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Abstract

This paper deals with the trajectories of points embedded in
a moving rigid body being guided by a linkage having extra
or “redundant” motion parameters. A new method for the
kinematic use of redundancy is presented. The method is
based on the concept of a metric and differs from the typically
used pseudo-inverse formulation. It is shown how the redun-
dancy can be used to alter first-order properties such as the
shape of the velocity ellipse (or the ellipsoid) and a scalar
measure of transmission ratio or effectiveness. It is shown
how such local use of the redundancy leads to some global
results such as determining the alterable regions and the
boundaries of the trajectories. An example of a planar 3R
manipulator illustrates these new technigues.

1. Introduction

With respect to a generic set of tasks, redundant de-
vices, such as manipulators, fingers, and wrists, are
devices that have more than the minimum indepen-
dent controllable motion parameters required for the

set of tasks. Redundancy is expected to aid in avoiding

obstacles and singularities usually present in the work-
space (Paul and Stevenson 1983) and to generally
improve the workspace.

Some redundant systems have been built; the most

prominent of them are (a) a seven-degrees-of-freedom,

tendon-driven, torque-controlled robot (Takase,
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Inoue, and Sato 1974), (b) the seven-degrees-of-free-
dom articulated arm UJIBOT used by Yoshikawa for
obstacle avoidance (Yoshikawa 1984), (c) the eight-de-
grees-of-freedom, redundant, sheep-shearing robot
(Trevelyan, Kovesi, and Ong 1984), and (d) Yoshi-
kawa's four-joint wrist prototype ( Yoshikawa 1985)
designed to overcome the problem of wrist singularity.
In addition, Hollerbach (1985a) has proposed a seven-
degrees-of-freedom arm to eliminate singularities.
Most of the research on redundancy is theoretical; it
deals with the use of the extra freedoms, which is re-
ferred to as the resolution of redundancy. To date
there have been two classes of methods developed for
the resolution of the redundancy. One is based on the
optimization of certain relevant criteria (such as mini-
mizing time, energy, or joint motions), and the other
requires determining the pseudo-inverse of certain
matrices, We present a new method for the kinematic
resolution of the redundancy, which is not based on
either of these ideas. Our approach is based on altering
the local first-order properties.

In this paper, we primarily deal with the problem of
positioning a point using a redundant mechanical
linkage. In Section 1.1, we define redundant motion
and resolution of redundancy. Since our method is
intended as a variant to the pseudo-inverse methods,
we review the existing pseudo-inverse formulations in
Section 1.2 and point out their shortcomings. Since
our method is based on altering local first-order prop-
erties, in Section 2 we develop the local first-order
properties of trajectories of points embedded in a
moving rigid body undergoing a nonredundant mo-
tion. In Section 3 we deal with the redundant motion
of a point and show how the local properties can be
altered. Then we show how the local analysis yields
global results. In Section 4 we present an example,
based on a planar 3R manipulator, to illustrate the
techniques and the results.
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1.1. Redundant Motion and Resolution of
Redundancy

In the most general terms, the motion of a rigid body
in a fixed reference three-space R* may be described
by a mapping of the form

"[":(8“ e ,9,")_'(%’) (l)
In the above mapping, (6,, . . . , 8,,) are the m inde-
pendent motion parameters, (£€) represents the scalars
locating and orienting the rigid body, and ‘¥ represents
the mapping functions that take points in the motion
parameter space to positions and orientations of the
rigid body in R?, In the case of a manipulator the in-
dependent motion parameters are the rotations and
translations at the joints, & is usually three Cartesian
coordinates of a point on the end-effector, or three
independent scalars determining the orientation of the
end-effector, or six independent scalars determining
the position and the orientation of the end-effector,
and ¥ depends on the geometry of the manipulator
(i.e., link lengths, offsets, twist angles, and the type of
joints).

We have a redundant motion of a point in R? if the
number of independent motion parameters is greater
than three, and we have a redundant motion of a rigid
body if the number of independent motion parameters
is greater than six. In general, we have a redundant
motion of an element (&) if the number of indepen-
dent motion parameters is greater than the number of
independent scalars required to specify the position of
the element in the space of its motion.

Another way to define redundancy is to look at the
inverse map ®: (&) — (#,, . . . , 8,,). For a redundant
motion, for any (%) (specified by, say, n scalars with
m > n) there are infinitely many (6,, . . . , 8,,). If (&)
is of dimension #, the values of (6,, . . . ,8,)lieina
space of dimension m — n.

The problem of resolution of redundancy can be
expressed as follows: how does one obtain a unique
(@,, . ..,B8,) for agiven (%) when one has to choose
among the infinite solutions? This involves finding
“uses™ for the redundancy.

In general, the problem of finding a (6,, . . . , 0,,)
for a given (%) is difficult because the functions ¥ are

typically very nonlinear. Instead, most researchers
have tried to resolve the redundancy at the level of ve-
locity and have used the Jacobian map at a point. The
Jacobian map may be written as

J):(0,, . .., ) = (E) (2)
In the above equation J(¥) is an n X m matrix; the
ith column of J(¥) is the vector d¥/a0;, and 6, and &
are the rates of change of 6, and & (with respect to
time); respectively. The problem now reduces to find-
ing or choosing (#,, . . . , 6,,) for a given (&) and
determining (#,, . . . , 6,,) by integration.

1.2. Pseudo-Inverse-Based Resolution Schemes

To obtaina (d,, . . ., 0,,), most researchers use the
Moore-Penrose generalized inverse, also called the
pseudo-inverse of (V) (Rao and Mitra 1971). The
most popular scheme is as follows.

Letting (,, . . . , 6,,) be represented by the column
vector O and dropping the modifier (W) for conve-
nience, we have

& =Jo. 3)
If we solve for ©, we obtain
O =J' + (I - J*NF, 4)
where
i RTINS, (5)

In the above equations J* is the Moore-Penrose gener-
alized inverse, also called the pseudo-inverse of J.

(I — J*J)& is an arbitrary vector from the null-space
of J. The pseudo-inverse solution, without the null-
space term, has the attractive least squares property;
i.e., for a given &, the computed O is such that the
quantity 676 is the minimum obtainable. In addition,
researchers have attempted to use the second term of
Eq. (4) for various other purposes. Liegeois (1977)
developed a general formulation for satisfying posi-
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tion-dependent scalar performance criteria and applied
it to the avoidance of joint limits; Yoshikawa (1984)
maximized manipulability defined as [det(JJ £5) R
Klein and Huang (1983) and Baillieul, Hollerbach, and
Brockett (1984) have made repetitive motion *“con-
servative™ Yoshikawa (1985), Klein (1985), Hanafusa,
Yoshikawa, and Nakamura (1981), and Nakamura
and Hanafusa (1985) have used the null space vector
for obstacle avoidance. Khatib (1983; 1986) used the
generalized inverse at the acceleration level for control,
and Hollerbach (1985b) incorporated dynamics and
examined the effect of redundancy resolution on joint
torques.

1.3. Shortcomings of the Pseudo-Inverse Formulation

The pseudo-inverse solution, without the null-space
term, is attractive because of its least squares property.
In addition, the pseudo-inverse solution, including the
null-space term, is sufficiently general that any differ-
entiable trajectory can be realized by proper use of the
null-space term (Baillieul, Hollerbach, and Brockett
1984). However, there are two major shortcomings.

1. The pseudo-inverse-based schemes, with or
without the null-space term, are local numeri-
cal procedures, and it is very difficult to find
any analytical results by using the pseudo-in-
verse-based schemes. For example, we know
that for the pseudo-inverse solution (without
the null-space term) ©TO is minimized at every
point, but it is very difficult to know a priori
how large the minimum is. (The pseudo-in-
verse solution, without the null-space term,
also has the shortcoming of yielding noncon-
servative motions.) In addition, the numerical
procedure typically introduces errors.

2. The pseudo-inverse-based schemes do not
operate at the position level; i.e., we cannot
obtain (6,, . . . , 0,,) directly for a given posi-
tion of the end-effector. (6, . . . » 0,,) are
obtained from © (or O) by integration, and we
cannot easily find any local or global proper-
ties of the workspace of a redundant device.

24

Intuitively, we expect different (local) proper-
ties at different positions in the workspace, and
different (local) properties at the same position
in space of the motion when reached by differ-
ent devices. We expect the local and global
properties of the workspace of a redundant de-
vice to be different from those of a nonredun-
dant device. The pseudo-inverse-based schemes
do not easily yield such local or global proper-
ties of the workspace.

1.4. Schemes Based on Optimization

In addition to the pseudo-inverse-based schemes, some
researchers have tried to “use” the redundancy for
optimizing some motion criteria. Yahsi and Ozgoren
(1984) used the criterion of minimal joint motion in
their optimization procedure. Vukobratovic and Kir-
canski (1984), Fournier and Khalil (1977), and Ren-
aud (1975) have used the criterion of minimum en-
ergy. Chang (1986) has developed a method to resolve
the redundancy at the inverse kinematic level by using
Lagrange multipliers and criteria for minimization.
These approaches, like the pseudo-inverse-based
schemes, are numerical, and they have the same short-
comings.

In Section 3 we present a new analytic method for
redundancy resolution based on altering local and
global properties. We first develop the concept of local
first-order properties for a nonredundant motion in
Section 2.

2. Nonredundant Motion of a Point

In this section we consider a point p in three-space
moving by virtue of being rigidly attached to the free
end of a two-degrees-of-freedom linkage. The point’s
trajectory is a surface. We will use techniques from
differential geometry of surfaces and linear algebra
(see, for example, Millman and Parker 1977 and
Strang 1976) to develop the first-order motion proper-
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ties of interest. In Section 3 we show how the local
properties can be altered for redundant motions, and
how we can obtain local and global properties of the
workspace of a redundant device.

2.1. Velocity Distribution and Transmission Ratio

Consider a point p(x, y, z) moving with two degrees of
freedom in R?. The equation of its trajectory surface
may be written as

(x, y, 2) =¥(0,, 0,). (6)

Any specific point (8, 8,), in the (8,, 8,) space maps
to a point py(x, y, z) in R®. The velocity at p, in R? is
given by

Vo, = J(¥), 0 =¥,6, + V.0, (7)
where J(\V'),, is the 3 X 2 Jacobian matrix at p, and
Y, = (8%/d0,),, i = 1, 2; i.e., the partial derivatives are
evaluated at (6,, 0,),.

The velocity v, is a 3 X 1 vector. However, it always
lies in the tangent plane' at p,. In addition, as #, and
0, are varied at (6, , 6,),, the direction and magnitude
of the velocity vector change, and without any con-
straint on |6| the vector vy, completely fills the tangent
plane. It is instructive to look at the velocity vector
subject to the constraint 76 = k2, where k is con-
stant. For such a constraint, we can make the following
general statements:?

1. The maximum and minimum magnitudes of
the velocity vector are k times the square root
of the eigenvalues of [£], where [g]isa 2 X 2

1. The tangent plane to the trajectory surface at p, is given by
(r — pgy) - n =10, where r locates a point in the plane and n =
(¥, X W)NW, X W,|is the normal to the surface at p,. From (7),
¥y, - B =0, which proves the statement.

2. Brief proofs of the statements are given in the appendix. For
more details see Ghosal (1986) and Ghosal and Roth (1986).

symmetric positive definite matrix with ele-
ments g, =, - ¥, i, j=1,2.

2. As 6, and 6, are varied subject to the constraint
6% + 02 = k2, the tip of the velocity vector
describes an ellipse in the tangent plane.

3. The shape of the ellipse is independent of k; it
is determined by the ratios of the eigenvalues
of [¢], and the area of the ellipse is given by
ia(det[g]) 2.

In addition, the scalar quantity (det[g])!/? may also be
visualized as a measure of the “transmission ratio” or
“effectiveness” at a point. If we denote the square of
the geometric mean of |V| ., and |¥|ma by ¥2, we can
write

v2/k? = (det[g]) "7 (8)

In the above equation, k? is a measure of the input
effort and v? is a measure of the output. Hence,
(det[g])"/? is a transmission ratio.? It is also a measure
of effectiveness in that it is zero when the degrees of
freedom are less than 2, say at the boundary or at a
singularity; and when (det[g])'/? has a maximum
value, the freedoms are most effective in producing a
large output velocity.

The elements of [g] define a metric* on the surface.
(The elements of [g] are also called the coefficients of
the first fundamental form of the surface.) An impor-
tant property of the elements of [¢] is that they are
differential invariants; i.e., they remain unaltered by
rotation and translation of the reference frame. In the
context of manipulators with the reference frame at-
tached at the first joint, the elements of [g] are inde-
pendent of the rotation or translation at the first joint
and are only functions of the rotations or translations
at the other joints. This occurs because rotation or
translation at the first joint is equivalent to rotation or
translation of the reference frame.

3. Our transmission ratio is different from the manipulability mea-
sure of Yoshikawa (1984; 1985). He defines manipulability for
redundant motion as (det[JJ T])'2, whereas we use (det[J7.J])"/2.

4. A metric defines distance and angle on the surface. For details see
Millman and Parker (1977).
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2.2. Kinematic Linearity

In general, the velocity distribution is an ellipse, be-
cause the eigenvalues are not equal. However, at par-
ticular positions and for particular dimensions of the
physical device generating the motion, the eigenvalues
may be equal and then the velocity distribution can be
described by a circle. These positions have been called
isotropic (Salisbury and Craig 1982). At such posi-
tions, all directions are equivalent as far as the velocity
of the point is concerned. It can be seen that this hap-
pens at all positions if the function ¥ (Eq. (6)) is lin-
ear in the motion parameters. For manipulators and
other nonlinear devices, if the eigenvalues of [¢] are
equal at any position we will call the device kinemati-
cally linear up to the first order at that position.

In conclusion, since the elements of [g] are functions
of (0,, 6,) (in the case of manipulators, the g;'s are
independent of @,, the translation or rotation at the
first joint), they will be different at different points on
the surface, and since they depend on ¥ they will also
be different if the mechanism geometry is different.
The elements of [g], its eigenvalues, and the quantity
(det[g])'/* determine the first-order properties of the
nonredundant motion of the point, and these are the
quantities of interest. In the next section, we will show
the relevance of these quantities and the use of the
concept of kinematic linearity for redundant motions.

3. Redundant Motion of a Point

As mentioned before, we have a redundant motion of
a point if the number of motion parameters is greater
than 3 for motion in three-space (or greater than 2 for
motion in a plane). In this section, we deal with re-
dundant motion of a point in three-space.

Mathematically, the motion of a point in R? can be
described by a mapping of the form

MRy By oo 05 BV %X 9 2): 9)

In the above equation, 6;,i=1, . .. ,m,are the m
parameters of the motion, and (x, y, z) are the coordi-
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nates of a point in R®. Thus we have m — 3 “extra” or
redundant parameters. The velocity of the point at a
generic position, py, along a trajectory curve W(é, (1),

0,(1), . . ., 8,(1)is given by
vm=2‘l‘,-9,-, (10)
i=]
where W;i=1, 2, . . ., m, are the partial derivatives

of ¥ with respectto 6, i =1, 2, . . . , m, evaluated at
the values of §, that correspond to p,.

Since the motion is in three-space, at most three of
the m W,;'s are independent., We can write the
(m — 3) W,0,’s as a linear combination of the three
independent ones. We will assume that the three inde-
pendent terms are ¥,6,, ¥,6,, and ¥,6,. Thus for
W,0, we have

ll"ﬂga = ot’ln‘*’19| i C'lu'l"zé'z i 0‘:3‘*‘393' (1)

In general, we have m — 3 equations of the form

3

Ysbus =Y a; Wb, Jj=1,...,m=3, (12)

-1
where a; are the elements of an (7 — 3) X 3 matrix of
scalars. We get (m — 3) X 3 equations by taking the
dot product of each of the above m — 3 equations
with ¥, i = 1, 2, 3. Solving for the ;s in terms of
known quantities® and the ¢s, we have

o= df:[x‘l.‘]egﬂ
et[g]6;

i=1,2,3 j=1L2 ...30=3 {18)
where [g] is the matrix with elements g given by the
dot products ‘¥, - ¥,, i, j=1, 2, 3, and [4,] is the ma-
trix [g] with the jth element in the /th column re-
placed by (\¥; - W,3) for i =1, 2, 3. The a;;’s may be
determined in terms of det[g], det[4,], and 0, as long as
det[g] # 0 and det[4,] # 0. We have assumed that
none of the 6;’s are zero, because if any of them are

5. In Eq. (13) [g] and [4,] are known once the position of the point
Po, is known.
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zero we have less than m motion parameters. In the
region where det[g] = 0 and det[A4;] = 0, the a;; are in-
determinate. We discuss the issue of indeterminate o,
in Section 3.2.

3.1. Resolution of Redundancy

To compute the B'J-H’s we need m — 3 more equations.
These m — 3 equations can be obtained from setting
constraints on the first-order properties, such as the
velocity distribution and transmission ratio, at the
point under consideration. We first develop the con-
straint equations for the velocity distribution.

Substituting (12) in (10) and dropping the subscript,
we can write the velocity at a generic point as

v= 23: (1 - ":S__‘j aﬂ) Y6, =[J16, (14)

=1 j=1
where © is the vector (6,, 05, 8,)7, and [J’] isa 3 X 3
matrix whose ith column is (1 + 27273 o;))¥,. The
analysis of the nonredundant motion can be easily ex-
tended to show that for a normalization condition

61 + 0% + 0% = k? the tip of the velocity vector lies on
the surface of an ellipsoid.® (We have assumed that all
the 6, (i=1,2, . . . , m) are finite.) The shape of the
ellipsoid depends on the eigenvalues of [g’], where the
elements of [g'] are

m—3
gi=r1= ; [(1 +a)(1 + @)Y, - ¥,
p, k=1
(15)

We observe from Eq. (15) that the elements of [g']
are functions of the as, which are in turn functions of
the extra or redundant (m — 3) 8;'s. Hence, the shape
and size of the ellipsoid can be changed by appropriate
use of these redundant parameters. One special case is
when the ellipsoid becomes a sphere; this gives a uni-

6. In Eq. (1.3) of the appendix, instead of [g] we have a 3 X 3 sym-
metric matrix [g’], and the matrix [A4] is of rank 3; i.e., the velocity
vector lies in three-space.

form or, so-called, spherical velocity distribution. (This
is the three-dimensional analog of the planar circular
velocity distribution described in the previous section.)
At points where the velocity distribution is spherical,
the device generating the motion is kinematically lin-
ear. To obtain the spherical velocity distribution, we
make the eigenvalues of [g’] equal. The eigenvalues of
[£’] are the roots of the characteristic cubic, which
may be written as

AB—alP+bl—c=0, (16)

where
a=gntegnten,
b=(gl,g— g3+ (g:8% —&%5)

+ (g5:811 — &1,
c=det[g’].

(17)

For the three eigenvalues to be equal, we require that

al=27ec. (18)
The two equations in (18) are functions of the oy;’s
and the Hjﬂ’s. Together with the normalization condi-
tion and Eq. (13), we can now find two of the (m — 3)
0)’s at the point under consideration. Equations (18)
are also functions of the motion parameters #;, and, as
we will see in an example in Section 4.1, they yield the
regions in the workspace of a device where the eigen-
values can be made equal. These regions are called the
alterable regions.

We can also get additional equations by considering
a scalar measure of transmission ratio or effectiveness.
In analogy to Eq. (8), a scalar measure in this case can
be shown to be the square root of the determinant of
[£’] and to be proportional to the volume of the veloc-
ity ellipsoid.” We denote this scalar measure by V. If
we take the derivative of % with respect to 6y, it follows
that for given @,, 6,, 0 extreme values of %" occur when

d det[g’]/86, = 0,

k=4, ...,m (19

7. The volume of the ellipsoid is given by (2m/3)k3(A]4345)1/2 =
(2n/3) (det[g'])'/2, where A/ (i = 1, 2, 3) are the eigenvalues of [g’].
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This gives m — 3 equations that could be used to solve
for 0,, k=4, . . ., m. Using these §,’s would yield
motions that have maximum or minimum % for all
points in the (6, . . . , 8,,) subspace.

We can also get alternative or additional constraint
equations by altering some higher-order properties
such as the components of the acceleration distribu-
tion at the point p, (Ghosal 1986; Ghosal and Roth
1986).

3.2. Indeterminate ay;

The above procedures for computing 8,, k=4, . . . ,
m, can be used as long as the «;;'s are not in the inde-
terminate form 0/0. In the positions where the numer-
ator and denominator of Eq. (13) are zero, the first-
order properties cannot be altered. In these positions
the number of independent parameters is less than m.
These positions are independent of the property being
altered and are fixed for a given ¥, i.e., they are deter-
mined by the geometry and the type of physical de-
vice. Such positions occur at the boundaries and at the
singularities in the workspace of a redundant device,
since at the boundaries and at the singularities the
number of independent motion parameters is less than
m. Hence, the conditions for indeterminate a;; can
yield the boundaries and singularities in the workspace
of a redundant manipulator. In Section 4.1 we will
show how the boundaries and singularities can be ob-
tained for a planar 3R manipulator.

3.3. Choice of Independent W,6, and Alterable Region

In our analysis, we have assumed that ¥,0,, i = 1, 2,
3, are the independent terms. For an actual redundant
manipulator, these would be the contributions of, say,
the first three joints. The alterable regions or the re-
gions where the eigenvalues can be equal would, in
general, be different if we choose terms corresponding
to three other joints. If the point p(x, y, z) is in a re-
gion where there is only one way to choose the inde-
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pendent terms, we have no alternative. If there is more
than one possible set of independent terms, then it is
possible to choose the set that satisfies an additional
criterion such as this: the set that results in the lowest
maximum values for the computed @’s, or the set that
yields maximum area or volume of the alterable re-
gion. Alternatively, the choice of the independent set
can be based on dynamics and controls considerations.

3.4. Inverse Kinematics

We have thus presented a method for using the redun-
dancy at the velocity level. Once the 8,’s are known,
most researchers use integration to obtain the 8;'s. In
this section we outline a procedure for obtaining the
f,’s that does not involve integration.

In Section 3.1 we presented the conditions for equal
eigenvalues and maximum and minimum transmis-
sion ratios. It is sometimes possible to easily obtain
the analytic functions that give regions in the work-
space of a redundant manipulator where the eigen-
values are equal or the transmission ratio is maximum
or minimum. These are equations of the form
fildy, . ..,60,)=0,i=1,...,m—3. Suchequa-
tions and the three equations giving (x, y, z) as func-
tions of the independent parameters (Eq. (9)) can now
be solved to give all the #;'s. This method for inverse
kinematics works only if the point p(x, y, z) is in the
alterable region. In the next section we illustrate the
method in an example of a planar 3R manipulator.

4. An Example — Three-Parameter Motion
in a Plane

In this section we present the analysis for three-param-
eter motion in a plane. We first analyze the general
case and then present an example of a 3R planar ma-
nipulator.

Mathematically, a general point trajectory in a plane
due to a three-parameter motion can be represented as
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Y:(6,, 0,, 8;) — (x, y), where 6, i = 1, 2, 3, are the
motion parameters, (x, ) are the coordinates of a
moving point p(x, ¥) measured in a fixed reference
plane R?, and the function ¥ depends on the actual
mechanism. (The inverse function to W, which gives
0,,i=1, 2, 3, for known x and y, has infinitely many
solutions.) The velocity of the point is

(20)

For general positions (except at the boundary), two
out of the three ¥,0; are independent. We first consider
the case when W,0, is a linear combination of ¥,0,,
i=1, 2. (We will also consider the cases of ¥,8, or
W,8, being dependent.) We can wrile

2 3
Y0, =Y a6, (21)

If &, (or a,) is zero, then W30, is parallel to \,0, (or
¥10,). &, and @, can be determined in terms of the
@s and the dot products ¥, - ¥;: forming the dot
product of (21) with ¥, and ¥, yields

(¥; - q"l)g:=013116‘1 +a2g12g s

(W W2)0s = @, 8120, + 38220, g
From Eqgs. (22) we have
o (¥ W)ga — (Vs © Wa)gi216s — (_9_;)
1 ’
(81182 _3%2)91 ) : 91
y=— ("5 - ¥i)gio — (5 - ¥3)81,10s (23)

(811822 _g%2)61
05
=4a, (g)

where g, =¥, - ¥;, i, j= 1, 2. Substituting (21) in
(20), we get

2
v=3 (1+a,)¥d,

(24)

The maximum and minimum velocities subject to the
constraint 0 + 03 = k? are obtained from the eigen-

values of the symmetric matrix [g’] associated with
the standard quadratic form v? = ©7[g’]0. The ele-
ments of the matrix [g’] are given by

gn=(~1+a)(¥ -¥)=(+a)g,
gl =(1+a X1 +a)('¥, * ¥;)

=(1+ o)1 + a;)g.,
gn=1+a) (¥, - ¥))=( + a)’gy.

(25)

The eigenvalues [g’] are functions of g,,, £,3, €2, &},
and «,. The velocity distribution is circular when the
eigenvalues of [g’] are equal.®? The condition for equal
eigenvalues is given by

[(1 + a2)’gs — (1 + @), ]?

+4(1 + a1 + ay)ed, =0. (26)
Since the left side of the above equation is the sum of
two squares, it follows that both terms must be zero
for the eigenvalues to be equal. If g,, # 0, then

o, =a;=—1. (27
Otherwise we require g,, = 0. Then
(1 +a)/(l +a;)=x(gn/gn)" (28)

The first case results in v always equal to zero (from
(24)) and, hence, is not of much interest. In the second
case, Eq. (28), a, and v, are

el i(gll/gZZ)”z:_ 1 )
P (gu/en) Plaby/(a:6)]
a, = (alngazgll)a2:

(29)
where a, and a, are defined in (23), and by using (23)
and 63 + 02 =1, we get

0% = [(a,/a,)* + (az/e)*] . (30)

We observe from (29) and (30) that for any 6,/6, there
are two values of &, and @, and for each a, and «,

8. Note that when o, = a; =0, [g] = [g’] and we have the nonre-
dundant motion described in Section 2.
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there are two 65’s equal in magnitude but of opposite
sign. Hence, if we plot 6, (see examiple in Section 4.1
and Fig. 3) as a function of the 6,/6, , we will get four
curves, but two of them will be mirror images of the
other two.

The above procedure (to compute 6,) can be used
as long as &, and e, are not indeterminate, Setting the
numerator and denominator (of, say, «;,) in (23) to
zero yields equations g, g5, — g2, = 0 and
(*F) - W3)g2 — (W, * W;)g,, = 0. These equations rep-
resent curves, and when p is on these curves the veloc-
ity distribution cannot be altered.

In the above procedure, we used ¥, 6, as the depen-
dent term. Instead, if W,6, is used, the alterable region
will be different. We will get the condition g,3=0for
cqual eigenvalues, and similar to (28) we get

g *(81./83:5)7— 1
P ¢(3||/_8'33)”2[ﬂ:93/(0391)]’
;= (atgllalgl)ai-

(31)

and again with 6} + 63 = 1, we get

03 = [(@1/e,)* + (@sfa)?] . (32)

In the above equations a, and a, are obtained when
o, and oy are solved for in terms of the dot products
W, - W, 6, and 0, (the result is analogous to Egs. (23)).

In a similar manner, the region where the eigen-
values are equal, when ‘¥,0, is the dependent term, is
given by ¥, - ¥ = 0. The resulting expression for 8,
is similar to Eq. (30).

The inverse kinematics for the three-parameter mo-
tion of a point in a plane can also be done very easily.
We have two equations, (x, ) = ¥(8,, 0,, 6,), and we
have the condition for equal eigenvalues, 8 =0,i%J.
If the point p(x, p) is in the alterable region, we can
solve for (6, 6,, 6,) from the equations £;=0,i%],
and (x, y) =¥(0,, 0,, 0;) As mentioned before, the
procedure does not involve integration.

From the above analysis we can make the following
general statement for three-parameter redundant mo-
tions of a point in R? in general, except for regions
where «; is indeterminate, we can at each point deter-
mine the values of 6;, as a function of the g,’s and the
0;'s (i # j), that will give any required velocity distri-
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Fig. 1. Planar 3R manipula-
tor.

bution. Furthermore, for equal eigenvalues &y 1 # ],
must be zero. In addition, when the point p(x, V) isin
the alterable region the inverse kinematics follows very
easily.

4.1. A 3R Manipulator in a Plane

Figure | shows a three-degrees-of-freedom manipula-
tor in the plane XY, There are three revolute joints,
with rotations ,, 6,, and 6;. The link lengths are a3,
ds3, and ay,. We are interested in the motion of the
point p(x, y). The kinematic equations V'

(61 H 62! 63} = (x’ y) areg

X=a130,+ A3C 40+ A34C 4243, (33)
V=aus +a;5,,+ ays iae;s.

The g;s, given by ¥, - ¥, can be computed from

(33). They are

9. In this paper, ¢, 5, ¢,,,, elc. represent cos (8,), sin (8,),
cos (8, + 8,), etc., respectively.
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gu=ah+ah+al + 2a,a50,
+ 243834043 + 205303405,

g2= a3+ ajy+ aypaxc; + a3a146;544
+ 2aya3¢;,

82 = a3+ aly + 2azay¢;,

813 = Q3+ A13834C343 + @2303403,

823 = 34+ A3a3405,

83 = @i,

(34)

As expected, the g,’s are independent of #,. (They are
invariant under rotation and translation of the coordi-
nate system, and changing @, is equivalent to rotating
the coordinate system.)
The velocity of the point is given by
v="P0,+¥,0, + ¥0,. (35)
We first consider W50, as a linear combination of \¥,0,
and Y,0,. For equal eigenvalues 8, and 6, have to be
such that g, = 0. Fora,; =4, a,; =2, a3, = |, the
expression g,, = 0 given in (34) reduces to
o 8C2+4C2+3+4C3=0. (36)
From the above equation it follows that for each value
of @, we have two values of 6,, given by
tan(0,/2) = ‘A[—4s; £ (55 + 24¢; — 16¢3)'2).  (37)
The region where g/, is zero can be obtained by elimi-
nating @, and 6, from Eqs. (33) and (36) and is given
by the equation
X2+ y2=11 — 4c,. (38)
We can see from (38) that €, could take any value
between 0° and 180°, and the extreme values of 4, are
+138.59° and =+ 104.47°, respectively. Since 6, can
take any value, the velocity distribution can be altered
in the annular shaded region shown in Fig. 2. This
region is bounded by circles of radii v7 and V15, re-
spectively, and will be called the alterable region I. In
this region, on one circle, x2 + y? =9, a, and a, are
indeterminate, and the velocity distribution cannot be
altered. The conditions for indeterminate ¢, and «,
yield curves €, €,, €,, and €4— four concentric
circles of radii 1, 3, 3, and 7, respectively. The circles

Fig. 2. Alterable region I.

with radii 1 and 7 are the inner and the outer bounda-
ries, respectively. The circles with radii 3 and 5 are the
singularities where the number of independent motion
parameters reduces to two. The four circles are shown
in Fig. 2.

One set of points where the velocity distribution can
be altered is 6, = 104.47° and 6, = 180°. We plot &,
(for these points) as a function of the angle d, defined
by tan d = 6,/6,, in Fig. 3. (Since 0° =< & < 360°, it is
easier to plot Oy as a function of 4 than as a function
of 6,/8,.) As expected, there are four curves, with two
of them being mirror images of the other two. The
four curves in Fig. 3 give the required values of 6, for
circular velocity distribution at points corresponding
to 0, = 104.47° and 6, = 180°.

Next we consider W,#, as the dependent term. The
alterable region is now given by g,; = 0. The alterable
region is given by the equation

X2+ 2= 17+ 16c,. (39)
The boundaries of the alterable region are circles of
radii 1'and V33, respectively. The shaded alterable
region I1 is shown in Fig. 4.

Finally, we consider the case of W, 8, expressed as a
linear combination of W,0, and W,6;. In this case
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Fig. 3. Plot of 6; with respect
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g3 = 0, which yields cos (6;) = —0.5 and arbitrary 0,.
This yields alterable region 111, as shown in Fig. 5. In
this case the alterable region is bounded by circles of
radii 2.55 and 5.44, respectively.

We next give the procedure for the inverse kine-
matics, assuming the point is in alterable region 1. (The
inverse kinematics can also be easily done for the other
two alterable regions.) Squaring and adding the left
side of Eq. (33), we get

.1‘2 r ,V2= a%Z s a%:‘ -+ a§4 + 2&,202362

+2a1,034C2 43 + 2a53a54¢5. (40)
Using g,, = 0 in (40), we have
c3 = (1/2apay)at, — a3y — a3y — x* — y?). (41)

The above equation gives two values of #, for a given
(x, ¥).
We can also write Eq. (33) as

(x—ape))? +(y—aps)? =akh + ai
+ 2a,3a3,¢5, (42)
and substituting ¢; we get
xc, + ys, = (x? + y?)/a},. (43)

If we substitute for ¢; and s, in terms of the tangent of
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Fig. 4. Alterable region II.
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the half-angle, we get a quadratic in tan (6,/2) that
yields two values of 6, .

Finally from the condition g, = 0, we get

X2+ yt—al = a130y50; + A12a34C245.  (44)

Once 0, is known, we can find #, from the above
equation.

Equations (41), (43), and (44) give 8,, 6,, and 8, for
a given (x, ¥) lying in alterable region . We can simi-
larly find closed-form solutions for the inverse kine-
matics in the other regions.

5. Discussion

In Section 2.1 we mentioned that the g,’s are differen-
tial invariants. This implies that when all joint axes
intersect, the g;;'s are independent of the rotations at
the joints. Hence, for a spherical mechanism, such as a
wrist, the velocity distribution will be the same at every
point (excluding the singularities and boundaries) in
the workspace.
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Fig. 5. Alterable region I11.
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In Section 4 we demonstrated that with one extra
motion parameter for planar motion, we can make any
point-positioning linkage kinematically linear in a
large portion of its workspace. For spatial motion we
need two extra motion parameters for kinematic lin-
earity; i.e., with a five-degrees-of-freedom arm we can
have a spherical velocity distribution in large portions
of a reference point’s workspace. (It is interesting to
note that the human arm with the wrist excluded has
five degrees of freedom.)

In this paper we have presented a new method for
kinematic use of redundancy. The approach does not
require the pseudo-inverse and is analytical. Qur
method relies on the concept of altering first-order
properties of point trajectories generated by the redun-
dant mechanism. We can also alter the second- and
higher-order properties. A preliminary discussion on
altering second-order properties is given in Ghosal
(1986); however, more work needs to be done,

We have restricted 6, (i = 1, 2, 3) (i = 1, 2) for
planar motion) to lie on a sphere of radius k (circle for
planar motion) by use of the normalization condition
67O = k2. The only restriction on the rest of the
(m — 3) (m — 2 for planar motion) 6;’s is that they be
nonzero and finite. If we restrict any of these (m—23)
(m — 2 for planar motion) ,’s, the alterable region

will become smaller. A common restriction might be a
bounded angular velocity magnitude, say |6, < k’.

We have dealt only with the positional aspects of
the motion of a rigid body. This approach could be
extended to deal with the rotational motion of a rigid
body, where we could consider altering the angular
velocity vector. Such work is yet to be done.
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Appendix

In this appendix we give brief proofs of the statements
in Section 2.1. From Eq. (6) the square of the velocity
at p, can be written as

v2=g,,0% + 2g,,0,0, + g,,03, (L1)
where g, =", - ¥, i, =1, 2. It is known from differ-
ential geometry (Millman and Parker 1977) that the
symmetric matrix [g] with elements & 1s positive defi-
nite.

To find the maximum and minimum v2 subject to
the constraint 0% + 63 = k2, we use the method of
Lagrange multipliers. We solve 3/ad, = a//06, = 0,
where

=g} + 23125192 ¥ J%’zzgé2 = A(gf + g% — k%), {12

The conditions df/a6, = 3//af, = 0 reduce to the eigen-
value problem

[g]6— 4O =0. (L3)
The eigenvalues of [g] are
Arz="el(g +gn) £ (g1 + £22)?

— 4811820 — g?z))m]- (L4)
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Assuming 4, > 4,, we have from (1.3), (I.1), and 01+
62 = k? that

[Vlmax = V¥3imz, = VA, (L5)
and
[V]min = V¥2]3m2, = k VA, (1.6)

Equations (1.5) and (1.6) prove statement (1) in Section
ZL

To prove that the tip of the velocity vector describes
an ellipse in the tangent plane, we start with Eq. (7).
Dropping the modifier (V') and the subscripts, we can
write Eq. (7) as

v=JO (L7)
or
JTv =[gl6. (L.8)
Since [g] is invertible, we can write
O=[g]"JTy (1.9)
and
07O = vT[A]v, (L.10)

where [4] denotes the matrix (J T[g]~")T(J T[g]™"). We
can make the following observations about [A]:

1. [4] is a 3 X 3 symmetric matrix.

2. [A] is singular and of rank 2, since J and [g]
are of rank 2,

3. [A] is at least positive semidefinite, since the
quadratic form on the right side (being equal to
©70) is always greater than or equal to zero.

Equation (1.10), with the left side set of k2 and the
matrix [A4] having the above-mentioned properties,
describes an infinite cylinder with an elliptic cross
section (Strang 1976). However, we know that the ve-
locity vector always lies in the tangent plane. Hence in
this case, Eq. (I.10), with its left side set to k2, de-
scribes an ellipse in the tangent plane. This proves
statement (2) in Section 2.1.

34

The shape of an ellipse is determined by the ratio of
the length of the semimajor and semiminor axes. In
our case, the shape is determined by | V| /| ¥l min =
VA,/A;, which is clearly independent of k.

The area of the ellipse is 7 times the product of the
lengths of the semimajor and semiminor axes. In our
case the area 15 7|V u| V| min. From (L.5), (1.6), and the
fact that the product of the eigenvalues equals det [g],
the area of the ellipse becomes nk?(det [¢])"/2. The
above two paragraphs prove statement (3) of Section
2.1
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