link 5 at a distance s and at time t, due to flexibility in the respective directions. Note
that the dependence of u;,v;, w; on the spatial coordinate(s), makes the system infinite
dimensional, leading to coupled ordinary and partial differential equations of motion.

The velocity of the point(s) on link j can be obtained from the time derivative of the
position vector in the inertial base frame {0}, and is given by,

=0 —~
. 0 . 0 0
r; =p;; + Ry + Ry (20)
where an overdot indicates the time derivative operator.

Assuming that the flexible displacements, u;(s,t),v;(s,t), w;(s,t) can be discretized
by assumed modes method (see Section 2), we can write

u(n,1) = gjlwf(n)s;‘wt)
vn 1) = gjlw;’f(n) 5 (1) (21)
wy(n 1) = ijw;”fm)sz"f(t)

i, [; is the length of flexible link j, and n; is the number of modes used to

lj
describe the deflection of link j. It should be noted that when we consider the flexible link
with a revolute joint, the length of the vibrating link [; = a;, remains constant. On the other

where n =

hand, if for a flexible link with a prismatic joint, the length of the vibrating link /; = d;
would vary with time(t) as the length d; of the translating beam is the joint variable.

We choose “clamped-mass” eigen functions for flexible links of the manipulator system.
The clamped-mass end-conditions lead to time-dependent frequency equation as shown in
section 2, for the translating flexible link, and for revolute jointed flexible-link manipulators
with more than one link[4], [19].

The 4 x 4 homogeneous transformation matrix, Eg_l that describes the link deforma-

tions for link 7, can now be written as
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if joint j is revolute:

0 MR 20 o
| 20 0 0 Y E (1)
B =1+ (22)
I RO 0 wPOE
0 0 0 0
if joint j is prismatic:
0 0 WM (1) (L)€ (1)
. 0 0 W) gl () -
T e 2Pew o 0
0 0 0 0

where I is the 4 x 4 identity matrix and note that all variables in the transformation matrix
are evaluated at n = 1, tip of the link j. The generalized flexible deformation variables in

this case are therefore, qz, = (£ (), &7 (t), &7 (), - - -, &l (t), & (t), &n) (t))". The velocity of
any point on flexible link j expressed in undeformed local link coordinate system is given by,
( 0
j v dgl?’j t
> oy %l S
= if joint j is revolute
K owy 06 (2)
b ()=~
2 i
=9 . u; wi o\ o (24)
$5 [y 2E0) _ 0 ) € (s ()
=1 dt on Li(t) dt
. Y (n) d&;’ (1) _ 0y’ (n) &’ (t)n dl;(¢) if joint j is prismatic
=1 dt an  Li(t) dt
dl;(t)
\ dt
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3.2 Dynamic Equations of Motion

The dynamic equations of motion are obtained using the Lagrange’s formulation of dynam-
ics. It may be noted that the generalized force corresponding to joint variable g, is the
joint input I'; (torque 7; for a revolute joint, or force Fj for a prismatic joint). For the
flexible deformation variables (qy) the corresponding generalized force will be “zero”, if the
corresponding elastic deflections or rotations have no displacement at those locations where
external forces are applied, and note that this corresponds to the case when ‘clamped’ con-
dition is used for controlled end of the link [1]. It should be noted that other conditions for
controlled end of the link, such as ‘pinned’ condition, or ‘free’ condition will have “non-zero”
generalized forces corresponding to the generalized flexible deformation variables.

The general form of Lagrange’s equations (for clamped condition) are then,

for joint variable ¢,,:

d (0T or ov

— - =T 25

dt (aq.’l']‘ ) aQTj + aQTj ! ( )
for flexible deformation variable gy,

d (0T or ov

dt (aqui> aqui aqui (26)

where, T is the total kinetic energy of the flexible manipulator system, and V' is the total
potential energy due to elastic deformations and gravity.

3.2.1 Kinetic Energy

The total kinetic energy of flexible-link manipulator system is due to the motions of joints
and links, and kinetic energy due to the payload. The kinetic energy for a revolute joint j,
if considered as mass with rotary inertia about the axis of revolution is given by,

ij-mj = 592 I]Q? —+ §m]< d]t d]t (27)

where m; is the mass of the joint hub j, p}_, is position vector of the joint j, I;, and QI

are the joint inertia matrix, and the angular velocity vector of joint j, respectively. In the
case of prismatic joint j, at any instant of time, a part of the translating beam is outside
the joint hub and is free to vibrate, while the remaining part of the beam is inside the joint
hub and is restrained from vibrating[11]. The kinetic energy due to part of the beam inside
the joint hub is given by,

1 0 di?\" [ di?
Tioing. = ~ O e Y i B 28
Jomty = 9 (zj(t)—z;?)'oj j(dt) (dt) ° (28)
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where
¥) = p)_, + sz,
and 2) is the third column vector of the rotation matrix ﬁ?, and 13, 1;(t) are the total length
of the translating beam, and length of the beam outside the joint hub at time ¢, respectively.
Under the assumption that the links are slender beams [20], the kinetic energy of the
flexible link j can be obtained as,

1 b dr) r dr)
Think, —5/0 PjAJ(E) 7 |9 (29)

where p; is the density of the material, A; is the cross-sectional area, and /; is the length of
flexible link j.
The kinetic energy due to the payload is given by,

1 (dp%\" (dpd
Tpayload:§mp<ﬂ> <W (30)

where p? is position vector of tip of the end-effector(see equation(17)), and m,, is mass of
the payload.

3.2.2 Potential Energy

The potential energy of the flexible manipulator system arises from two sources — due to the
deformation of links and due to gravity. Assuming slender beam type of links and neglecting
the axial and torsional vibration of links, the potential energy due to bending deformations
of link j about the transverse }A/J and Zj axes, is given by [20],

1 b 2v;(s,)\° Pw;(s, 1)\’
ij=§/0 (@%y(%) + Bl | =5 | ds (31)

where £ is the Young’s modulus, I;,,

axes, of link 7. Note that for flexible link j with prismatic joint, the bending deformations

I;, are the area moments of inertia about respective

of the link in the transverse )?J and }7] axes have to be considered as opposed to the above
equation.

The gravitational potential energy due to the mass of joint hub and due to the elastic
link 7 is of the form,

lj

Vyj = m;g'pj_, + /O piAg' Tjds (32)

where g is the gravity vector in the inertial coordinate system {0}. The gravitational po-
tential energy due to the payload mass is given by,

%payload = mpng?L (33)
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The system’s total potential energy (V') is then, sum of potential energies (equations(31-32))
over all the links, and due to the payload(equation(33)).

The closed form dynamic equations of motion for flexible link manipulators can be de-
rived using symbolic manipulation software such as REDUCE or MACSYMA. The resulting
equations of motion in the matrix form can be written as,

M,, M, o h,(q, ¢ c, 0 0 r r

<M7Tf Mf;)<2f>+<hfgga$>+<Cf§?lg>+<0 K><:llf>:<0> oY
where q = (q7, q?)T, is the n-vector of generalized joint (q,), and N-vector of flexible defor-
mation (qy) variables, M is the (n+ N) x (n+ N) configuration dependent generalized mass
matrix, h is the (n 4+ N)-vector of Coriolis, and centrifugal terms and the terms accounting
for the interaction of joint variables and their rates with flexible variables and their rates,
c is the (n 4+ N)-vector of gravitational terms, K is the N x N flexural structure stiffness
matrix of the system, I' is the n-vector of input torques (or forces) applied at the joints, and

0 is the zero matrix/vector with appropriate dimensions.

4 Stability Analysis

In this section we discuss the stability properties of manipulators with a prismatic jointed
flexible link. We assume without loss of generality that the manipulator operates in a
gravity-free environment (i.e. c(q) = 0 in equation(34)). Let us suppose that the control
input vector is calculated using the nonlinear decoupling technique applied to joints[3], [24],
and is given by,

T = (M,, — M,;M;;M],)u + (h, — M,;M;;(h; + Kqy)) (35)
The new control input u can be chosen for a specified joint trajectory as
u=q%t) — Gye(t) — Gpe(?) (36)
so that the joint error satisfies,
é(t) + G,é(t) + Gye(t) =0 (37)

where e(t) = q,(t) — q%(t), is the vector of joint errors, G, and G, are positive constant
diagonal position and velocity gain matrices for the joint variables respectively. The model-
based controller (equations(35-36)), thus results in the following set of closed-loop system of
equations[19], [24],

q-(t) = u (38)
Myrd; + hy(q,q) + Kqy = —M[u (39)
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We observe from the closed-loop system of equations(38-39) that a twice differentiable desired
joint trajectory q(¢) will be asymptotically tracked for the proper choices of gain matrices
G, and G,. However, the feasibility of this control law is based on the stability of (39)[24].

Let us consider “uniform motion” of the joint variables (i.e. q%(t) = 0) with e, & equal to
zero at ¢ = 0. This results in the new control input u = 0, and we have,
dr = —M;;(hs(a,4) + Kay) (40)

where a factorization of the type hy(q,q) = Nys(q, q)qy exists, with Mff — 2Ny skew-
symmetric[24]. Let us then consider the following candidate Lyapunov function,

1. )
V() = 5 (4 Myds + afKay) (41)

vanishing only at the desired equilibrium state (q%,q%) = (0,0) of system (40). The time
derivative of the Lyapunov function(41) along the trajectories of system (40) is given by,

V(t) = ~qfKa, (42)

K= Diag{—%%(tt) {3/0 (dw’) dn +2/ <d2¢l> (dg‘i“>dn]} (43)

It may be seen in the above equation(43) that the flexural rigidity, £, and the length of

where,

the translating flexible beam, I(t), are always positive. The terms inside the bracket are also

. . di(t
positive. Hence the sign of K and V() are determined by the sign of # For extension

dl(t . .
of the link % > 0 which implies K < 0 and therefore V(¢) < 0 for all values of time(?).
This implies that the dynamic response of the flexible modal variables (qy) is stable during

di(t)

extension of the flexible link. For retraction of the link, s < 0, which implies K > 0 and

therefore V(t) > 0 and this may lead to unstable dynamic response of the flexible modal
variables.

It should be mentioned that during extension of the flexible link, the amplitude of
modal variables(A) increases as the frequency of vibration(w;) decreases so as to conserve the
elastic energy (proportional to Aw?). However the motion is stable, since V() < 0. This is
observed in our simulations (see section 5) and we also show that the closed-loop eigenvalues
have negative real parts for extension. On the other hand, during retraction of the link, the
frequency increases and the amplitude of modal variables decreases. However the motion
may become unstable since V > 0. Again this is observed in our numerical simulations and
we show that the closed-loop eigenvalues have positive real parts for retraction. The above
results are in contrast to those reported by Wang and Wei[10].
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Physical system parameters Value

mass of link 1 (m;) 3.7051kg
mass of link 2 (my) 0.3310kg
mass of link 3 (mj) 0.4303kg
mass of payload (m,) 0.0828kg
length of link 1 (/;) 0.1m
length of link 2 (/) 0.3m
total length of link 3 (13) 1.3m
rotary inertia of joint 1 (I;) 0.352kgm?
rotary inertia of joint 2 (I5) 3.2kgm?

flexural rigidity of link 3 (E3l3) 1165.4916 Nm?

Table 1: RRP configuration robot system parameters

5 Numerical Results

In this section, we present the dynamic response of a flexible, spatial, RRP configuration
robot (see figure 3). The manipulator is assumed to operate in a gravity-free environment,
and the prismatic jointed link 3 is considered flexible in the numerical simulation. The flexible
link is discretized by two modes in the assumed modes model. The numerical simulation was
performed on a SUN-SPARC 10 Workstation. The first-order differential equations of motion
(state-space form) with the control input(see equation(35-36)) were solved by a variable step,
variable order (of interpolation), predictor-corrector (PECE), Adams algorithm[25]. The
desired trajectory for all the joints were generated by using a linear segment with parabolic
blends type in time. The joint 1 is commanded to move from 0° to 180° in 1.0 second,
while the joint 2 is commanded to move from 0° to —90° during the same time period. The
prismatic jointed flexible link, on the other hand, is extended from 0.3m to 1.0m in 1.0
second in one case, while it is retracted from 1.0m to 0.3m in 1.0 second for the other. The
desired joint trajectories are shown in figure 4. Table 1 lists the physical system parameters
used for the simulation.

Figure 5 shows the time history plot of the mode amplitudes of the in-plane and out-
of-plane bending vibration components of link 3 during both the extension and retraction
of the flexible link 3. We computed the closed-loop eigenvalues of the RRP manipulator
system using the Jacobian of the closed-loop equations of motion in state-space form. The
closed-loop eigenvalues corresponding to the flexible variables are shown in figures 6 and 7.
It illustrates the time varying nature of frequencies during motion of the prismatic jointed
flexible link 3. It can be observed that real part of the closed-loop eigenvalues of the vibration
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mode amplitudes become positive, and move into the right-half of the complex plane during
retraction of the link 3. This gives rise to unstable response of the flexible variables (see
figure 5). During extension of the link 3, on the other hand, the real part of the closed-loop
eigenvalues of mode variables become negative and move into the left-half of the complex
plane, giving rise to stable dynamic response. The time evolution of solutions(3;) of the
clamped-mass frequency equation are illustrated in figure 8.

6 Summary

In this paper, we have presented a discussion on the applicability of using separation of
variables and the assumed modes method to discretize a translating flexible beam. We intro-
duced the notion of group velocity for dispersive waves and presented a non-dimensionalized
Euler-Bernoulli beam equation based on this group velocity for the translating beam. We
showed that if the beam is translating at a constant, slow (compared to the group veloc-
ity) speed, the principle of separation of variables can be applied. We showed that when
the mass and rotary inertia of the load are comparable to that of the flexible beam, the
mass end-conditions are more accurate to use for the choice of proper eigen-functions. The
clamped-mass boundary conditions, however, lead to a time-dependent frequency equation.
We presented a novel method to solve this time-dependent frequency equation by using a
differential form of the frequency equation. We then presented a systematic modeling pro-
cedure for spatial multi-link flexible manipulators having both revolute and prismatic joints.
The assumed modes in conjunction with Lagrangian formulation of dynamics is employed to
derive closed form equations of motion. We showed, using a model-based control law which
decouples the joint motion from the flexible dynamics, that the closed-loop dynamic response
of flexible modal variables become unstable during retraction of a flexible link, compared to
the stable dynamic response during extension of the link. The above results were illustrated
with numerical simulations of a RRP flexible manipulator.
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Figure 1: A schematic of the prismatic jointed flexible link with clamped and end-mass
conditions.
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Figure 3: Flexible spherical(RRP) manipulator.
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Figure 5: Time history of the vibration mode amplitudes during extension and retraction of

the link 3. (—:

in-plane vibration, - - - :

out-of-plane vibration )
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Figure 6: Time history of the closed-loop eigenvalues of flexible variables during extension
of link 3. ( — : in-plane vibration, - - - : out-of-plane vibration )
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Figure 7: Time history of the closed-loop eigenvalues of flexible variables during retraction

of link 3. (—:

in-plane vibration, - - - :

out-of-plane vibration )
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Figure 8: Time history of the solutions(5;) of clamped-mass transcendental equation. (
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