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The motion of a feedback controlled robot can be described by a set of nonlinear ordinary
differential equations. In this paper, we examine the system of two second-order, nonlinear
ordinary differential equations which model a simple two-degree-of-freedom planar robot, un-
dergoing repetitive motion in a plane in the absence of gravity, and under two well-known
robot controllers, namely a proportional and derivative controller and a model-based con-
troller. We show that these differential equations exhibit chaotic behavior for certain ranges
of the proportional and derivative gains of the controller and for certain values of a parame-
ter which quantifies the mismatch between the model and the actual robot. The system of
nonlinear equations are non-autonomous and the phase space is four-dimensional. Hence,
it is difficult to obtain significant analytical results. In this paper, we use the Lyapunov
exponent to test for chaos and present numerically obtained chaos maps giving ranges of
gains and mismatch parameters which result in chaotic motions. We also present plots of
the chaotic attractor and bifurcation diagrams for certain values of the gains and mismatch
parameters. From the bifurcation diagrams, it appears that the route to chaos is through

period doubling.

1. Introduction

The two-degree-of-freedom planar robot, shown in
Fig. 1, is the simplest possible robot. It consists
of two rigid links and two rotary or revolute (R)
joints, with the first link attached to the ground
through an R joint and attached to the second link
through the second R joint. Motors and sensors
(such as optical encoders) are provided at the joints
to drive the links through desired angles and for
feedback control. For the two-link robot shown in
Fig. 1, by appropriately actuating the joints, we
can position the tip of the second link (also called
the end-effector) at any arbitrary Cartesian position
inside its workspace. The relationships between the
joint variables, (61, 62), and the Cartesian variables,
(x, y) can be easily obtained for this simple robot.
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It may be mentioned that a general six-degree-of-
freedom robot which can arbitrarily position and
orient its end-effector in three-dimensional space
has six actuated joints and for such robots the rela-
tionship between the joint variables and the Carte-
sian variables is vastly more complicated (see Craig,
1989).

The task to be performed by a robot can
involve moving the end-effector from one point to
another (point to point motion) or moving the end-
effector along a desired trajectory (trajectory
tracking). The control problem for robots is that
of determining the time history of motor torques
required to cause the end-effector to execute a de-
sired motion. A control algorithm is required for
this purpose and there exist a number of them. One
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Fig. 1. A schematic of a 2R planar rigid robot.

of the most common control algorithm is the inde-
pendent joint proportional plus derivative (or PD)
control where the motor torque is proportional to
the error (desired joint rotation minus the mea-
sured joint rotation) and to the rate of change of
error.! Another control algorithm uses the dynamic
model of the robot together with the error driven
portion (see Sec. 2 for details). These control al-
gorithms have been studied extensively and imple-
mented on actual robots. Studies show that a
robot operating under the above two control algo-
rithms is stable for point to point and trajectory
tracking under certain conditions on the controller
gains and estimates of the model [Asada & Slotline,
1986; Spong & Vidyasagar, 1989; Craig, 1988]. It
is also claimed that these control algorithms are ro-
bust to changes in controller gains [Asada &
Slotline, 1986] and model parameters [Craig,
1988].

In this paper, we take a second look at the con-
trol problem for robots, in particular the simplest
two-link robot shown in Fig. 1, undergoing repeti-
tive motions in the Cartesian space. We show that
the nonlinear, ordinary differential equations, which
describe the motion of a robot under PD or model-
based control, can exhibit chaos for certain ranges
of controller gains and for large mismatch in model
parameters. This issue of possible chaotic motions

'Often, a term proportional to the integral of the error is also
added, and these are called PID controllers.

has not been addressed in depth by researchers in
the area of robust control of robots.

The organization of the paper is as follows: In
the rest of this section, we present some of the rel-
evant literature and discuss the points of differ-
ence with the vast existing literature on chaotic
motions. In Sec. 2, we present the dynamics and
control equations for the two-link robot under con-
sideration. In Sec. 3, we present the numerical tech-
niques used in this study followed by the numerical
results and discussion in Sec. 4. Finally, in Sec. 5,
we present the conclusions.

1.1. Literature review

There exists a large amount of work on chaos in
mechanical and electrical systems. Moon in his
book [1987] provides a list of the many phenom-
ena where chaos has been observed in these sys-
tems. However, there are very few works on chaos in
robots reported in literature. Vakakis and Burdick
[1992] and M’Closeky and Burdick [1993] have stud-
ied periodic and chaotic motions in the dynamics of
a simplified hopping robot. In this study, the leg of
the hopping robot is modeled as a nonlinear spring
whose restoring force is inversely proportional to the
displacement. Buhler and Koditschek [1990, 1991]
have studied a simplified model of a planar juggling
robot. The task of robot juggling involves intermit-
tent robot-environment interactions which give rise
to nonlinear maps. Mahout et al. [1992a] have done
a numerical study of the equations of motion of a
2R robot with periodic joint torques. They have
observed chaotic motions for certain robot param-
eters. In another work [Mahout et al., 1992b], they
have reported subharmonic, fractional harmonic
and chaotic motion in the equations of a 2R robot
under PD control for certain values of the gains of
the controller. Streit et al. [1986, 1988, 1989] have
studied the equations of motion of a two-degree-
of-freedom flexible manipulator with a prismatic
(sliding) joint and a revolute joint performing repet-
itive tasks. They show that the flexible variables
can undergo period-doubling bifurcations leading
to chaos.

A two-link robot moving in the vertical plane
can also be considered as a driven double pendulum.
The passive double pendulum is one of the classic
paradigms of a physical system exhibiting chaos.
Chaos has been demonstrated both by experiments
and numerical simulations [Levien & Tan, 1993;




Richter & Scholz; Shinbrot et al., 1992] in the dou-
ble pendulum. Except for the work of Dullin [1994],
to our knowledge, there exists no other analyti-
cal work on chaos in the double pendulum system.
There is, however, a major difference between the
two-link feedback controlled robot studied in this
paper and the double pendulum. In the equations
of the robot moving in the horizontal plane, there
are no gravity terms and hence we do not
have the stable and unstable equilibrium positions
typical of pendulum systems. We will see later
that for the two-link robot the only fixed point is

the origin.
_1
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2. Dynamics and Control of a
Two-Link Robot

Figure 1 shows a schematic of the two-link robot
under consideration. The robot consists of two links
of length l; and Iy which move in the horizontal
plane. The rotations at the two rotary (R) joints
are denoted by #; and 02 and the motion of the end-
effector of the robot in Cartesian space is denoted
by (z,y). The dynamic equations of the system
can be derived using the Lagrangian formulation
[Craig, 1989]. For the two-link robot, the equations
of motion can be written as

[mlr% +hL+ 1L+ mz"‘% + mgi% + 2malyirs 008(92)]é1
+ [mzr% + Iy + maolyre COS(@z)]éz — mali7rg sin(92)[291 + ég]ég =7 (1)

[m2r§ + Iy + malire cos(Oz)]él + [mz?'% + 12]52 + malire Sin(ez)é% =T2

where, m;, l;, I; and r; are the mass, length, inertia
and position of the center of mass of link ¢ respec-
tively, and 71, 7 are the actuating torques at the
two joints. Equatlon (1) can be written in matrix
form as:

M(e)é + C(8, é) =T (2)

where, 6(t) is the 2 x 1 vector of joint angles, M(6)
is the 2 x 2 symmetric and positive definite mass
matrix, C(8,8) is the 2 x 1 vector of Coriolis and
centrifugal torques and T' is the 2 x 1 vector of joint
torques.

We assume the robot to be instrumented with
sensors at each joint to measure the joint angle, and
a motor at each joint to apply a desired torque on
the neighboring link. In order to move the end-
effector from one point to another or to track a
desired path in the Cartesian space (the horizon-
tal plane) the joints must be rotated through ap-
propriate angles in the joint space (space formed
by joint variables). This requires the motors to be
commanded in a continuous manner and necessi-
tates the use of some kind of a control system to
compute the appropriate motor commands which
will realize a desired motion. There exist a number
of control schemes and these range from the simple
independent joint control to the more sophisticated
model-based control [Craig, 1989]. We first describe
the independent joint control scheme and then the
model based control scheme.

—
2.1. Independent joint control

In the independent joint control scheme, the joint
torques are computed as

I'=6;+K,E+K,E (3)

where E = 6; — 0 is the servo error, and E is the
derivative of the servo error.

The above control scheme is also called the pro-
portional and derivative (PD) control scheme, and
often a term which is proportional to the integral of
the error is added for reducing steady state errors.
This scheme can be proved to be asymptotically sta-
ble [Asada & Slotline, 1986] for any positive velocity
gain (K, > 0) for a regulator or set point track-
ing problem (8; = 64 = 0). However, such results
do not exist for the robot joint trajectory track-
ing problem (64 # 0 and 4 # 0). In this control
scheme, each joint is controlled as a separate control
system without taking into account any of the dy-
namic coupling between the joints. In contrast, the
model-based control scheme, described next, incor-
porates a complete dynamics model of the system
in the computation of the actuation torques.

2.2. Model based control

In the model-based control scheme the joint torque
is composed of two parts. One part is computed
based on the supposed knowledge of the parameters
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of the robot and is called the model-based portion of
the control law. The second part is computed in a
manner similar to the independent joint control and
is called the servo portion of the control law. The
torque computed by the control law is represented
as

I' = M(6)T, + C(8, 0) (4)

where, M(8) is the estimated mass matrix of the
original system, C(0, 8) is the estimated Coriolis
and centripetal torques vector, and

Iy =64+ K,E + K,E (5)

is the servo law. In the above equation, K, and K,
are positive definite diagonal gain matrices.

Substitution of Eqgs. (5) and (4) into Eq. (2)
results in the following closed loop system of
equations.

E+ K, E + K, E = [M(6) — M(0)]é
+ [C(B, 0) - C(G, B)] (6)

If the matrix M and vector C can be estimated
exactly to be equal to the actual mass matrix M
and Coriolis and centripetal torques vector C, then
Eq. (6) reduces to

E+K,E+K,E=0 (7

The above equation is a set of uncoupled, linear
second order differential equations, the eigenvalues
of which will always lie in the left half plane
for any positive gain matrices K, and K,. The
system is asymptotically stable as E — 0 as
t — oo and the actual trajectory 6 tracks the
desired trajectory 8. :

However, in practice, due to uncertainties in the
system parameters, an exact model of the system
cannot be obtained. The result is Eq. (6), which is|

Cbl = X9

a highly coupled system of nonlinear ordinary differ-
ential equations. It can be seen that the mismatch
between the actual and the modeled parameters will
cause servo errors to be excited according to the
rather complicated Eq. (6) and stability is very dif-
ficult to conclude. Since an approximate model is
used, robustness to parameter uncertainties is an
important issue. Craig [1988] has proposed a con-
jecture which states that if the estimated mass ma-
trix M () is positive definite and symmetric, and
the velocity feedback is sufficiently large and posi-
tive, the system will be stable despite possibly large
parameter errors. This conjecture is based on many
simulations and trials on actual robots.

It may be noted that the independent joint or
PD control scheme is a special case of model based
control with M (8) taken as the identity matrix and
C(8, 6) taken as zero.

3. State Space Robot
Control Equations

We are interested in the global behavior of the
closed-loop equations of the two control schemes to
changes in feedback gains (K, and K,) and model
uncertainties. The desired repetitive trajectories, in
joint space, are assumed to be

041 = A; sin(wt)

B4y = A2 sin(wt) (®)

In the PD control scheme, the torques at the two
joints are calculated as

= édl + k‘vl (édl - él) + kpl(odl - 91)
Tg = édz + ko, (édz - ‘92) + kp, (B4, — 62)

Substitution of Eq. (9) into Eq. (1) results in the
closed-loop equations of the robot under PD control
which can be represented in state space as

&y = (1/Py(z3)){ K3(w3)(K2(z3)z} + No(22224 + 73)) + Na(0ay + ko, (84, — w2)

+ kpy (84, — 21)) — Ko(3)(0ay + koo (0t — T4) + kpy (62, — 23))}

I3 = X4

(10)

&4 = (1/P3(x3)){— Ks(x3) (K1 (a)} + Ka(23)(2x24 + 23)) — Ka(23) (B4, + koy (04, — 22)

+ kPl (9d1

- 1;1)) + K1($3)(éd2 + k‘uz(édz - :124) + kpz(adz - 3—':2))}
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where, the state variables are defined as, z1 = 01, x3 = 91, x3 =09, x4 = 92, and

Ps(z3) = det[M(z3)]
Ki(z3) = mir? + L+ I+ mar3 + mal? + 2maliTe cos(z3)
Ko(z3) = mar3 + I + malirs cos(z3) (11)
K3(z3) = malyry sin(z3)
No=1I+ mzr%
In the model-based control scheme, we characterize the uncertainty in the model by a mismatch

parameter €. The estimated mass matrix M (8) and Coriolis and centripetal torques vector C’(G, 6) are
computed by perturbing the robot parameters as follows:

~

i = (1+e)m;, 7= 1+e)r, L=0+eL, L= (12)

where, ¢ > 0 implies an overestimated model and ¢ < 0 implies an underestimated model. Since the mass
matrix cannot be negative, —1 < ¢ < co. The joint torques are computed by Eq. (4).

Substitution of Eq. (4) into Eq. (1) result in equations of the robot under model-based control which
can be represented in state space as

I = T2

i = (1/P3(23)){ K3(w3)(Ka(@s)z3 + No(22224 + 23)) + No{Ki1(23){0ay + by (64, — z2)
+ kipy (84, — 71)} + Ko(23){0ay + Koy (8a, — 24) + kpy (0, — 72)}
— Ra(z3) (222 + 24)74a} — Ko(w3){Ka(w3){fa, + ko, (B2, — ®2) + kp, (02, — 1)}
+ No {04, + kuoy(0a, — Ta) + Fpy (2, — 22)} — Ksa3}}

. (13)
r3 = T4
&4 = (1/ Pa(zs)){—K3(w3)(K1(z3)73 + Ka(x3) (22224 + 73)) — Ka(a3){K1(x3){0a,
+ k’Ul (éd1 - x2) + kpl (edl - xl)} + K2(x3){éd2 + kvz (édz - :E4) + sz (edz - :1)3)}
— Ra(3)(222 + w4)aa} + K1 (w3){Ka(w3){0a, + ko, (Ba — z2) + Fp: (0 — 21)}
+ N2{éd2 + kv2 (édz - 11:4) + kp'z(edz - :E3)} - K3x%}}
where, the state variables are defined as, z; = 01, x2 = 01, T3 =03, x4 = ég, and
R’l(a:;;) = ﬁl1f% + jl -+ jz + 'ﬁlz’f% + ’ﬁ’bzi% + 27'7\7,2i1TA2 COS(:Eg)
Kz(.’l:g) = ’I‘Anzf% + jz + mgilf‘z COS(.’L‘3) (14)

K3(:I)3) = Thzil’f'2 Sin(ﬂ:g)

G % o 2
N2—I2+m2"'2

Equations (10) and (13) are systems of four by K,). These dynamical systems are very much
first-order ordinary differential equations which are different from the many systems studied in litera-
coupled, nonlinear and non-autonomous. The non-  ture. The absence of gravity eliminates the mul-
linearity is in trigonometric and quadratic terms. tiple fixed points typical of the pendulum and the
In addition the systems are dissipative due to the double pendulum systems. The only fixed point is
presence of velocity feedback (terms multiplied (0, 0, 0, 0). An analytical study appears difficult
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from the complicated nature of the equations, but a

numerical study is possible. In the next section, we
present the details of the numerical study done for
this system.

4. Numerical Study

To perform the numerical study we have chosen the
physical parameters of an existing robot, the CMU
Direct Drive Arm II [Khosla, 1986]. This is a six
degree-of-freedom robot, in which all the joints are
of direct drive construction, i.e. motors are mounted
directly at the joints. The first two links of this
robot move in the horizontal plane and we choose
the parameters of these two links for the numerical
study. The parameters are as follows:

Physical parameters

Length  Mass C.G. Inertia
Link (m) (kg)  (m)  (kgm®)
1 0.5 20.15 0.18 6.3
2 0.4 8.25 0.26 1.64

As mentioned before we are interested in the
global behavior when the mismatch parameter ¢
and controller gains K, and K, are varied. In gen-
eral there would be four controller gains — k,, and
k., for each of the two joints. To reduce the number
of parameters that can be varied, we have assumed
that the gains are same for both joints. The de-
sired repetitive trajectory (8) was assumed to have
A; = 7/2 rad, Ay = 7/4 rad, and w = 2.0 rad/s.
The numerical integration was done by a variable
step, variable order, predictor corrector Adams al-
gorithm [Gordon & Shampine, 1975]. In order to
ensure that the results were not an artifact of the
numerical integration scheme, the solutions were
verified with Runge-Kutta 5-6 [IMSL, 1989) integra-
tion routine. As an additional check the integration
was done for relative and absolute error tolerances
of 1076 and 107°.

In the numerical study the following was done:

(a) Time series and phase plots.
Time series and phase plots were observed for
different values of ¢, K, and K,. These plots
quickly give us an idea of the nature of the solu-
tion. Also the actual trajectory and the desired

trajectory were plotted, to observe the perfor-
mance of the controller.

(b) Poincaré maps.
The Poincaré map was obtained by sampling
the solution at the forcing period (in our case
7 seconds). The computed map is in R* space
and only projections in R? space were observed.

(¢) Lyapunov exponent.
The Lyapunov exponent is a measure of the
sensitivity of the system to changes in initial
conditions. A positive exponent implies chaotic
dynamics. All the Lyapunov exponents were
computed using the algorithm of Wolf et al.
[1985]. One of the Lyapunov exponents is zero
since the system is periodically forced and non-
autonomous. A search was done by systemati-
cally varying the gains K, and K, for different
values of the mismatch parameter €.

(d) Bifurcation diagrams.
The phenomenon of sudden change in the mo-
tion as a parameter is varied is called a bifurca-
tion. A bifurcation diagram is a technique for
examining the prechaotic (route to chaos) or
post chaotic changes in a dynamical system un-
der parameter variations. Bifurcation diagrams
were computed using the brute force method
[Parker & Chua, 1989] which essentially con-
sists of varying the parameter in fixed steps and
computing the Poincaré map for a finite number
of periods at each step.

All the simulations were performed for different
initial conditions and the same qualitative behavior
was observed after neglecting the transients. We
present below some of the many simulation results
obtained by us.

5. Results and Discussion

We first demonstrate the performance of the con-
troller for a good model and moderate gains. In
this case ¢ has a small absolute value. Figure 2
shows the phase plots of the actual trajectory and
the desired trajectory. It can be seen that the ac-
tual trajectory tracks the desired trajectory quite
well. Figure 3 shows the phase plots with a model
with ¢ = —0.5. It can be seen that the desired
trajectory does not track the actual trajectory, but
is periodic. A better performance can be obtained
by increasing the values of the gains K, and K.
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Fig. 2. K, =24.0, K, =12.0 and ¢ = —0.1.
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Fig. 4. ¢=-09, K, =25 and K, = 4.
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Fig. 6. Poincaré map, € = —0.85, K, = 35.0 and K, = 4.1.

Figure 4 shows phase plots of a case when the per-
formance is chaotic. The largest Lyapunov expo-
nent (Fig. 5) is positive and three of them are
negative.?2 This occurs in the case of a bad model,
i.e. when the mismatch is large and for low values
of gains. In Fig. 6, the Poincaré map is shown for
K, =35.0, K, =4.1 and ¢ = —0.85.

A systematic search for chaotic parameters was
done by stepping the parameters and computing
the largest Lyapunov exponent. ¢ was stepped at
intervals of 0.05 and K, at intervals of 0.1 for a

?The sum of all the Lyapunov exponents is negative since this
is a dissipative system.

fixed value of K,. Figures 7-10 show chaos maps
for different values of the mismatch parameter ¢.
Chaotic behavior was seen only when the mismatch
parameter, ¢, was large (more than 0.6) and chaos
was more easily seen for underestimations.

For overestimations, chaotic behavior was ob-
served only for very small values of K, and K,.
This can be explained by considering the closed-
loop equation of the system for model-based con-
trol. Let us rewrite the equations of motion with
the model based control law as,

E+MMK,E + M MK,E
=M YM-M]§;+[C-C]} (15)
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EPS = -0.85

90 100

eese srssesnsn

Fig. 9. Chaos map for model based control: € = —0.9.
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Fig. 12. Closed-loop poles for a non-chaotic case: € = 0.9, K, = 50 and K, = 6.5.




It can be noted that if the parameters are not
known exactly, the right side of the above equa-
tion does not cancel out but it is approximately
in the order of the mismatch error. Examining
the closed-loop gains of the system, i.e. M-'MK,
and M"1MKP, we note that the effective gains are
scaled up if the model parameters are overestimated.
This results in the closed-loop poles far to the left
of the jw axis.” On the other hand, if the model
parameters are underestimated, the effective gains
become smaller than the actual set gains. This re-
sults in the closed-loop poles moving towards the

Bifurcation diagram
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jw axis giving rise to chaotic behavior. This can be
seen in Figs. 11 and 12 which show the location of
the closed-loop poles for K, = 50 and K, = 6.5.
The closed-loop poles of the linear system for ¢ =0
are —3.25 + 6.2799i and —3.25 — 6.2799i. As can
be seen from Fig. 11 (chaotic case), the closed loop
poles are nearer the jw axis and sometimes go to
the right half plane. In Fig. 12, when ¢ > 0, the
poles are well to the left of jw axis. The closed
loop poles were calculated by numerically evaluat-
ing the eigenvalues of the instantaneous linearized
state equations (13).

—— EPS=-0.90, KP=50

theta 1

5o
s

T T T T
-

1
6.75

1
6.8 6.85 6.9 6.95
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Fig. 13. Bifurcation diagram for 61 (model-based controller: € = —0.9, K, = 50).
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Fig. 14. Bifurcation diagram for 6, (model-based controller: € = —0.9, Kp = 50).
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Figures 13 and 14 show bifurcation diagrams
for the model-based controller. A one to two bi-
furcation can be seen beyond which the system is
chaotic. It should be noted that these diagrams
were obtained by a brute force method and the
figures are projections of the trajectory bifurcating
in R4

Figure 15 show the chaos map for the propor-
tional and derivative controller which can be

considered to be a special case of the model based
controller with M equal to the identity matrix and
C equal to zero. Again, it can be observed that
chaos occurs for small values of the derivative gain
and relatively large values of the proportional
gain. Figures 16 and 17 show bifurcation diagrams
for the proportional derivative controller. Clearly,
bifurcation from one to two and two to four can
be seen.

PD Controller

10 20 30 40 50 60 70 80 90 100

Fig. 15.

Chaos map for PD control.
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1 1 1
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]
2.32 2.34

Fig. 16. Bifurcation diagram for 6; (PD controller: K, = 52).
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Fig. 17. Bifurcation diagram for 62 (PD controller: K, = 52).

6. Conclusion

“In this paper we have shown that the equations of
a nonlinear feedback controller can exhibit chaos.
These equations are very much different from those
studied so far in literature. The trigonometric non-
linearities and coupling of the equations makes an
analytical study difficult but a numerical study is
feasible. From the careful numerical study we
present the following major conclusions:

¢ Chaotic motions can be seen both for a simple PD
“controller and for a model-based controller with
mismatch in model parameters. The existence of
chaotic motions were verified by careful numerical
simulations and by use of Lyapunov exponents.

e Chaotic motions occur for small values of the
derivative gains and for large mismatch between
the dynamic model and the actual robot parame-
ters. Chaotic motions are only seen if the system
is grossly underdamped. The chaotic motions
are seen more easily for underestimated models.
For overestimated models, chaotic motions are
seen for extremely low values of controller gains.
This can be explained by the observation that the
effective closed loop gains for an overestimated
model is larger than the proportlonal and deriva-
tive gains.

e Although, we have not been able to present an-
alytical results, the numerical simulations suggest

that one of the possible route to chaos may be
through period doubling.

Although the range of controller gains, in par-
ticular the derivative gains, is far removed from crit-
ically damped (or overdamped) regime in any actual
robot, this study, apart from being of mathematical
interest, can give lower bounds on controller gains
and can also help in obtaining conditions for better
trajectory tracking in feedback controlled robots.
This study also suggests that robustness results in
robot control literature need a fresh look since the
possibility of chaotic motions have not been consid-
ered by researchers.
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