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Abstract 

This paper presents an overview of a part of the work done in the Robotics and CAD Laboratory on the computa- 
tional and experimental aspects of feedback control of mechanical manipulators. We first present experimental 
results which show that a feedforward, model-based controller performs significantly better than a proportional 
plus derivative (PD) controller. The experiments were performed at the Bhabha Atomic Research Centre (BARC), 
Bombay, on a complex five-degree-of-freedom manipulator, containing a four-bar mechanism for motion trans- 
mission, large speed reductions with accompanying friction and backlash at joints, and driven by AC servo mo- 
tors. We next present simulation results which show that a simple two-degree-of-freedom manipulator undergoing 
repetitive motion, under model-based or PD control, can exhibit chaotic motions for a particular range of feedback 
gains and for large mismatch between the model and the actual parameters. 

Keywords: PD control, model-based control, uncertainties, chaotic motions, robots. 

I. Introduction 

Most industrial manipulators are made up of links connected by rotary or sliding joint 
which allow relative motion between the links. One end of the robot is the fixed base and 
the other carries the end-effector or the tool. The robot joints are usually electrically 
driven by DC servo motors and they usually have sensors for feedback control and inter- 
action with the environment. Most industrial manipulators and robots are controlled by 
the common proportional, derivative and integral (PID) control algorithm. It is, how- 
ever, well known that a robot is a highly nonlinear system. The nonlinearities come from 
the change in inertia as a function of the configuration, coupling between the motion of 
the links, the backlash and friction present at the joint, and the nonlinearities due to 
flexibility at joints or transmission of motion from the actuators to the joint. Unlike in a 
linear system, there are no straightforward methods for choosing the gains of the con- 
troller for a robot and significant experimentation or tuning is required to obtain values 
of gains which results in acceptable performance of manipulators. Even after tuning it is 
observed that the accuracy and repeatability, damping and time response characteristics, 
steady-state error and other performance measures of a manipulator, under ND control, 
are not uniform throughout the workspace of the manipulator. To overcome this prob- 
lem, researchers have proposed alternate control algorithms where the manipulator 
model (dynamic equations of motions) are used for 'feedback linearization'. In this arti- 
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cle, we discuss some experiments and simulations of model-based control of robots. The 
work presented here has been done by students at the Robotics and CAD Lab" and the 
experiments were conducted at the Bhabha Atomic Research Centre (BARC), Bombay. 

There exists significant literature on modelling of robots and experiments on model- 
based control of robots4-8 . There are two main differences between results reported in 
literature and the results reported in this paper. Firstly, the experiments were done on a 
complex five-degree-of-freedom robot, containing a four-bar mechanism to transfer mo- 
tion to the third joint axis, and large speed reductions with accompanying backlash and 
friction at the joints. Secondly, unlike most robots mentioned in literature, the robot was 
driven by AC servo motors h 2 . In this paper, we present experimental results for a 'feed- 
forward' model-based controller, and compare the performance of model-based control- 
ler with the existing proportional plus derivative (PD) controller. It is clear from the 
experiments that the model-based controller gives better results than a PD controller. 

The robot under feedback (PD or model-based) control can be mathematically de- 
scribed by a set of nonlinear, coupled, ordinary differential equations. Many nonlinear 
equations are known to exhibit chaotic behaviour. Although there exists a vast body of 
literature on chaotic motions in Duffing's oscillator, inverted pendulum, maps and sev- 
eral other systems9 s 10 , literature reports very few works on chaos in robots. A full review 
of literature is available in Srinivas 3 ; however, to the best of our knowledge, excepting 
Mahout et al." .  12 , hardly any discussion exists robots on possible chaotic motions in 
feedback controlled robots. In this paper, we present simulation results of a simple, pla- 
nar, two-degree-of-freedom robot, under feedback control (PD and model-based), under- 
going repetitive motions. Although the robot is perhaps the simplest possible, it is still 
extremely difficult to derive any analytical results, and the only recourse is to perform 
extensive numerical simulations. From numerical simulations, we show that, for certain 
ranges of the controller gains and for large mismatch between the model and the actual 
robot parameters, the differential equations modelling the motion of the robot under 
feedback control can exhibit chaos. These simulations, apart from being of mathematical 
interest, can give lower bounds on controller gains for good performance of a robot. 

The paper is organised as follows: in Section 2, we discuss briefly the modelling and 
feedback control of a robot. In Section 3, we describe some experimental results obtained 
from a PD controller and a model-based controller on a five-degree-of-freedom robot. In 
Sections 4 and 5, we describe some simulation results of a simple two-degree-of-freedom 
manipulator undergoing repetitive motions. Finally, in Section 6, we present the con- 
clusions. 

2. Mathematical model of a robot 

A serial robot is modelled as a sequence of rigid links connected by joints which allow 
relative motions between the links. One end of a robot is the fixed base and the other is 
free, carrying the end-effector or the tool. In a serial robot, the degrees of freedom at the 
joints determine the degree of freedom of the robot. For a general task involving arbi- 
trary positioning and orienting the end-effector or the tool, a six-degree-of-freedom robot 



Link Length 
(m) 
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(kg) 

C.G. 
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1 0.650 24.60 0.0 
roll 2 0.300 15.36 0.133 

v. 3 0.450 2.24 0.175 
4 0.0 0.0 0.0 

:It 5 0.370 0.116 0.116 
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FIG. 1. The schematic diagram of a 5-axis servo manipulator. 

is required. The geometry and the kinematics of any serial robot is best described by the 
use of the well-known Denavit—Hartenberg parameters 4 . Usually, due to ease of actua- 
tion, only single-degree-of-freedom rotary or sliding joints are used, and most electri- 
cally driven robots are powered by DC or AC servo motors. Most robots also have sen- 
sors, such as optical encoders at the joints, to measure the joint rotation and for feedback 
control. Figure 1 shows a five-degree-of-freedom robot developed at BARC, and actuated 
by AC servo motors. The robot is equipped with optical encoders at the joints. 

2.1. Dynamic equations of motion 

The dynamic equations of motion of an n-degree-of-freedom serial robot are a set of 
nonlinear, highly coupled ordinary differential equations. They can be obtained by sev- 
eral methods'', and can be written in a concise form as 

= [M(0)0 + C(0, + g(0)± f(0,e) 	 (1) 

where U (t) is the n x 1 vector of the joint variables, Pc, the n x 1 . vector of joint 
torques/forces, [M(6 )], the positive definite n x n mass matrix, C(6,64) .  represent the 
Coriolis and centripetal terms, g(64  ) represents the gravity terms and f(O,e), the friction 

terms. 

2.2. Trajectory planning 

The desired robot task can be planned in Cartesian space (in terms of a desired position 
and orientation of the end-effector) or in joint space (in terms of the desired motion at 
the joints). The desired trajectory for the joints, 0 d (t) can be obtained by using cubic 

polynomials and the joint angle, velocity and acceleration at a time t can be written as 

6 	= ao  + a t  t + a2  t2  a3 t 3  

Od (t) = a l  + 2a2  t + 3a3  t2  

ed 	= 2a2 + 603 t 
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where ai , i = 1, 2, 	, 4 are detcrmined using known initial and final states. 

To enable a manipulator achieve a desired motion or task, we must choose a control 
algorithm which sends the torque commands to the joint actuators. The torques are 
usually computed continuously using feedback from the optical encoder at the joints. 

2.3. PD and model-based control 

A common way to compute the joint torques is to use the well-known PD algorithm. The 
joint torques are computed as 

T = [K 	d  6)+[1(](Od  — 	 (2) 

where [K r ] and [K p] are n x n diagonal, positive definite, derivative and proportional 
gain matrices. Often two additional terms are added on the right-hand side for improved 
performance and in such cases the control algorithm, known as a PID control algorithm, 
is given by 

T = O d  + [ k](t) d — 0) -F[K p ](0 d  — 0) ÷{K fol  (I 9 d — 9)dt 	 (3) 

The first term gives improved tracking performance and the last integral term can result 
in smaller steady-state errors. 

As mentioned earlier, a PD controller may not give uniform performance everywhere 
in the workspace of the robot. We next describe two such schemes in which the dynamic 
model of the robot is used to overcome this problem. 

2.4. Computed torque and feedforward control algorithm 

According to the computed torque control algorithm 4, the joint torques are computed as 

r 	+ 
	

(4) 

where we choose 

[a] = [m(e)] 

r' = 9d -F[IC 	d  0)-1-[K 	d  — 

"in\ 	.7\ 
where [M0],[g-,-)J, g•, and f(, -) are the estimated mass matrix, Coriolis and centripetal 
terms, gravity term and friction term, respectively. If the estimates and the actual model 
match exactly, it can be shown that the above control algorithm results in a set of linear, de- 
coupled error equations, and in such a situation, the PD gains can be easily chosen (according 
to well-established linear control theory) to give uniform desired performance throughout the 
workspace of a manipulator. 



EXPERIMENTS AND SIMULATION OF MODEL-BASED CONTROLLED ROBOTS 	113 

In the case of a mismatch between the model estimates and actual parameters of the ma- 
nipulator, the error equation is no longer linear and decoupled. However, the performance of 
the manipulator is expected to be better than with a PD control algorithm. To overcome the 
difficulty of computing the model in real time, one can precompute the model (using the 
known desired trajectory as opposed to the actual trajectory) and use it in a leedforward' 
manner. In this case, the control algorithm can be obtained using 

.,..-----, 
[aj=1,96  

P = ge d  ted)+,;( 9)d+f(t1d,td 

art = °d +[IC JO d  — b) +frc je d  —0). (6) 

In the next section, we present a comparison of implementation results for a PD and 
a model-based (feedforward) control scheme. Although similar implementation results 
for a direct drive arm with DC servo motors have been reported in literature's 8 , the ex- 
perimental results shown in this paper are for a more complex manipulator with a four- 
bar mechanism used for motion transmission from the actuators to the joint, large gear 
ratios with large backlash and friction at joints, and driven by AC motors. 

3. Experimental setup and implementation results 

The robotic manipulator used in our experiments is shown in Fig. I. It has five revolute 
joints with a four-bar linkage used to drive axis 3. The table accompanying Fig. 1 gives 
the linkage dimensions, mass of the links and centre of gravity of each link. Unlike most 
of the electrically driven robots, this manipulator is actuated by two-phase AC motors. 
The AC motors are relatively heavy and they develop low driving torques at high speeds. 
Due to this, large speed reduction is required at each joint. Table I gives gear ratio and 
encoder ratio at different joints. The gears used for speed reduction are invariably ac- 
companied by backlash and friction resulting in poor system response. A four-bar 
mechanism is used for transmission of torque from motor to the third joint. The motor 
which actuates the third joint is located remotely from the joint and toward the base of 
the manipulator. The four-bar mechanism considerably complicates the model of the 
structure but reduces overall inertia of the manipulator. Encoders are connected to the 
joints to measure rotation of the joint angle. Tachogenerators are attached to the motors 
to read the angular velocity of motors. 

Table I 
Transmission parameters 

Joint Gear ratio Encoder ratio 

1 115.59 4 
2 139.15 10 

3 139.15 10 
4 182.00 40/3 el' 

5 182.00 40/3 
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Time — seconds 

• FIG. 2. Controller performance in following desired trajectory of joint. 

We implemented two control schemes, the independent joint PD control and the feed- 
forward, model-based control. The details of the model used in the model-based scheme 
are given in Gopal l  and Ravikiran 2 . The actuator torques are given by 

T = T mdi i-{K 	d 	+[ 1C 	15) 

where 'rpm( is the torque computed from the given trajectory and the dynamic equations of 
motion. The computed torques are converted to corresponding motor voltages with the 

Time — seconds 
FIG. 3. Comparison of errors at joint 1. 
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help of motor characteristics charts 2 . The model-based controller and PD controller were 
compared based on the performance of the robot. The experiments were conducted with 
different trajectories, sampling rates, time spans and friction compensation. We present 
one representative result. 

The manipulator is made to traverse from home position (0°, 0°, —90°, 180°, 0°) to 
goal position (30°, 40°,-60°,180°, 0 0) and back to home position in a span of 4 seconds 
and the joint values were computed at intervals of 5 ms (i.e., at a frequency of 200 Hz). 
Figure 2 shows the desired trajectory and the path followed by robot under model-based 
control and PD control. It can be seen from the figure that the trajectory followed using 
model-based controller is closer to the desired trajectory. Figure 3 shows error in 0 1  
throughout the span of travel. The main error sources are backlash and friction; 
however, the error is small in the case of model-based controller due to dynamic friction 
compensation. The positional error was approximately —1°, in the case of a model-based 
controller but it was larger for the case of PD controller. For joint 2, the effect of gravity 
dominates over stiction and dynamic friction. Due to the absence of gravity compensa- 
tion in the case of PD control, the arm fails to stay at home position (0 2  = 0) and 
falls rapidly below the desired position (Fig. 4). For joint 3 the performance was similar 
on both the controllers (Fig. 5). This is because the effect of the dynamics, -r ind! , is 
smaller as one goes away from the base. It was observed that the manipulator, while op- 
erating under PD control, overshoots the goal position because of the absence of gravity 
and dynamic compensation. This resulted in the second joint impacting the mechanical 
stops. This was never observed when the manipulator was operating under model-based 
control. 

1 	 g 1 

1 	 I 	
I 
1.1.  

i 	 i 	 1 

1 	 i 	 i •
i•••  
i 	

. 

i 	
: 
I 	 . 	

i 

•••••••••••••••••••••4••••••••••••••••••.t ••••.................1•••••......n.•• 

i 	
1 ! 	

i 1 •. 
: ,, 	- 1.-  'PO-- 	 .! :.,• 

#. 	tir • 	

l 	

; 	st•It•  
1 	$ 

evy 	
sari/lug ........ Inell4p.g rigt • IF. •- 

•7  • 
1 . 	se  81  \IS i g 1  

I 	I, 

••••••1• • snli•••••t" 
	so • • •••■ •• •• is. .. • • • •• • •• • w •• • • ie • • • a s i nit. • •• • • ••• 	•••• • •• • • • •• • ••• • • • .1. • • • 	••• 

if
• . •.. •• • • •• • . • • • • • •ii,  

3 

••••• 	...4 1.•••• 	• •••••••• 

3 
1 
3 

• • •• 

•• 

0 41 •••i• •••• • • •• • • •• • • • 
• 

..•i_.•....•.... 
t 

9. • 

_4\ 
1 
I 
It i..1 -. .... ..i.....3.r........,. 

. / 
..i ..,...,.............149dc 1.7.-.094 

I 
. 	. 

1 
	1.5 
	

2 

• • • • lic • 	• • •• • • • 411 • • 	• • •• • • • •• • • •• / 

0.5 

1 	 1 

3 	 1 

• • •••••••••••• 4.•••••••••••••••••••40 • ••••.....• •••
•••••••106••••••••••••••••• 

Time — seconds 

FIG. 4. Comparison of errors at joint 2. 



116 
	

ASH1TAVA GHOSAL 

1.5 

1 

O. 5 

-1 

-1.5 

-2 

I 	 I 	 a 	 . 

I 	
P6 I 	

g 

I 	 I : 
I OPeft 

	

clrii° IS; •,04.4 : 	 i 	 ! 	 i 	 • 
• 9 	 • •••!••••••••••••••••••••1••••••••••••••••••••1•••••••••••••••••••1•••••••••••••••••••••?•••••••••......... 

i' kV 	 sAti 
1 	

I 

I 	

1 
.000„ 	 1 

f 

	

I. 	
. 	 • 06 ..1 I 	 i 

	

i 	
Itaik‘ 

	

I 	 1 	 1 	 I 	 i 
••• • • r • Seas° • •• • VW ••• •4411• • NI MOO now • no ••• iir• • ••••••••••• as • ••••40•• •••• ••••••••••••• 

••••■•• •••• • 
 

• • • 	• • . 	.••••■ •■ •■ •■•••• 	tr1111•••■ •••••■•••••••••••1 0.  

PI. 	 vie( - based 	
I .. ! 	

1 	g t ! 	1 
• I 	 i 

41 I 	
I g 	

1 

I 

	

. 	 1 
mos. ....wan ...................4......•••• 00000 'Inv. 0....••••••• ■ •••••••It • ••••••••••• 00000 et•emas••••••• ••••• it ••••••••••••••••len•«••••••••••• 

I 
8 	 I 

I 	
I 
I 	 t 	 11161 I I i 	I  ri 4 t 	 t 	 I B 

i 	
• i 	 • 

•
• • • • 7 	1 

••••••• ■ ••••• ■ ••• ••••••••••••••••••040 ■ Onqtenags•S•••• ••••••••••••••••••••110••••••••• ■ ••11/44 	• ••••••••• ■ ••••••• ■ •• 	met •••••••••)..••••• • . •••••• 

i 	 Is • 	 , 4  
1 	 1 •L 	S 

I  II  i i• I 

	

.110 	
1 ! 	. i 	 i 	1140 . r 	

• 

I 
1 	 t 	 I 	2 

	

•••••••••••••• • •• ••••••••••••• an • we • 4••■ •• ••• • •••••••••••• ance••••••••••••••&••••••••••••••••••••4....5............1/... . 	. . • . ... 

i 	 t 	 I 
$ 	 I 	 I I 	a; S 	I jail  l   
1 	 i 	

S 	
I 

• ! 	 • • I 1 	: i ad : 
110  • i 

•••••••••••••••••• ••••••••••••••••••••in•••••••••••••••••• ••••••••••••••••••••in•••••••••• ■ ••••••4•••••••••• ■■••••••••+ •••• 00000 ••••4•••••••••••••••••• 
0 I 	a 

1 	 $ 	 t 	 7, 
3 	 1 	 1 	 I 
3r 	 a 	 t 	 S I 

• • • • t 	 _ 

0.5 	1 	1.5 	2 	2.5 	3 
	

3.5 
	

4 

Time - seconds 
FIG. 5. Comparison of errors at joint 3. 

4. Possible chaotic motion in feedback-controlled manipulator 

As observed earlier, the equations describing the motion of a feedback-controlled robot 
are nonlinear. Several nonlinear equations are known to exhibit chaos for certain ranges 
of parameters. In this and the next section, we explore the possibility of chaos in a sys- 
tem of differential equations which model a feedback-controlled two-link robot with ro- 
tary (R) joints. The simple two-link robot, and not the five-degree-of-freedom manipula- 
tor, is chosen for simplicity in simulation and visualization of the results. 

Chaotic motions are a class of motions in deterministic physical and mathematical 
systems whose time history has sensitive dependence on initial conditions 9. The sensitive 
dependence implies a divergence of slightly perturbed trajectories and hence long-term 
unpredictability. These types of motions occur in nonlinear differential equations for 
certain parameters, certain initial conditions and for repetitive motions. 

In this section, we consider a 2R planar robot under a PD and a model-based 
controller. We explore the possibility of chaos in the nonlinear differential equations 
describing the motion of this robot. The parameters of interest are the gains of the con- 
troller and the mismatch between the model and the actual robot. Although the system 
considered is very simple from a robotics point of view, it is still very difficult to do 
any analytical study on possible chaotic motions in this system. For this 2R planar robot, 
the corresponding dynamical system is of dimension te and is non-autonomous. It is 
very difficult to obtain any analytical results and only a numerical study appears to be 
feasible. 
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The dynamic equations of motion for a 2R robot can be written in the state space 
form as 

= x2  

= OM (X3 ))1K3 (X3 XK2 (X3 )4 + N2 (2X2X4, + 4))+N2 1)  K2(X 3  Yr 2 

= x4  

itt= 
(
V3 (x3 )) n {—K 3( X x K ix 2  +K ( x x x2 	(x 	(x 1 x( 3/ 2 	2 xN 3/(2  2 4 + 4 ))— K 2% 3, 1 + K 1%  3) 2} (7) 

where the state variables are the joint variables e l , 02  and their derivatives, and 

P3(X3) = de4M(x3  

Ki  (x3 ) = m 1 r12  +1 1  +12  + m2r? + m2q +2m24r2  cos(x3 ) 

K2(X 3 ) = m2d + 12 + m2 1i r2  cos(x3 ) 

K3 (X3) = m24r2  sin(x3 ) 

N2  = 12  + trt 2d 	 (8) 

In the above equations, mi , 1, , 1 and r i  are the mass, length, inertia and location of the 
centre of gravity of link i, respectively. Figure 6 shows a sketch of the 2R robot under 
consideration. We consider two previously mentioned control laws, namely, (1) PD con- 
trol and (ii) model-based control. 

The desired repetitive trajectories in the joint space are chosen as 

0 = A1  sin(to t) 

0d2 = A2 sin(co 
	

(9) 

Physical parameters of the 2R robot 

Link Length Mass 	C.G. Intertia 

(m) 	(kg) 	(m) 	(kgn?)  

1 0.5 20.15 0.18 6.3 

2 0.4 8.25 0.26 1.4 

FIG. 6. A schematic of a 2R planar rigid robot. 
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For the model-based control, we use eqns (4) and (5). Since the manipulator moves in 
a plane there is no gravity term and for simplicity we do not include the friction term. 

The gain matrices, [K r ], [K,], are 2 x 2 constant, diagonal gain matrices. The estimates, 

[M(0)] and [C(0,9)], are computed by perturbing the robot parameters as follows: 

=(l+ e)m i  

where t > 0 implies an overestimated model and –1 <s < 0 implies an underestimated 
model. For e= 0.0, the closed-loop error equations become a linear, second-order, ordi- 
nary differential equations, and they. can never exhibit chaos. For e* 0, substitution of 
control equations in eqns (7) results in a system of four, first-order, ordinary differential 
equations which are coupled, nonlinear and non-autonomous. 

The two dynamical systems, obtained for the PD and the model-based controller, 
have trigonometric nonlinearities and are dissipative. The amount of dissipation is de- 
termined by the velocity gain [K,J. The R 4  state space (R 5  in the case of the correspond- 
ing autonomous system) makes it very difficult for analytical work. One can show that, 
the only fixed point of this set of differential equations is (0,0,0,0) and it is difficult to 
make any more general statements. 

The above systems are much more complicated compared to the systems studied in 
chaos literature which are usually of dimensions less than four, and usually with non- 
linearities which facilitate some analytical study. One way to study these systems is by a 
digital computer. In the next section, we present the details of the numerical study done 
for the above systems. 

5. Numerical study and results 

To perform a numerical study on the two, nonlinear, non-autonomous, ordinary differ- 
ential equations, representing feedback control of a planar 2R robot, we have chosen the 
Denavit–Hartenberg and inertial parameters of the first two links of the CMU DD Arm 
11 13 . Figure 6 shows a sketch of the 2R robot with all its parameters. 

In the numerical study, we are interested in global behaviour when the controller 
gains are varied. In general, there would be four controller gains—K p  and K, for each of 
the two joints. To make the search space smaller we have assumed that the gains are the 
same for both joints. 

The state equations were integrated numerically by a variable step, variable order, 
predictor corrector Adams algorithm". To ensure that the numerical plots were not an 
artifact of the numerical integration scheme, the results were verified with Runge–Kutta 
5-6 15  integration routine. The results were also checked for relative and absolute error 
tolerances of 10-6  and 10-9. 
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Chaotic Eos —0.9 

FIG. 7. Non-chaotic and chaotic phase plots. 

To study the global behaviour of the feedback-controlled 2R robot under periodic 
desired trajectories, we first ignore the transients and then look at the following: 

(a) Phase plots: Phase plots are plots of joint velocity versus joint positions. The 
actual flow is in ile, but we plot projections in Be. These plots quickly give an idea if 
the orbits are periodic or not. 

(b) Poincare section: The integration results are sampled at the forcing frequency(in 
our case 2.0 rad/s). The Poincare Map is four dimensional, but we show R 2  projections. 
It is difficult to obtain or visualize the fractal structure of the map from the projections. 
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(c) The largest Lyapunov exponent was calculated using the algorithm given by Wolf 
et a/! 6  The Lyapunov exponent is a measure of the sensitivity of the system to changes 
in initial conditions, and a positive Lyapunov exponent indicates chaos. A search was 
done by varying the gains Kp  and K y  and calculating the largest Lyapunov exponent. In 
the case of model-based control, the measure of mismatch, E, was also varied. 
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(d) Bifurcation diagrams: The phenomena of sudden change in the motion as a pa- 
rameter is varied is called a bifurcation. A bifurcation diagram is a technique for exam- 
ining the pre- (route to chaos) or post-chaotic changes in a dynamical system under pa- 
rameter variations. Bifurcation diagrams were computed using the brute force algorithm 
as described in Parker and Chua 17 . 

A numerical study of the feedback control equations for the two control algorithms 
was done taking the desired repetitive trajectory to have A i  =7c/2 tad. A2 = 104 rad. and 

= 2.0 rad/s. The simulations were performed with different initial conditions and the 
same qualitative behaviour was observed after neglecting the initial transients. Figure 7 
shows the phase plots for nonchaotic and chaotic parameters. It can be observed that in 
the nonchaotic case the trajectory settles to a limit cycle whereas in the chaotic case the 
trajectory moves about in a bounded region in the phase space known as the attractor. It 
is to be noted that what we see in the phase plots is only a projection of the actual flow 
which is in R4 . 

Figure 8 shows PoincarE section for chaotic parameters of Fig. 7. The fractal nature 
is visible even though it is only a projection. Figure 9 shows values of controller gains 
for a PD and a model-based controller for which the system was found to be chaotic. The 
values of K, , and K„ giving rise to chaos are marked by the symbol *. A typical plot of a 
Lyapunov exponent for a particular set of parameters is also shown in Fig. 10. The *s in 
Fig. 9 were obtained by a numerical search in the (KI„ K r ) space with K1, and K r  varied in 
steps of 1.0. It can be seen that chaos occurs only for small gains and, in particular, for 
highly underdamped systems with small values of K. More detailed regions of the cha- 
otic parameter space can be obtained by taking smaller steps in the scan. 

In the case of model-based control e was varied in steps of 0.05. and 14„ K, by 1.0. It 

was found that chaotic behaviour was seen only when the mismatch parameter. r. 

Hu. 10. Largest Lyapunov exponent for the model-based controllet 
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FIG. I I . Bifurcation diagrams for the model-basec controller. 

large (more than 0.6) and it was more easily seen for underestimations. For overestima- 
tions, it was observed only for very small values of Kp  and K. This can be explained by 
realising that the 'effective' closed-loop gains are given by (Mr' fnif [K p ] and [M1-1  
fili[K,j. The 'effective' gains become large when e> 0 and are small when c < 0. 

Figure 11 shows the bifurcation diagrams of state variables x t  and x3  for two sets of 
parameters. A bifurcation from period one to period two can be clearly seen. Again, it 
must be noted that the figures are a projection of the trajectory bifurcating in RA . 

6. Conclusions 

In this paper, we have presented a brief overview of a part of the experimental and com- 
puter simulation work carried out in the area of model-based control of robots at the Ro- 
botics and CAD Lab at IISc, Bangalore. From the experimental work it is clearly shown 
that model-based control of a robot can greatly improve its performance. From the nu- 
merical study and results, we have demonstrated that the nonlinear, ordinary differential 
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equations describing the motion of a feedback-controlled, rigid, planar, 2R robot under- 
going repetitive motions can exhibit chaotic motions. We have shown that chaotic mo- 
tions can occur for a range of gains and for large mismatch between model and the ac- 
tual system. Although the range of controller gains, in particular the derivative gains, is 
far removed from usually critically damped (or overdamped) regime in any actual robot, 
this study, apart from being of mathematical interest, can give lower bounds on control- 
ler gains. The study can also help in obtaining conditions for better trajectory tracking in 
feedback-controlled robots. 
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