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Abstract

The objective of this paper is to compare discretization models namely the as-
sumed modes and the finite elements to efficiently represent the link flexibility of robot
manipulators. We present a systematic modeling procedure based on homogeneous
transformation matrices, for spatial multi-link flexible manipulators with both revo-
lute and prismatic joints. The Lagrangian formulation of dynamics, and computer
algebra is employed to derive closed form equations of motion. We show that fewer
number of mathematical operations are required for inertia matrix computation in case
of finite element model compared to the assumed modes formulation, however since the
number of state space equations are more, the numerical simulation time may be larger
for finite element models. Use of finite element model to approximate flexibility usually
gives rise to over-estimated stiffness matrix. We analytically show that over-estimation
of structure stiffness may lead to unstable closed-loop response of the original manip-
ulator system, using a model-based control law. We illustrate the complexity due to
time-dependent frequency equation of assumed modes model arising in the case of a
prismatic jointed flexible link with payload, and in case of manipulators having more
than one link with revolute joints. We describe a novel method based on the differential
form of the frequency equation to simulate such systems. A model-based decoupling
control law is used to compare the dynamic responses of the manipulator system. The
results are illustrated by numerical simulation for a flexible spatial RRP configuration
robot.

*Updated version of the paper appeared in The International Journal of Robotics Research,
Vol 14(2):91-111, 1995.
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1 Introduction

Initial studies of robotic systems have assumed rigid-body system models for the arm struc-
tures due to their rugged design and low operational speeds. However, as the demand on
operational speed increases, and contemporary designs call for high payload capacity with
relatively lightweight arm structures, a more detailed, accurate, and realistic system model
is needed for the robot system design and for its control purposes. Hence in recent years, a
great deal of research interest has been focussed on the modeling and control of lightweight
flexible manipulators (Huston 1980, Sunada and Dubowsky 1981, Book 1984, Cannon and
Schmitz 1984, Singh and Schy 1986 a, Baruh and Tadikonda 1989, Korolov and Chen 1989,
Tosunoglu et al. 1992, De Luca and Siciliano 1993).

The overall structural flexibility in robotic manipulators, in general, is affected by
both link and joint deflections. However, for a given robot design, their contribution to the
system flexibility may vary considerably. The current industrial robots with their bulky and
rugged link design tend to display relatively large joint deflections which seriously degrade
the system precision (Good et al. 1985, Yang and Donath 1988). The space shuttle arm,
on the other hand, displays dominant link compliance (Fresonke et al. 1988, Alberts et al.
1992). Although it is necessary to include both types of flexibilities in a general modeling
procedure, in this paper we consider only the effect of link compliance.

1.1 Review of Prior Work

The robotic systems with flexible links are continuous dynamical systems characterized by
infinite number of degrees of freedom, and are governed by nonlinear, coupled, ordinary
and partial differential equations. The exact solution of such a mathematical model is
normally not feasible, and the infinite dimensional model imposes severe constraint on the
design of controllers as well (Book 1990, Shiffman 1993). Hence it is necessary that these
continuous systems are discretized. Flexible links with rigid joints in robot manipulators
are discretized by using assumed modes, finite elements, or lumped-parameters. The link
deflections with respect to its rigid configuration, are usually assumed to be small and a
linear theory of elasticity is selected. Researchers commonly utilize the Euler-Bernoulli
beam theory (Timoshenko et al. 1974) to represent the dynamics of link flexibility, and
neglect the effects of shear deformation and mass moment of inertia of a differential element
along the length. For short(relative to its diameter), stubby beams, or for higher modes,
the Timoshenko beam theory should be used which includes both these effects, but such
‘stubby’ links are likely to be essentially rigid (Bayo and Saharian 1986, Book 1990, Morris
and Vidyasagar 1990).

In the assumed modes model formulation, the link flexibility is usually represented by
the truncated finite modal series, in terms of spatial mode eigen functions and time-varying
mode amplitudes. Although this method has been widely used in the literature (Book 1984,
Hastings and Book 1986, Wang and Vidyasagar 1989, De Luca and Siciliano 1991, Li and
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Sankar 1993), there are several ways to choose link boundary conditions and mode eigen
functions. For example, a clamped boundary condition leads to a physically measurable
joint variable and simpler coefficients of the joint torques (Book 1984, Wang and Vidyasagar
1989). Pinned-pinned boundary conditions lead to ease in specifying the arm tip and have
been used to advantage in trajectory control (Asada et al. 1990). Others have used free-free
boundary conditions and described the link c.g. with rigid motion variables (Baruh and
Tadikonda 1989). Hastings and Book(1986), and later Barbieri and Ozgiiner(1988) have
reported that if the beam-to-hub inertia ratio is very small (in the order of 0.1 or less) the
clamped condition yields better results compared to pinned boundary condition. They also
reported experimental verifications. An interesting equivalence of these two cases is reported
by Bellezza et al.(1990).

The finite element model on the other hand, has not gained much acceptance among
researchers for use in the design of controllers for flexible-link robot manipulators (Book
1984, Oakley and Cannon 1988, Li and Sankar 1993), though it is generally considered
as an useful tool especially in the design of robotic system itself (Sunada and Dubowsky
1981, Jonker 1990). In the finite element method, the boundary conditions and changes in
geometry and physical properties can be accounted in a straightforward way. This advantage,
in recent years, has been used to derive closed form equations of motion, and in the analysis
of controllers (Usoro et al. 1986, Naganathan and Soni 1987, Jonker 1990, Chedmail et al.
1991). In this method, each flexible link is considered as an assemblage of finite number
of elements, where every such element is a part of a continuous member of the link. By
requiring that the displacements be compatible and the internal forces in balance at certain
points called ‘nodes’, the entire link is compelled to act as one entity. The displacement at
any point of the continuous element is expressed in terms of finite number of displacements at
the nodal points multiplied by polynomial interpolation functions. The equations of motion
for the overall robotic system is then derived by first deriving the equations of motion for a
typical element and then suitably assembling the individual elements’ equations of motion.

The lumped-parameter approach is best described by the so-called ‘pseudo-joints’. This
modeling technique assumes as many fictitious joints as necessary to appropriately describe
the deflection of a flexible link. Each non-actuated fictitious joint is also accompanied by
a linear spring to restrict the joint motion and represent the flexibility. If the vibrations of
a link in different orthogonal planes are considered separately (two lateral and one longi-
tudinal vibration) and each is represented by a pseudo-prismatic joint, then it can be said
that this method models the first mode of vibration in each direction. Furthermore, three
pseudo-revolute joints may be added to represent the effect of rotational vibrations. Hus-
ton(1980) adopted a similar approach utilizing the concept of ‘quasi-coordinates’. Fresonke
et al.(1988) developed an end-effector deflection prediction scheme in terms of the geometry
dependent ‘influence coefficients’. Tosunoglu et al.(1992) used this model for identification
of inaccessible oscillations, in n-link flexible robotic systems.
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1.2 Scope of Present Work

The lumped-parameter model is rarely used in the design and analysis of flexible systems due
to the difficulty in determining spring constants for the pseudo-joints. Several researchers
(Book 1984, Cetinkunt and Book 1987, Asada et al. 1990, De Luca and Siciliano 1991,
Cetinkunt and Ittoop 1992, Li and Sankar 1993) have used the assumed modes approach to
derive closed form dynamic equations of motion for multi-link flexible manipulators. Others
(Usoro et al. 1986, Naganathan and Soni 1987, Chedmail et al. 1991) have used finite
element method for the same purpose. However, no attempt has been made to compare the
two models used to represent the flexibility of links. Moreover, these works address mostly
the revolute jointed flexible links, and the research on modeling prismatic jointed flexible
manipulators is limited (Chalhoub and Ulsoy 1986, Yuh and Young 1991, Tadikonda and
Baruh 1992).

In this work, we present a systematic modeling procedure for spatial multi-link flexible
manipulators with both revolute and prismatic joints. In section 2, we describe discretization
models namely assumed modes and finite elements to approximate the flexibility of Euler-
Bernoulli type of links. We consider only the bending vibrations of manipulator links. The
kinematics of multi-link flexible manipulators is derived using 4 x 4 homogeneous transfor-
mation matrices. We investigate the complexity due to time-dependent frequency equation
of the assumed modes model in certain configuration of robots. The Lagrangian formulation
of dynamics is employed and an algorithm is presented (in the appendix) to derive the closed
form equations of motion more efficiently. In section 3, we present a model-based control
law based on the nonlinear decoupling technique applied to the joint variables. In section 4,
a comparison of assumed modes and finite element models is presented. We show that only
fewer number of mathematical operations are required for inertia matrix computation in case
of finite element model compared to the assumed modes formulation. It is known that use
of finite elements to approximate the flexibility, usually results in over estimated structure
stiffness matrix for the system model (Meirovitch 1986). We show that over estimation of
stiffness may lead to unstable closed-loop response of the original system using a model based
control law. We also describe a novel method to account for the time-dependent frequency
equation in dynamics computation of the assumed modes model. In section 5, we present
numerical simulation results for a flexible, spatial RRP (Stanford Arm) configuration robot.
The dynamic response of the arm due to model-based control law as presented in section 3,
is compared for cases of assumed modes and finite element model formulations. In section
6, we summarize the results and present some concluding remarks.

2  Modeling

The dynamics of rigid-arm manipulators is characterized by system of nonlinear, coupled,
ordinary differential equations, but manipulators with flexible links being continuous (dis-
tributed) dynamical systems, are governed by nonlinear, coupled, ordinary and partial differ-
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ential equations. In this section, we describe the assumed modes, and finite element models
to approximate the flexibility of links. We consider only the bending vibrations of flexible
links'. We use Euler-Bernoulli beam theory (Timoshenko et al. 1974) to represent the dy-
namics of flexible links, and the kinematics of such manipulators, is represented utilizing 4 x 4
homogeneous transformation matrices. The computations then resulting from Lagrangian
formulation of dynamics are used to derive the closed form equations of motion. These equa-
tions are free from assumptions of a nominal motion, and do not ignore the interaction of
rigid and flexible generalized variables, though the link deflections with respect to its rigid
configuration are assumed to be small.

2.1 Flexible-Arm Kinematics

By convention, the links of a flexible manipulator are numbered consecutively from 0 to n
starting from base of the manipulator to tip of the end-effector, where n is the total number
of links. We define the coordinate system (X;,Yj, Z;) on link j with origin O; at the distal
end (farthest from the base), oriented so that the Z; axis is along the axis of joint j + 1.
We also define the coordinate system ()?j,ffj, 2]) on link j with origin @j in such a way
that when the link is in its undeformed configuration, the coordinate system (X;,Y;, Z;) is
exactly coincident on the coordinate system (X;,Y;, Z;) (see figure 1).

The 4 x 4 homogeneous transformation matrix from coordinate system ()?J, ffj, ZJ) to
coordinate system (X,_1,Y;_1,Z;_1) is given by,

cost)j —sinb;cosa; sinfjsina; ajcosb;
1 sinf; cos@;cosa; —cosf;sinw; a;sinf;
Al = J J j J i J (1)
J 0 sin o COS v d;
0 0 0 1

where, 0;, o, d;, and a; are the Denavit-Hartenberg parameters representing relationship
between coordinate systems ()?],}7],2]) and (X;_1,Y;.1,Z;_1) (Asada and Slotine 1986).
Throughout this paper, g,, denotes the joint variable: it is §; if joint j is revolute, or d; if the
joint is prismatic. Note that for the link with prismatic joint, a; = 0. The 4 x 4 homogeneous
transformation matrix from coordinate system (Xj,Y}, Z;) to ()?j,?j,?j), caused by the
deformation of link j—assuming small elastic deformations (Book 1984) is given by,

1 _¢Zj (/byj (5.’,6]'

jfl_ ¢Zj 1 _¢$j 6:!/]'
Sl P R ®
0 0 0

!For most robotic manipulators in general, we can neglect the axial and torsional vibration components
of the links because of their much greater rigidity in the axial direction and due to the structural design of
robotic systems. However Sakawa and Luo(1989) reported that the bending vibrations are accompanied by
torsional vibrations in certain classes of manipulators.
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where ¢; = (g, Dy, qsz)T and §; = (0z;,0y,, 5zj)T describe the rotation and translation

between the coordinate systems (X;,Y;, Z;) and (X;,Y;, Z;), respectively. Let T and TY
be the 4 x 4 homogeneous transformation matrices from coordinate systems (X;, Y;, Z;) and

(X;,Y}, Z;) to the base coordinate system (X, Yy, Zp), respectively, then

- RO B9 S _
T = ( ROJ p1, ) = A%E?. - AJTIEIIAT! (3)

and o
T? = ( ROj plj ) — A(l)E(l) .. 'A;::?Eg:?A;*IE;’l (4)

where ﬁ?(R?) is the 3 x 3 rotation matrix, pj(pj}) is the 3 x 1 position vector, and 0 is the
1 x 3 zero vector.

The position vector of any point(s) along the neutral axis of link j can be expressed
with respect to the base coordinate system (Xy, Yy, Zp) as,

rj =pj  +Rjr (5)
where,
(/g 0
0 |+ | vils?) if joint j is revolute
0 w;j(s,t)
i (6)
0 u;(s,t)
0 |+ ] vi(s,1) if joint j is prismatic
0

and wu;(s,t),v;(s,t), w;(s,t) are displacements with reference to the neutral axis of flexible
link j at a distance s and at time ¢, due to flexibility in the respective directions. Note
that the dependence of u;,vj, w; on the spatial coordinate(s), makes the system infinite
dimensional, leading to coupled ordinary and partial differential equations of motion.

2.1.1 Assumed Modes Model

In the assumed modes model, the flexible displacements: u;(s,t),v;(s,t), w;(s,t) are usually
described by a truncated modal series, in terms of spatial mode eigen functions and time
dependent mode amplitudes, in each direction as,

w(n,1) = gj:lw?f(ms:‘f(t)
oy t) = étﬁ?(n)ﬁ"(t) )

wy (1) = zw (me (1)
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where 7 = li’ [; is the length of flexible link j, and n; is the number of modes used to

j
describe the deflection of link j. It should be mentioned that for the flexible link with a
revolute joint, I; = a;, and for a flexible link with prismatic joint, I; = d;. The 4 x 4
homogeneous transformation matrix, E;-_l for link 7, is given by,

if joint j is revolute:

.t (1) wvj . I (1) ,w;
0 ~ReQe () 2l (1) 0
I (1) cw; v vj
. m | 20l (t) 0 0 (g (2)
E7 =1+ (8)
=1 oI w; w; w;
— 2 Wi (1) 0 0 ¥ (167 (¢)
0 0 0 0
if joint j is prismatic:
3.7 (1) pu; uj U
0 0 2 Weli(t) 4 (1)6 (1)
81/.’1 1) ~v; vj v;j
Bl =1 ”ZJ 0 0 __Z’inL i () ¥ (1)&7 (1) (©)
=1+
J U _ewi @) gy 0% () g
S ey MWy g 0
0 0 0 0

where I is the 4 x 4 identity matrix and note that all variables in the matrix are evaluated
at 7 = 1, tip of the link j. The generalized flexible deformation variables in this case is
therefore, a5 = ( ;Lj (t)a ;}j (t)a iuj (t)a T ;LL; (t), fg? (t)a 671:? (t))T'

The selection of ‘appropriate’ or ‘best’ mode eigen functions for a given flexible manip-
ulator system is not a clearly answered problem (Book 1990, Bellezza et al. 1990). We choose
“clamped-mass” mode eigen functions for flexible links of the manipulator system. For flex-
ible link manipulator systems, it is reasonable to suppose that the inertia of a lightweight
link is small compared to the hub inertia (De Luca and Siciliano 1991), and indeed it is
reported that for links with small beam-to-hub inertia ratio, ‘clamped’ boundary conditions
approximate the controlled end of the flexible link quite accurately (Hastings and Book 1986,
Barbieri and Ozgiiner 1988). Concerning the boundary condition of distal end of the flexible
link, it is usually assumed that the link end is ‘free’ of dynamic constraints (Singh and Schy
1986 a, Wang and Vidyasagar 1989, Yuh and Young 1991, Tadikonda and Baruh 1992),
however, it is more correct to consider ‘mass’ boundary conditions representing balance of
moment and shearing force due to other links of the serial structure of robot manipulators
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and the payload (Low 1989, Oakley and Cannon 1989, Book 1990, De Luca and Siciliano
1991). Thus the mode eigen function v (n) satisfying clamped-mass boundary conditions
with Euler-Bernoulli beam theory for bending vibrations is given by,

i(n) = Ci[ cos(Bim) — cosh(Bin) + vi (sin(Bim) — sinh(Bin)) | (10)

where,

_ sinf; —sinh 5 + M B;(cos B; — cosh 3;) — DB;%(sin B; + sinh f3;) 1
i cos B; + cosh 3; — M B;(sin B; — sinh B;) — Df3;*(cos 3; — cosh f3;) (11)

and (; are solutions of the frequency equation,

(1 + cosh B;cos B;) — M B;(cosh fB;sin B; — sinh S;cos §;)
— JB;*(cosh Bisin B; + sinh B;cos B;) + M.JB;*(1 — cosh Bicos 3;)

— D?B;*(1 — cosh Bcos B;) — 2D B;*sinh Bisin f; = 0 (12)
M J M
where M = —L, J = —L, and D = —2L Note that p, A, | are density of the material,
pAl pAl3 pAl?

area of cross section, and length of the flexible link j respectively. M, is the constant sum
of all masses beyond the flexible link j, and J, is the moment of inertia due to other links
and payload “seen” at distal end of the flexible link j. Mp; accounts for the contributions
of masses of distal links, i.e., non-collocated at the end of link j, weighted by the relative
distance from shearing axis at the end of flexible link j (De Luca and Siciliano 1991). The

1
C; are constants which normalizes the mode eigen functions so that, / [1bs(n)]2dn = 1.
0

Equation(12) can be readily solved for flexible manipulators with one link having a
revolute joint, but poses a problem for a prismatic jointed flexible link with payload or with
an ‘augmented body’ (for example a wrist), and for flexible manipulators having more than
one link with revolute joints. In case of prismatic joint with a payload, the length of the
translating flexible beam (1) is a function of time?. In the case of flexible manipulators
having more than one link with revolute joints, Mp;, becomes a function of the configuration
of successive links (De Luca and Siciliano 1991), and for flexible manipulators having more
than two links with revolute joints, in addition to Mpy, the moment of inertia (J;) due to
other links of serial nature and payload “seen” at distal end of the first link will be a function
of time. For example, for a planar 3R flexible robot, the rotary inertia due to last two links,
“seen” at distal end of the first link is given by, Jp = Iy + I3 +msl3 +m3 (15 + 13 + 21513 cos 65)
where m, [, and I are mass and length of the links, and the joint inertias respectively. Note
that the joint variable 3 is a function of time. Although time dependency of the frequency
equation was pointed out by De Luca and Siciliano(1991) for revolute jointed planar flexible
multi-link manipulators, and by Tadikonda and Baruh(1992) for the problem of a translating

2For a prismatic joint, we must ensure that the length | satisfies Euler-Bernoulli beam assumptions viz.,
length of the beam [ must always be much greater than the beam cross sectional dimensions (Timoshenko
et al. 1974, Chalhoub and Ulsoy 1986).
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flexible beam deploying a payload from a fixed base, they have not used the exact mode eigen
functions of ‘clamped-mass’ conditions, because of the considerable increase in complexity
of model derivation.

In cases where the clamped-mass frequency equation becomes time dependent, the
solutions(f;) have to be computed by either using a root finding algorithm at each time step
of integration, or by using a “table look-up” approach (Low 1989). The former approach
may lead to considerable increase in computational time, while the latter requires a large
storage space for the specified accuracy. In section 4, we present a novel method to solve the
time-dependent frequency equation together with the dynamic equations of motion.

2.1.2 Finite Element Model

In this method, each flexible link is considered as an assemblage of finite number of elements,
where every such element is a part of a continuous member of the link. By requiring that
the displacements be compatible and the internal forces in balance at certain points called
‘nodes’, the entire link is compelled to act as one entity. The displacement at any point of
the continuous element is then expressed in terms of finite number of displacements at the
nodal points multiplied by polynomial interpolation functions. Let PQ be one such element
¢ on link 7, with nodes ¢ and ¢+ 1 as shown in figure 2. Then the local position vector rj; of
element ¢ is given as,

([ (=Dl +s 0
0 + | (s, t) if joint j is revolute
0 ’UJ]'Z'(S, t)
ry = < (13)
0 U,ji(S, t)
0 + | vji(s,t) if joint j is prismatic

where [;; is the length of element ¢, and
if joint j is revolute:
vii(s,t) = Hy(5)0; (t) + Hyy(s)o” (t) + Hoiay (5)0i71 (8) + Higipay(5)8i71 (2)
wjis,t) = Hy(s)d;” (t) + Hyy(8)¢y (t) + Ho(iy1)(5)0:51 () + Higir)(8) 0 ()(14)

if joint j is prismatic:
uji(s,t) = Hyy(s)d;" (t) + Hyy(8)o” (t) + Hy(i1)(8)0i11 () + Hi(ia1)(5) b (1)

vii(s,t) = Ho(s)6;” (t) + Hyi(s);” (t) + Hogi1) (8)0:11 () + Higiy0)(5) 63 (£) (15)

The 6;; = (839 (t), 6% (£),8:7 (t))", and ¢;; = (62 (¢), ¢ (t), 677 (t))" denote the transverse

) i » Ve ) ) %
flexural displacements and the flexural rotations of node 7, respectively in the respective
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directions. It should be noted that for the flexible link with a revolute joint, l;; = (a;/n;),
and for a flexible link with prismatic joint, l;; = (d;/n;), where n; is the number of finite
elements in the link j. The interpolation functions are given as (Meirovitch 1986):

Hi(s) = 1-3(g) 2()
H11i(3) = 5(%2_ )
Hyy(s) = () (3-22)
Hll(H—l)(S) = lsj—(li—l)

(16)

In this case, the 4 X 4 homogeneous transformation matrix E;:*l due to the deformations of
link 7 is given by,

if joint j is revolute:

1 =dpls1 g O
i ¢Zj+1 1 0 5Z§+1
E;, = N N (17)
— ;41 0 1 o/
0 0 0 1
if joint j is prismatic:
L0 ¢ o
I I R R e
E/ = . . (18)
U 10
0 0 0 1

and qz, = (857 (8), ¢ (£), -+, Gjmy41)” (B), ¢j(nj+1)T(t))T denotes the generalized flexible de-
formation variables.

2.2 Dynamic Equations of Motion

The dynamic equations of motion are obtained using the Lagrange’s formulation of dynamics.
It may be noted that the generalized force corresponding to joint variable g,; is the joint input
I'; (torque 7; for a revolute joint, or force Fj for a prismatic joint). For the flexible deforma-
tion variables (qy) the corresponding generalized force will be “zero”, if the corresponding
elastic deflections or rotations have no displacement at those locations where external forces



Theodore and Ghosal 11

are applied, and note that this corresponds to the case when ‘clamped’ condition is used
for controlled end of the link (Book 1984, Wang and Vidyasagar 1989). It should be noted
that other conditions for controlled end of the link, such as ‘pinned’ condition (Asada et
al. 1990), or ‘free’ condition (Baruh and Tadikonda 1989) will have “non-zero” generalized
forces corresponding to the generalized flexible deformation variables.

The general form of Lagrange’s equations (for clamped condition) are then,

for joint variable g,,:

d (0T or  ov
dt (8%) 0q;,  Ogr; (19)
for flexible deformation variable gy,
T T
i((? )_8 +8V ~0 (20)
dt aqui aqui 8qui

where, T is the total kinetic energy of the flexible manipulator system, and V is the total
potential energy due to elastic deformations and gravity.

2.2.1 Kinetic Energy

The total kinetic energy of flexible-link manipulator system is due to the motions of joints
and links, and kinetic energy due to the payload. The kinetic energy for a revolute joint j,
if considered as mass with rotary inertia about the axis of revolution is given by,

]_ T ]_ dpq_l T dpq_l
Y}Ointj = 592 I]Q? + 5m3< d]t d]t (21)

where m; is the mass of the joint hub j, pj_, is position vector of the joint j, I, and Q3
are the joint inertia matrix, and the angular velocity vector of joint j, respectively. In the
case of prismatic joint j, at any instant of time, a part of the translating beam is outside
the joint hub and is free to vibrate, while the remaining part of the beam is inside the joint
hub and is restrained from vibrating. The kinetic energy due to part of the beam inside the

joint hub is given by,
1 [0 dro\" [ dr?
T-Om.:—/ A5 (S 29
Jomty = 9 (zj—l;?)p] ]<dt> (dt) ° (22)

~0 _ .0 o~
I, =P, + 5Z;

where

and 29 is the third column vector of the rotation matrix ﬁ?, and 19, [; are the total length of
the translating beam, and length of the beam outside the joint hub at time ¢, respectively.
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The kinetic energy of a differential mass, dm, on flexible link 5 of the manipulator can

be expressed as,
1 dr?\ " [ dr?
Tiink: = = —L —L 2
@Tiink, 2dm<dt> (dt) (23)

Under the assumption that the links are slender beams (Timoshenko et al. 1974), the kinetic
energy of the flexible link j can be obtained by integrating equation(23) over the length (I,)

of the link as,
1 [l dro\ " [ dr®
T,-n:—/ A (22 (B2 24
link; = 5 fo Pi ”(dt) <dt)d$ (24)

where p; is the density of the material, A; is the cross-sectional area of the link.
The kinetic energy due to the payload is given by,

1 (dp%\" (dp
Tpayloadzimp<ﬁ> <W (25)

where p? is position vector of tip of the end-effector(see equation(4)), and m,, is mass of the
payload.

2.2.2 DPotential Energy

The potential energy of the flexible manipulator system arises from two sources — due to the
deformation of links and due to gravity. Assuming slender beam type of links and neglecting
the axial and torsional vibration of links, the potential energy due to bending deformations
(Timoshenko et al. 1974) of link j about the transverse }A/J and Zj axes, is given by,

1 [l v;(s, 1)\’ 02w, (s, 1)\’

Vii=5 /0 (@54# + Byl =) | ds (26)
where Fj; is the Young’s modulus, I, I;, are the area moments of inertia about respective
axes, of link j. Note that for flexible link j with prismatic joint, the bending deformations
of the link in the transverse X; and Y; axes have to be considered as opposed to the above
equation.

The gravitational potential energy due to the mass of joint hub and due to the elastic
link j is of the form,

L
Vi =m;g'p)_, + /0 piA;g"tlds (27)

where g is the gravity vector in the inertial coordinate system {0}. The gravitational po-
tential energy due to the payload mass is given by,

‘/gpayload = mpng?L (28)

The system’s total potential energy (V') is then, sum of potential energies (equations(26-27))
over all the links, and due to the payload(equation(28)).
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Remark: It should be noted that in case of finite element model, the kinetic (7};), and
potential (V};) energies are obtained first for each element 7 of link j and then summing
over all the elements (n;), we obtain the kinetic (7}), and potential (V}) energies for
the link j.

2.2.3 Closed form Equations of Motion

Symbolic closed form equations are shown to be most efficient to implement real-time con-
trol algorithms for manipulator dynamical systems (Ju and Mansour 1989, De Luca and
Siciliano 1991, Cetinkunt and Ittoop 1992). The closed form dynamic equations of motion
for flexible link manipulators can be derived using symbolic manipulation software such as
REDUCE(Rayna 1987) or MACSYMA (Annon 1987). The resulting equations of motion
(see appendix for the algorithm) in the matrix form can be written as,

Mrr Mrf ("17” hT (q: q) Cr(q) 00 qr _ r
<MTTf Mff)(flf)Jr(hf(qafl))+<Cf(q))+<0 K)(Qf>_<0> >
where q = (q7, q?)T, is the n-vector of generalized joint (q,), and N-vector of flexible defor-
mation (qy) variables, M is the (n+ N) x (n+ N) configuration dependent generalized mass
matrix, h is the (n + N)-vector of Coriolis, and centrifugal terms and the terms accounting
for the interaction of joint variables and their rates with flexible variables and their rates,
c is the (n + N)-vector of gravitational terms, K is the N x N flexural structure stiffness

matrix of the system, I' is the n-vector of input torques (or forces) applied at the joints, and
0 is the zero matrix/vector with appropriate dimensions.

3 Model-based Control Law

The control objective of flexible manipulators is mainly to stabilize the vibrations that are
excited during motion of manipulator arms and damping them out as fast as possible at
the end of the motion. To this end, the solutions suggested in the literature range from
passive damping methods (Alberts et al. 1992) to active damping methods. Some of the
methods for active control of flexible vibrations are based on: linear control system design
methods such as PD compensators (Oakley and Cannon 1988), and optimal controllers(LQR)
(Cannon and Schmitz 1984, Chiang et al. 1991), transfer function approach (Wang and
Vidyasagar 1989), inverse dynamics techniques (Singh and Schy 1986 a, Asada et al. 1990),
robust control design (Korolov and Chen 1989), nonlinear decoupling methods (Singh and
Schy 1986 b, Das and Singh 1990, Chedmail et al. 1991, De Luca and Siciliano 1993),
singular perturbation methods where the elastic and the rigid motions are assumed to be
time separable (Siciliano and Book 1988), and adaptive control methods (Rovner and Cannon
1987). In this section, we present a control law design based on nonlinear decoupling method
applied to the joint variables. This model-based decoupling control law, while tracking the
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desired joint trajectories during the gross motion of robot arms, does not drive the flexible
variables to zero. A second control loop derived using the LQR method and based on
linearized model of the closed-loop equations of motion around the final configuration of the
arm (Singh and Schy 1986 b), performs an active damping of the flexible vibrations at the
end of gross motion of links.

The open-loop equations of motion for the manipulator system, as developed in the
previous section, can be written as

Mrrd'r + Mdef + h'r(qa q) + CT(q) =T (30)
M8, + Mysd; + he(q,q) + cf(q) + Kgy = 0 (31)

A model-based control, analogous to the one for rigid manipulators, can be written for
multi-link flexible manipulator system if we consider the effects of flexible vibration as a
deterministic disturbance on the nominal rigid body motion. We proceed as follows:

First solve for q; from equation(31) as

dy = —M; (M4 + hy + ¢ + Kaqy) (32)
then substitute §; in equation(30), and finally rearrange to get
(Mrr - MrfM;}sz)qr + (hr +Cr — MrfMJ:}(hf + Cr + qu)) =T (33)

Equation(33) is similar in form to that of a rigid manipulator with (M,, — M, fMJT]}MTTf) as
an equivalent mass matrix, and (h,+c,—M, fMJ?fl (hy+c;+Kqy)) as an equivalent nonlinear
term. We note that the control vector I' is of the same rank as the rigid-body degrees of
freedom (or the number of joints), and the matrix (M,, — M, fMJI}Mff) is symmetric and
positive definite (see appendix).

Following nonlinear decoupling theory, we can write a model-based controller, so that
the coupled, nonlinear flexible manipulator system is reduced to a set of double integrators
corresponding to the joint variables (q,), and a set of coupled, nonlinear dynamic equations
corresponding to the generalized flexible variables (qs). This model-based controller is then
given as,

T = (M,, — M, MM/ )u; + (b, +c, — M, Mj;(hy + ¢ + Kqy)) (34)
where u; is the new control input and can be chosen for a specified joint trajectory as
u; = —Gpq, — G,q, +r(?) (35)

where G, and G, are constant diagonal position and velocity gain matrices for the joint
variables, respectively. The reference input vector, r(t), can be chosen as,

r(t) = a7 (t) + Gl (t) + Gpar (1) (36)
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so that the joint error e(t) = q,(t) — q?(t), satisfies,
é(t) + Gye(t) + Gpe(t) =0 (37)

The above model-based controller (equation(34)), thus results in the following set of
closed-loop system of equations,

q,,«(t) = us (38)
Myrdy + hp(q,q) + cp(a) + Kqy = —Mju, (39)

We note that, the response of the joint variables (q,), would track the reference input (q¢)
satisfactorily, for the proper choice of the gain matrices G, and G,. The generalized flexible
variables (qy), on the other hand, although are coupled to control input u; through the
non-zero rows of the mass matrix MTTf, would give bounded oscillatory response(Chedmail
et al. 1991). These flexible vibrations however, can be actively damped by switching the
control input to u;; at the end of gross motion of links. The control input u;; is computed
by linearizing the closed-loop equations(38-39) around a point of the desired trajectory q¢.
We choose to linearize the system around the desired position, at the end of gross motion
of links, that is, at g = (q¢’, q?T = O)T, where q¢ is the desired joint position at the end
of motion, and 0 is 1 x N zero vector. We note that, desired velocity (q?) and acceleration
(g%) are zero at this position. The control input u;; will then be,

uj; = — [GLQR] ox (40)

where 0x = (eT,qu,éT,Q?)T is the 2(n + N) full state vector: joint error and flexible
variables. Gpgg is the n x 2(n + N) optimal feedback gain matrix determined using the
classical LQR method with a quadratic performance index in terms of the state and the
input.

4 Model Comparison

Comparison of several dynamic modeling approaches for rigid-link manipulators is reported
by Ju and Mansour(1989). However, no attempt has been made to compare different dis-
cretization models to develop the dynamics in case of flexible-link robot manipulators. In
this section, we compare the assumed modes and finite element models.

A word is in order about the number of modes (or elements) to be considered in the
discretization model formulation. Several researchers (Hastings and Book 1986, Singh and
Schy 1986 a, Book 1990) have suggested to retain only the first few modes in the model.
Justification for retaining only fewer modes in the model is based on the high frequency
and low amplitudes of terms that are dropped and the fact that the actuators and sensors
cannot operate in the high frequency range (Cannon and Schmitz 1984). Unfortunately, it
is somewhat an art to figure out how many modes should be retained for complex systems
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Mode Number of Elements Exact
No. 1 2 3 Values

1 2.0963e + 2 | 2.0873e + 2 | 2.0864e + 2 | 2.0864¢e + 2

2 2.0654e + 3 | 1.3186e+ 3 | 1.3118e +3 | 1.3075e + 3

3 4.4597¢ + 3 | 3.7067e + 3 | 3.6611le + 3

4 1.2944e +4 | 8.3473e + 3 | 7.1742¢ + 3

5 1.5709¢ + 4 | 1.1860e + 4

6 3.1318¢+ 4 | 1.7716e + 4

16

Table 1: Natural frequencies(H z) of a clamped-free beam

such as space structures, with many vibration modes of nearly the same frequency. In
this case, the exact number of modes to be included, can be determined from modal cost
analysis techniques (Skelton et al. 1982, Book 1990). For robot manipulators, on the other
hand, a relatively small number of modes (two or three) suffices to represent the flexible
dynamics (Tsujisawa and Book 1989). The higher modes, however, should be included in
the model, if it is likely that these modes may excite the servo-loop frequencies. It should
be noted that the first m calculated vibratory modes can be considered within acceptable
accuracy, when m-element model is used in the FEM model using minimal order polynomial
interpolation functions (Przemieniecki 1968). For example, consider the natural frequencies
(see table 1) of a clamped-free beam (with the system parameters of link 2 from table 3). We
observe that first m-exact values of the natural frequencies of the beam (Meirovitch 1986)
are within acceptable accuracy, when m-element model with cubic interpolation functions
(equation(16)) is used for the clamped-free beam. Note also that the finite element model
consistently over-estimates the exact values of the natural frequencies (see table 1).

4.1 Ease of Modeling

In both the assumed modes and finite element models, the flexible deformation is represented
by a linear combination of spatial functions (also called admissible functions) multiplying
time dependent mode amplitudes or nodal coordinates, respectively. In the assumed modes
model, these admissible functions are global, in the sense that they are defined over the entire
length of the beam, and they belong to the class of trigonometric functions. This leads to
complicated integrations that are involved in the mass and stiffness matrix computations.
Indeed, it is not feasible to get closed form solutions for manipulator links of complex geom-
etry. The orthogonal assumptions of these functions however simplifies the number of terms
in the mass and stiffness matrices and results in diagonal matrix structure. Finally, because
the admissible functions are normally from a ‘complete set’ (Meirovitch 1986), convergence
to the actual solution is guaranteed.
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In the finite element model, on the other hand, the admissible functions are local, in
the sense that they are defined over small subdomains of the link, and they belong to the
class of polynomial functions, that are simple and easy to work with. Because the admissible
functions are local, it is easy to get closed form solutions for manipulator links with complex
geometry. The admissible functions are all the same for every element and they are ‘nearly’
orthogonal. Indeed, it can be shown that the shape functions of an element 7 will only
contribute to the neighboring elements ¢ — 1 and ¢+ 1 and this in turn leads to banded mass
and stiffness matrices. Since the local interpolation functions do not fall within the definition
of a complete set, the monotonic convergence cannot always be guaranteed(Meirovitch 1986).

The finite element model formulation has an additional advantage in that, it can be
extended to the closed-loop manipulators (Sunada and Dubowsky 1981), and to robot links
of complex geometrical shapes (Jonker 1990) without much additional effort, due to the
‘local’ property of the admissible functions. We can also use 3-dimensional beam elements
for efficient link design of the flexible robot arms (Meirovitch 1986, Jonker 1990). Moreover,
symbolic computation of the equations of motion can be readily adapted to automation,
as it merely consists of suitably assembling the element matrices (see appendix) for the
manipulator system.

4.2 Time-dependent Frequency Equation

One of the complexity of the assumed modes model (see §2.1.1) is that the frequency equa-
tion becomes time dependent when exact clamped-mass conditions are used for certain con-
figurations of flexible manipulators. Although this fact was pointed out by De Luca and
Siciliano(1991), and Tadikonda and Baruh(1992), they have neglected the time-dependent
terms in the frequency equation for their model derivation. Neglecting the time-dependent
terms may lead to inaccurate mode shapes and over-estimated eigen frequencies. In the
sequel, we present a novel method to solve the time-dependent frequency equation.
Let us rewrite the clamped-mass frequency equation(12) as,

f(Bi, M, J,D) = (1 + cosh B;cos ;) — M B;(cosh S;sin §; — sinh S;cos f;)
— JB;*(cosh fBisin B; + sinh B;cos 3;) + M.JB;* (1 — cosh SBicos 3;)
— D?B;*(1 — cosh Bicos B;) — 2D B;*sinh Bisin f; = 0 (41)

We note that when the terms M, J, and D change continuously in time, the solutions(s;)
of the frequency equation also change continuously in time. This is based on the property
that the frequency equation is continuous in S;. Since the roots of the frequency equation
are all distinct, we can differentiate equation(41) with respect to time,

df (6, M,J,D) _ 0fdb;  Of dM  0fdJ OfdD _ (42)
dt 9B, dt  OM dt  dJdt 0D dt
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and rearrange to obtain,

ap; _ — (Fh4 + 34+ 34%)
@ %) v
where
88—]{:./ = 5 (sinh Bicos B; — cosh Bisin B; + B;>J (1 — cosh SBicos ﬁ,)) (44)
g—§ = —B;® (sinh Bjcos B; + cosh B;sin B; — B;M (1 — cosh Bicos f3;)) (45)
g—{) = —28;2 (sinh Bisin B; + ;2D (1 — cosh B;cos BZ)) (46)
and
gg = sinh Bicos B (1 + M — B7(2D + 3J) + B*(D* — M J))
— cosh Bisin B (1 + M + 322D + 3J) + B4(D? - MJ))
— 28;3cosh B;cos f; (J - 2(D* - MJ))
— 2B;sinh Bsin B; (M + 2D) — 457 (D* — M.J) (47)

It should be noted that the ordinary differential equation(43) on f;, is also a function of the
generalized position and velocity variables of the manipulator system, and hence it can be
solved together with the equations of motion along with the initial condition §;(t = 0). The
initial value (B;(t = 0)) can be computed from the frequency equation(41).

For the numerical simulation of a flexible RRP manipulator (see section 5), we have
neglected the contributions of Mpy and Jp in clamped-mass boundary conditions for the
prismatic jointed flexible link 3 (see figure 3). For this example the differential equation

reduces to a8 (Bt di
i 1(Pi, t3) al3
Y = N L 48
dt ~ fo(Bily) di (48)
where
F(Bily) = ——2 B, (sinh Bicos f; — cosh Bsin ;) (49)
p3Asls
fo(Bil3) = (1 + My ) (sinh B;cos f; — cosh ;sin 3;)
p3Asls
2m,, . .
— ;sinh 3;sin B; 50
P3A353ﬁ fisin B (50)

dl
Note that l3(t), and =3 are the generalized position and velocity variables for the prismatic
jointed flexible link 3.
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4.3 Over-estimation of Stiffness Matrix

It is known in literature that use of finite element models to approximate the flexibility,
usually gives rise to over estimation of structure stiffness matrix (K) for the system model
(Meirovitch 1986) (see also table 1). We show in the rest of this section, that over estimation
of stiffness may lead to unstable closed-loop response of the original system, using the model-
based control law. Let us rewrite the control law, with the computed version of stiffness
matrix (K) as,

=M, — MrfM;}MTTf)uI + (h, + ¢, — M,fM;;(hf +cs+ ﬁqf)) (51)

Then the closed-loop equations of motion of the manipulator system is given by,

&(t) + G.e(t) + Gpe(t) = —M, "M, ;(My; — MLM,.'M, ;) AKq;(52)
M;;q; +h; +¢c; + (K—HAK)q; = —MTTfuI (53)

where H = MI M, "M, ;( My; — M}, M, 'M,; )"', AK = (K—K ), and K is the original
stiffness matrix of the manipulator system.
Remarks:

1. The matrix My is symmetric, and positive definite. This follows from the definition
of the system mass matrix M(q) (see appendix).

2. The matrix H is positive semi-definite.

PROOF. The matrix M,, is symmetric, and positive definite from the definition of
M(q), and the rank of M, is equal to that of M,, and that is equal to n, where
n is the number of joints. Therefore, the congruence transformation M M, "M,
is symmetric, positive semi-definite and of rank n. By Schur’s complement(Horn and
Johnson 1985) of the system mass matrix M(q), the matrix ( My; — M, M, 'M,; )~
is also symmetric, and positive definite, and of rank N, where N is the number of
flexible generalized variables. Note that usually N > n. Hence from the property
of rank of product matrices, the rank of the matrix H is n and therefore is positive
semi-definite. O

3. The necessary condition for the above closed-loop system of equations(52-53) to give
stable response for qy, is that the mass matrix M, and the closed-loop stiffness matrix
(K — HAK), are positive definite.

Lemma: In the model-based decoupling control law, if the flexural structure stiffness matrix
is over-estimated (i.e. AK > 0 ), the closed-loop of flexible manipulator system is stable
only if [@Amaee(H)] < 1.0, where « is the percentage error in over-estimation of the stiffness
matric.

PROOF. Let us define A0 (K) = Ak, Anae(H) = Mg, and Ao (AK) = a\k. Then con-
dition for the matrix ( K — HAK ) to be positive definite reduces to a condition that



Theodore and Ghosal 20

aly < 1.0. Hence if this condition holds, in the case of over-estimated stiffness matrix,
the closed-loop system will be stable. O

The above lemma clearly indicates that flexible manipulator system could be effec-
tively controlled using the model-based control law only if proper care is taken in the finite
element model formulation. In particular, the lemma can be used to determine the maximum
allowable estimation error tolerance of the model stiffness parameters, so that the response
of closed-loop of original manipulator system is stable.

4.4 Computational Complexity

Book(1984) first reported the number of mathematical operations(i.e. multiplications and
additions) required for the inverse dynamics computation of revolute jointed flexible link ma-
nipulators. Li and Sankar(1993) later modified the algorithm and reported an improvement
in computational efficiency for the inverse dynamics computations. It should be mentioned
that Book(1984) addressed chiefly the problem of recursive dynamic computations and did
not discuss issues of computations to derive the closed form equations. Moreover, the pay-
load contribution to the computation counts is not addressed in both of their formulations.
Li and Sankar(1993) presented the number of mathematical operations required for inertia
matrix computations in terms of total number of links, the number of flexible links, and
the number of assumed modes. However, further simplifications of terms can be obtained,
if the geometric, inertial, and mode shapes are numerically specified before the symbolic
calculations. The resulting form of equations, would be ideally suited for dynamic model-
based real-time controller implementations, since it would minimize the computational load,
and also unlike the recursive forms, the inverse dynamics calculations for a particular joint
torque (or force) can be computed independent of other joints (Cetinkunt and Ittoop 1992).
It should be noted that no such computation counts is reported in the literature for the fi-
nite element based flexible link manipulators, and for flexible manipulators having prismatic
joints.

We present the number of mathematical operations required for inertia matrix com-
putation for the robot configurations of RR, RRR, RP, and RRP, due to assumed modes
and finite elements. For the RR and RP configuration robots both the links are considered
flexible, while for the RRR and RRP configuration robots, the first link is considered rigid
and the last two links are considered flexible. Each flexible link is approximated by two
assumed modes or two elements in the respective models. The computation counts are listed
in Table 2. It should be noted that in the present study, the time independent parameters
like geometric, inertial, and mode shapes are specified numerically before deriving symbolic
expressions for the elements of the inertia matrix (see algorithm 1 of appendix).

The inertia matrix computation counts due to Li and Sankar(1993) are almost an order
less compared to the present formulation, however their expression for the computation
counts (see Table IT on pp.89 of Li and Sankar(1993)), gives erroneous results in certain
cases. For example, if we compute the number of mathematical operations required for
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flexible "Book(1984) | *Li & Sankar(1993) 'Present Study
robot AMM! AMM AMM FEM?
configuration | mult. | add. mult. add. mult. | add. | mult. | add.
RR 3755 | 3665 44 49 405 | 168 | 156 80
RRR 4922 | 4851 92 102 878 | 376 | 592 | 237
RP — | — — — 103 42 88 33
RRP — | — — — 743 | 284 | 376 | 128
1 Inverse Dynamics Computation Counts 1 Assumed Modes Model
1 Inertia Matrix Computation Counts 2 Finite Element Model

Table 2: Computation counts for flexible-arm dynamics

one-flexible link manipulator with one-mode, we get —48 multiplications and —48 additions.
Li and Sankar(1993) also do not account for the payload contributions. The computation
counts due to Book(1984) is presented for completeness, though it is for the inverse dynamics
computations.

It can be observed from the table 2, that the number of mathematical operations
required for inertia matrix computation are fewer in case where the flexibility is approximated
by the finite elements as compared to the assumed modes model. This is mainly due to
the transformation matrix that describe the link deformations. We note that in case of
assumed modes model this transformation matrix is computed according to equation(8) or
equation(9), where the contribution due to each mode is evaluated at the tip of the link
and summed over all the modes to describe the orientation and position of the tip of a
flexible link. In the case of finite element model, the position and orientation of the tip of
a flexible link can be described simply by the element nodal displacements and rotations at
the tip of the link (see equation(17) or equation(18)). The required number of mathematical
operations become even higher when the payload is also considered in the assumed modes
formulation. For example, to compute the inertia matrix of a RR configuration robot with a
payload, when both the links are considered flexible, we require 909 multiplications and 366
additions in case of assumed modes formulation with two modes, while we require only 178
multiplications and 98 additions for the finite element model formulation when each flexible
link is discretized by two elements.

In the finite element model of an n-link manipulator with ny(< n) flexible links each
with m-elements, the total number of second order differential equations of motion will be
4mnys +n for the spatial case and 2mny + n for the planar case. In the assumed modes
model of an n-link manipulator with n; flexible links with m-modes for each flexible link,
the number of second order differential equations of motion will be 2mn; + n in the spatial
case and mny + n in planar case. In addition, for the assumed modes model, we need to
solve 2n; nonlinear transcendental equations in the spatial case and ny equations for the
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planar case. If we use the method outlined in §4.2, then we need to solve additional 2mn
first order differential equations for the spatial case and mn; equations for the planar case.

It can be observed that the finite element model has 2mn; (mn; for the planar case)
more first order differential equations compared to an equivalent assumed modes model.
Hence, inspite of the lesser number of multiplications and additions for the inertia matrix
(see table 2) of the finite element model, the ‘cpu run-time’ for numerical simulation studies
will be more for finite element models. This fact is seen in the numerical simulation of the
spatial RRP configuration manipulator (see section 5).

It may be noted that for real-time model-based control of flexible manipulators the sim-
ulation time is of less importance than the number of multiplications and additions required
for the model evaluation. In the case of finite element models the number of multiplications
and additions is significantly lower as compared to the assumed modes models. Hence, the
finite element models are more suitable for model-based real-time control implementations.

5 Numerical Results

In this section, we compare the dynamic response of a flexible, spatial, RRP configuration
robot (see figure 3), due to discretization models viz., assumed modes and finite elements.
The manipulator is assumed to operate in a gravity-free environment. The revolute jointed
link 2, and the prismatic jointed link 3, are considered flexible in the numerical simulation.
Both the links are approximated by two modes or two elements in the respective models. The
numerical simulation was performed on an IRIS-4D Workstation. The first-order differential
equations of motion (state-space form) with the model-based control input (see equation(34))
were solved by a variable step, variable order (of interpolation), predictor-corrector (PECE),
Adams algorithm (Shampine and Gordon 1975). The desired joint trajectory was chosen to
be a smooth sinusoidal profile with zero-velocity and zero-acceleration at the start and at
the end of trajectory. The joint 1 is commanded to move from 0° to 180° in 0.5 seconds,
while the joint 2 is commanded to move from 0° to 90° during the same time period. The
prismatic jointed flexible link, on the other hand, is extended from 0.3m to 1.0m in 0.5
seconds. The desired joint trajectories are shown in figure 4. Table 3 lists the physical
system parameters used for the simulation. The cpu time used for the numerical simulation
in the case of assumed modes formulation is 1533.34 seconds, and 2036.89 seconds in the
case of finite element formulation.

Figures 5 and 6 show the time history plot of joint and end-effector position errors for
the model-based decoupling controller, in cases of assumed modes and finite element models.
It can be seen, that during trajectory tracking phase (between 0 and 0.5sec), though the joint
errors are close to zero, the end-effector position errors are in the order of 8mm, due to the
oscillatory response of flexible variables (see figures 7-8). These flexible vibrations are then
damped by the optimal(LQR) second loop control law, at the end of gross joint motions, and
hence the end-effector position errors are also driven to acceptable limits (within 0.1mm)
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Physical system parameters Value
mass of link 1 (m;) 3.7051kg
mass of link 2 (my) 0.3310kg
mass of link 3 (mj3) 0.4303kg
mass of payload (m,) 0.0828kg
length of link 1 (/) 0.1m
length of link 2 (I5) 1.0m
total length of link 3 (3) 1.3m

rotary inertia of joint 1 (I;) 0.352kgm?
rotary inertia of joint 2 (I,) 3.2kgm?
flexural rigidity of link 2 (F1) 1165.4916 Nm?
flexural rigidity of link 3 (F1) 1165.4916 Nm?

Table 3: RRP configuration robot system parameters

between 0.5 and 1 second.

Figures 7 and 8 show the time history plot of flexural deflections and rotations at the
end of links 2 and 3, respectively. It can be observed that the dynamic response of the
flexible variables is similar for both the discretization models, except that the response of
flexible variables due to finite element discretization lags behind the corresponding flexible
variable response of the assumed modes model. This is due to the fact that the finite element
approximation generally over-estimates the natural frequencies of the original system and
this can be seen from figures 9 and 10. Note that the natural frequencies of the flexible
manipulator system are proportional to the closed-loop eigenvalues of the system. We com-
puted the closed-loop eigenvalues of manipulator system using the jacobian of the closed-loop
equations of motion in state-space form. It should be noted from figures 9 and 10 that the
frequencies of the first 2 vibratory modes of assumed modes model are within acceptable
accuracy, when 2-element model is used in FEM model and this is in confirmity with the
observation made by Przemieniecki(1968). Another feature is that the natural frequencies
calculated using finite element model is always higher than the natural frequencies calcu-
lated using assumed modes model and this is clearly evident in the high frequency range (see
figures 9-10 between 0 and 0.3sec). This over-estimated natural frequencies of FEM model
however, converges to that of the assumed modes model in the lower frequency range (see
figures 9-10). The closed loop imaginary eigenvalues of the flexible variables also illustrate
the time-invariant property of the frequencies correspond to revolute jointed flexible link 2,
and time varying nature of frequencies correspond to the prismatic jointed flexible link 3
(see figures 9-10).

This numerical simulation study thus demonstrates the results of the preceding sec-
tions. In the next section, we summarize the main contributions of this paper, and present
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some concluding remarks.

6 Summary and Conclusion

In this paper, we have presented a systematic dynamic modeling procedure based on ho-
mogeneous transformation matrices, for spatial multi-link flexible manipulators with both
revolute and prismatic joints. The flexibility of the links is approximated by discretization
models namely the assumed modes, and the finite elements, and their representation is com-
pared. Lagrangian formalism has been employed to derive closed form equations of motion
of the flexible manipulator system. Computer algebra is used to yield the most computation-
ally efficient form of the equations of motion that are ideally suited for dynamic model-based
real-time controller implementations. We showed that fewer number of mathematical oper-
ations are required for inertia matrix computation in case of finite element model compared
to the assumed modes formulation, however the number of differential equations of motion
is larger for the finite element model. We addressed the issue of time-dependent frequency
equation of assumed modes model, and presented a novel method to solve the frequency
equation. We have also showed that over-estimation of stiffness of the original manipulator
system may lead to unstable closed-loop response using a model-based control algorithm.

In conclusion, we recommend the assumed modes model formulation for discretization
of manipulator links with uniform cross-sectional geometries, and for single-link flexible
manipulators. It is also more suitable for numerical simulation purposes. On the other
hand, the finite element model formulation is particularly recommended for manipulator
links with complex cross-sectional geometries, and also for flexible multi-link manipulator
systems. The finite element model also requires only fewer computations that lends itself
ideally suited for dynamic model-based real-time controller implementations.
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Appendix

Symbolic Equations of Motion

In the present study, the closed form equations of motion for the flexible RRP configuration
robot (see figure 3) were derived using the symbolic software MACSYMA (Annon 1987),
employing the following algorithms.

The mass matrix due to the links are computed using the algorithm 1.
Algorithm 1:
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S1: declare the types of all the variables and initialize.

S2: define the vector of generalized position variables: Q7 = (qry, -, @rs Qs+ Qpy )-
S&: input the geometric, inertial and other time-independent parameters.

S4: input the transformation matrices: A9, EY --. A"~ E"! (equations(1-2)).

S5: compute the position vectors: ¥, --- 1% (equation(6)).

FOR j=1tonstep 1 DO
FOR i=1to (n+ N) step 1 DO

or?
S6.1: compute ;) = (—J>

9g;
FOR k=1ito (n+ N) step 1 DO
or?
S6.2: compute d;r) = (i)
Aqy,

. lj
S6.3: compute Mf,k = /OJPjAj(@r?)T(‘Skrg)dx
S6.4: compute M/%* = M™% + M7,
NEXT k.
NEXT z.

NEXT j.

It should be noted that in case of finite element model, the mass matrix for each element of
a link is computed first using algorithm 1. We then obtain the mass matrix due to links by
summing the element mass matrices over all the elements for all the links. The algorithm
similar to the above can be used to determine the mass matrices due to joints, and the
payload. Finally, the total mass matrix of the manipulator system is computed as:
Algorithm 2:

FOR i=1to (n+ N) step 1 DO

FOR k=ito (n+ N) step 1 DO
S1: compute M;, = MW" + Mfzmt + Mi’j,‘;yl"“d
NEXT k.

NEXT ;3.

Using the Lagrangian formulation of dynamics, the vectors of Coriolis, centrifugal terms
(h(q,q)), and the gravitational terms (c(q)), are then determined using the following algo-
rithm.

Algorithm 3:
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S1: define the generalized position and velocity variables: qF = (g, @y @1y Tfn )
and qT = (q.Tla e 7q.7'naij1a o 7QfN)

FOR i=1to (n+ N) step 1 DO

VN (9N 19,
52.1: compute by = Y > <—] -3 ]’k> 4k

j=1 k=1 8(116 2 a%’
"l or!

S$2.2: compute g; = Z/]ijng Ldx
oo 0q;

NEXT ;.

Inverse of a partitioned Mass matrix

The mass matrix of the complete flexible manipulator system is given by

M,, M
M q) = ( T rf >
(@) M, My

From Lagrangian formulation of dynamics, M(q) is symmetric and positive definite. Hence
its inverse M~!(q) exists, and is also symmetric and positive definite. We can show then for
M(q), the inverse M !(q) is given by either,

M-(q) = (M, — M, ;M7 M?-F{)*l MM, (Mg = MMM, )
—(Myy = MMM, ) MM (Mys = MM M)

or

(M, — M, ;M M%)~ —(M,, — M, M;}MZ,) "' M, M} )

M_I(Q) = _ - -1 _ -1
_MfferTf(Mrr - Mrfo}MrTf) (Mff - MZerrlMTf)

By the fact that any principal submatrix of a positive definite matrix is positive definite
(Horn and Johnson 1985), and by the above formulae for M~!(q), we have
M,, — M, M }M? 71, and (M,, — M, M, MZ’,) are symmetric and positive definite.
FV g FRRpp s : :
Similarly, M — MT,M_-'M,;), M,,, M;; are also symmetric and positive definite.
y ff rfVirr f ff
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Figure 3: Flexible spherical(RRP) manipulator
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