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Abstract

The dynamics of a feedback controlled rigid robot is most commonly described by
a set of nonlinear ordinary differential equations. In this paper, we analyse these equa-
tions, representing the feedback controlled motion of two and three-degree-of-freedom
rigid robots with revolute(R) and prismatic(P) joints in the absence of compliance,
friction and potential energy, for the possibility of chaotic motions. We first study the
unforced or inertial motions of the robots and show that when the Gaussian or Rieman-
nian curvature of the configuration space of a robot is negative, the robot equations
can exhibit chaos. If the curvature is zero or positive, then the robot equations cannot
exhibit chaos. We show that among the two-degree-of-freedom robots, the PP and
the PR robot have zero Gaussian curvature while the RP and RR robot have nega-
tive Gaussian curvature. For the three-degree-of-freedom robots, we analyse the two
well-known RRP and RRR configuration of the Stanford Arm and the PUMA manipu-
lator respectively, and derive the conditions for negative curvature and possible chaotic
motions.

The criteria of negative curvature cannot be used for the forced or the feedback
controlled motions. For the forced motion, we resort to the well-known numerical tech-
niques and compute chaos maps, Poincaré maps and bifurcation diagrams. Numerical
results are presented for the two-degree-of-freedom RP and RR robots, and we show
that these robot equations can exhibit chaos for low controller gains and for large un-
derestimated models. From the bifurcation diagrams, the route to chaos appear to be
through period doubling.

1 Introduction

The study of chaos in dynamical systems often involves the study of the mathematical equa-
tions in the form of nonlinear differential equations or maps which model the system. In
mechanical systems, nonlinearities arise from a number of sources — Coriolis and centripetal
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accelerations or gravity associated with the motion of pendulum and other multi-body sys-
tems, nonlinear constitutive relations between stress and strain, nonlinear forces like mag-
netic, electric or coulombic friction, and geometric nonlinearities associated with large de-
formations in structural solids such as beams, plates and shells. Several mechanical systems
with such non-linearities have been analysed for chaotic behavior(see for example (Guck-
enheimer and Holmes 1983; Moon 1987; Sekar and Narayanan 1992; Dowell and Pezeshki
1986; Tongue 1986; D’Humieres, Beasely, Huberman and Lichaber 1982; Hiibinger, Doerner,
Heng and Martienssen 1994q; Hiibinger, Doerner, Heng and Martienssen 1994b; Hiibinger,
Doerner, Heng and Martienssen 1994c¢)). In this paper, we look at a different class of me-
chanical systems, namely that of feedback controlled rigid robots. A multi-link, feedback
controlled, rigid robot is best modeled by a set non-linear ordinary differential equations with
the non-linearity arising from the configuration dependent inertia and the non-linear control
laws(Craig 1989). Unlike the large number of mechanical systems studied in chaos literature,
there are no non-linearities resulting from motion under gravity or from non-linear mechani-
cal elements such as springs, backlash and friction. In addition, the simplest set of equation,
that of a planar two-degree-of-freedom robot, is 4 dimensional and non-autonomous and
thereby more complicated than the typical 2 and 3 dimensional systems studied in litera-
ture. In this paper, we show that under certain conditions, involving the type, geometry and
the control gains, a robot can exhibit chaotic motions and this suggests a re-look at some of
the robustness results in robot control.

Although there exists a vast amount of literature on chaotic motions in mechanical sys-
tems such as Duffing’s oscillator and pendulum, the literature on chaos in robots is more
limited. Vakakis and Burdick (Vakakis and Burdick 1990; Vakakis and Burdick 1991) have
studied the dynamics of a simplified hopping robot where the non-linearity is in the form
of a non-linear spring. M’closeky and Burdick(M’Closkey and Burdick 1993) have extended
this model to a two-degree-of-freedom system, by including the forward running dynamics.
The bifurcations diagrams which captures the variations in dynamical behavior with respect
to the variations in the system and control parameters exhibit a period doubling cascade.
Buhler and Koditschek(Biihler and Koditschek 1991) have studied a simplified planar jug-
gling robot in the form of a nonlinear map. They observed that for certain lower order, local
(linearised) stability properties determine the essential global(nonlinear) stability properties
and that successive increments in the controller gain settings give rise to a cascade of period
doubling bifurcations leading to chaos. Verghese et. al(Varghese, Fuchs and Mukundan
1991) have shown that the zero dynamics in a kinematically redundant robot controlled by
a feedback linearisation technique can exhibit quasiperiodic and chaotic behavior. Streit
et. al (Streit, Krousgrill and Bajaj 1986) have studied the nonlinear response in a flexible
manipulator with a prismatic and revolute joints performing repetitive tasks. They have
shown that the compliant coordinates can execute small but finite amplitude motions and in
one particular case it has been shown that the amplitude of these periodic motion bifurcate
to periodic solution which subsequently undergoes period doubling bifurcations leading to
chaotic motions. Mahout et. al(Mahout, Lopez, Carcassés and Mira 1993) have shown that



a 2R manipulator with periodic forcing at the joints exhibits chaotic behavior for certain
values of parameters. Shrinivas and Ghosal(Shrinivas and Ghosal 1996) have demonstrated
that the nonlinear ordinary differential equations describing the motion of a feedback con-
trolled rigid planar 2R robot undergoing repetitive motions can exhibit chaotic motion for
a proportional plus derivative(PD) and a model based controller. Chaotic motions have
been observed if the system is grossly under-damped and for low values of controller gains.
Some experimental chaotic results were obtained by Mahout(Mahout 1994), on a 2R rigid
manipulator with two electric actuators in the presence of friction.

The above mentioned works on chaos in robots, with the exception of Mahout(Mahout
1994), are especially numerical in nature. In this paper, apart from numerical results, we also
propose an analytical approach to study chaos in unforced mechanical systems by making
use of concepts from differential geometry. The paper is organised as follows: In section 2, we
present in brief, the well known dynamic and feedback control equations of rigid robots. In
section 3, we present an analytical criteria for chaos in unforced mechanical systems derived
from the Gaussian and Riemannian curvature of the configuration space of a robot, and
in section 4, we develop analytical expressions for several two and three-degree-of-freedom
robots with prismatic(P) and revolute(R) joints. In section 5, we present a numerical study
of the nonlinear equations describing an RP and RR manipulator undergoing repetitive
motion in a horizontal plane under two well known robot control schemes, namely a simple
PD control law and a model based control law. We present numerical results in the form
of chaos maps giving values of gains for which the motion is chaotic, and the well known
Poincaré map and bifurcation diagrams. Finally in section 6, we present our conclusions.

2 Dynamic modeling and control of rigid robots

The dynamics of rigid serial robot having n joints, in the absence of friction, can be written
as
M(6)0 +C(0,6) =T (1)

where, 6(t) is the n x 1 vector of joint angles, M(8) is the mass matrix, C(6, ) is the n x 1
vector comprising of Coriolis and centrifugal torques and gravity terms, and I" is the vector
of joint torques/forces (Craig 1989).

The purpose of the robot arm controller is to ensure that the robot tracks a desired
trajectory inspite of parameter uncertainties and external disturbances. A number of control
schemes exists to achieve this purpose and they range from the simple independent joint
control schemes to a more sophisticated adaptive control schemes(Craig 1988). We consider
two well known control laws(Craig 1989), namely, (i) proportional plus derivative (PD)
control and (ii) model based control.

For the PD controller, the torque at the joint ¢ is calculated as

Ly = 04, + Koy (84, () — 6:(1)) + K3, (B, (1) — 6i(2)) (2)



where, 04, (t) is the desired trajectory to be tracked in joint space, 6;(t) is the achieved (measured)
trajectory, Kp, and K,, are the positive proportional and derivative gains. It can be shown
that, in the absence of gravity, the PD control law is asymptotically stable for a set-point
or a regulator problem (where the desired velocity at the joints are zero)(Asada and Slotline
1986) in the sense of Lyapunov.

For the model based control, the joint torques are calculated as

I'=M()r,+ C(0,0) (3)

where, T, = 0, + K,(8, — 0) + K, (8, — 0), M(6) is the estimated mass matrix, C(6, 6)
is the estimated Coriolis and centripetal torques vector, and K,, K, are positive definite
constant diagonal gain matrices. Craig(Craig 1988) has given a robustness conjecture for
the model based computed torque scheme which states that if 1\7[(0) > 0 and symmetric and
K, > a *I,(where « is a positive number and I, is the n x n identity matrix), then the
system is L, stable. This result is justified by numerical simulation results, however, as far
as we are aware there exists no proof of this conjecture in literature.

In this paper, we show that the nonlinear differential equations of a feedback controlled
robot, under a PD or a model based control scheme, can exhibit bounded chaotic behavior
and hence the robustness results are not strictly valid. In this paper, we assume that the
robots perform a repetitive task, such as painting, in the absence of gravity and friction, and
the desired joint space trajectories are of the form,

04; = Aisin(wit), i=1,...,n (4)

where A; is the amplitude and w; is the frequency. For the above joint space trajectory, the
end-effector of the robot repetitively traces a curve in Cartesian space.

Substitution of equation (4) in (3) results in a system of 2n first order ordinary differential
equations which are coupled, nonlinear and non-autonomous. The equations are dissipative
and the amount of dissipation is determined by the velocity gain K,. It is very difficult to
derive any analytical results from such a general system of 2n first order nonlinear differential
equations. As a first step we look at the unforced or the so-called inertial equations in the
next section and derive analytical conditions for possible chaotic motions. We show that
if the Gaussian curvature is negative in a 2D subspace, then the system of equations can
exhibit chaos and if all the Riemannian symbols identically vanish then the equations cannot
exhibit chaos. In section 5, we resort to numerical simulations to study the forced equations.

3 Analytical criteria for chaos for inertial motions

Before we introduce an analytical criteria for chaos for inertial motions, we introduce some

required concepts from differential geometry(Stoker 1969) and classical dynamics(Arnold
1989).



In the absence of friction and a potential energy(in our case gravity), the Lagrangian of
a n degree-of-freedom manipulator is only a function of the kinetic energy and is given by

1(6,8) = (1/2)0" [M(6)]0 (5)

It may be noted that [M(0)] is a positive definite n x n matrix and its elements M;; define a
Riemannian metric in the configuration space (space of joint variables ) of the manipulator.
Once such a metric is defined in a space, we can compute the Riemannian curvature by
constructing a covariant tensor of order 4, called the curvature tensor with components
Rz‘jkl, as

Rij =Y MR}y, (6)
h=1
where
ort.  ort. =
Ry = 200 S rhrt, i
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In the above equations M* are the components of [M(0)]! and the components I'}; are
known as the Christoffel symbols of the second kind.

In the absence of potential energy, the equations of motion are given by the Hamilton’s
equations

. o0H
= %%
oOH
o om .
p 50 (8)

where p is the momentum and H(p, 0) is the Hamiltonian®.
Further one can define a canonical nonlinear transformation

P = P(p,0)
© = O(p,0) (9)

which ensures p’d@ = P7dO. The function © which preserves the Riemannian metric is
called an isometry, and it can be shown that the invariant which determines the Riemannian
manifolds upto isometry is the Riemannian curvature, R;j;. When all the quantities R;jx
identically vanish, one can show(Stoker 1969; Spong 1992) that the mass matrix [M(8)] can

'The momentum and Hamiltonian is related to the Lagrangian as p = 2% and H(p,0) = éTp —L(0, 0)
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be factorised in the form [N(©)]T[N(©)] with [N(©)] integrable. In such a situation, the
Hamilton’s equation can be written as

© =P
P = [NO)]TT (10)

For inertial motions I' = 0, and we can integrate the equations(10). Since we can integrate
the equations explicitly such systems cannot exhibit chaos. Hence we can conclude that
if the symbols Rijy vanish identically for any manipulator, then, for inertial motions, such
manipulators cannot exhibit chaotic motions.

Next we consider the case when one or more of the R;j; are non-zero. In such cases,
we can calculate the Gaussian curvature, G, of the 2D subspaces of the full configuration
space with metric tensor [M(0)]. The Gaussian curvature, in terms of the metric coefficients
M;;,i,5 = 1,2, for any 2D subspace is given by ?

G

_ ]_ 62M12 162M11 162M22
T My My, — M% \ 06,00, 2 96,2 2 96,°

2 2
+ Z F’IYQF?QMM; - Z F?1F§2Ma,3)
v,0=1 a,f=1
(11)
where the Christoffel symbols, Féj, are defined in equation(7).

If G is identically zero for all 2D subspaces, then it is equivalent to all the R;;; vanishing
identically and we cannot have chaos. Hence we consider the cases G > 0 and G < 0 in a
2D subspace of the configuration space. Figure 1 show sketches of two surfaces with G less
than and greater than zero respectively®. In the absence of external forces, the motion of
the system from any initial state will take place along the geodesic of the surface(Arnold
1989). For surfaces with G < 0, the geodesics diverge (as shown schematically in figure 1).
If two states are initially separated by a distance ¢y, over time the distance between the two
trajectories will grow exponentially as

e(t) = eoemt (12)

Hence however small is the initial distance €, the distance between two trajectories, €(t),
tends to infinity as time increases for surfaces with G < 0. Such sensitive dependence on
initial condition is the hallmark of chaos and this has been termed as kinematic source of
chaos(Zak 1985a; Zak 1985b) since there is no external forcing in this analysis. It maybe
mentioned that if G > 0 then initially nearby trajectories do not diverge and hence the
inertial motion is not chaotic(see figure 1).

From the above, we can conclude that if G < 0 in any 2D subspace of the configura-
tion space of a manipulator, then, for inertial motions, the manipulator can exhibit chaos.

2@ can also be written in terms of the symbols R;j (Stoker 1969).
3Surfaces with G > 0 are analogous to a sphere and surfaces with G < 0 are called pseudo-spheres.



Our analytical criteria is based on the above conclusion and in the next section, we calcu-
late the Gaussian curvature for several two and three-degree-of-freedom robots and develop
conditions for which the robots can exhibit chaotic motions.

Before we compute the Gaussian curvatures, a word about non-inertial or forced motion
is in order since the input control torque in a robot clearly makes the motion forced. For
non-inertial or forced motions, the motion doesn’t take place along the geodesics of the
surface. The motion is determined by the underlying surface (or manifold) characterised by
the Gaussian (or Riemannian) curvature and the acceleration or external force characterised
by the geodesic curvature. Hence the analytical criteria developed above may not hold for
externally forced motions?. For study of forced motions we resort to the well known tools in
the study of chaos and these will be described in a later section.

4 Gaussian curvature of two and three-degree-of-freedom
robots

In this section, we derive the general expressions of Gaussian curvature of several two and
three-degree-of-freedom robots containing prismatic(P) and revolute(R) joints. From these
expressions and the criteria described in the last section, we infer whether such robots can
exhibit chaotic motions in the absence of compliance, friction and potential energy(gravity
terms in our case).

4.1 The PP robot

Figure 2 shows a two-degree-of-freedom robot with two prismatic (P) joints. The translations
at the joints are denoted by d; and dy and the masses of the two links are m; and my. The
kinetic energy of the PP robot in terms of the velocities at the joints and the masses can be

written as 1 .
s 2 s 2
KE = émldl + §m2d2 (13)

The element of the mass matrix are constants and are given as

My = my
M12 = 0
MQQ = Mo (14)

The Christoffel symbols are zero since the metric tensor [M(@)] has constant coefficients.
The Gaussian curvature is zero and hence a PP robot cannot exhibit chaos when there
is no external force. This result is expected since the differential equations describing the

“In the case of the PR robot(discussed later), the Gaussian curvature is zero and hence the PR robot
does not have a kinematic source of chaos. We were also not able to observe chaotic motions in the forced
case inspite of extensive numerical simulations.



dynamics of a PP robot are linear and it is well known that linear systems do not exhibit
chaos.

4.2 The PR robot

Figure 3 shows a two-degree-of-freedom robot containing a prismatic(P) and a revolute(R)
joint. The kinetic energy of the PR robot can be written as

1 « 2 1 2 . .
KE = §(m1 +m2)d1 + E(mQT% +IQ)02 — m2r2d192 sm92 (15)
where m; is the mass of link 1, mo, I5, 9 are the mass, inertia and location of the center of

gravity of link 2, and d;, #; are two joint variables.
The elements of the mass matrix are given by

MH = M1 + Mo
M12 = —MaTo sin 02
My = mgrs +1, (16)

The Christoffel symbols I'};, ['?;, T'{, and I'?, are zero and the non-zero ones are given as

MiyTy COS Oy Moy

P%Q = M2
MoT9 COS 02M12
P%Q = M2 (17)

where ]\4'2 = M11M22 — M122
Substituting the above expressions into equation(11) we obtain the Gaussian curvature
of the PR robot to be zero. For the PR robot, one can factorise the mass matrix and get

M;
Vi, VM=

@)= | e

(18)

where the symbols M;; are given in equations (16). The equation of motions of an unforced
PR robot can be integrated in the closed form and hence the unforced PR robot does not
have a kinematic source of chaos.

4.3 The RP robot

The kinetic energy of the RP robot moving in a horizontal plane as shown in figure 4 can
be written as

KFE = 5([ + m2d§)912 + §m2d22 (19)



where 6; and ds are the joint variables, ms is the mass of link 2, and I is sum of the inertias
given by I + I, + myr? with r; as the distance to the centre of mass of link 1.
The elements of the mass matrix are

My = I+ mads
Mo 0
M22 = Mo (20)

The Christoffel symbols I'%,, I's, and I'3, are zero and the rest are given as

2. — —modo M1y
11 M2
modo Moy
F%Q = M2 (21)

The expression for the Gaussian curvature is

mady Moo

G e

—my + ( )2M11] (22)

:Wl

where M2 = M11M22 — M122

One can show that for positive I, GG is less than zero, and the RP robot has kinematic
sources of chaos. The proof is as follows:

Assume G > 0. Then we have

2
[(7"12(11\,2[%22) Mll] —my >0
or mgd%Mll 2 M121,
or mgd% Z M11.

For I > 0 this is false from equations(20), hence G < 0.

4.4 The RR robot

The kinetic energy of the RR robot moving on a horizontal plane as shown in figure 5 can
be written as Y o Ly
KE = (¢1 + cacosbs)0; + (c3+ ¢4 co805)0105 + 302 (23)

where the constants c; are given as

c = m17“12 +Il +Ig+m2r22+m2l12
Cy = 2m2l1r2

Ccy = mQT'22 + IQ

cy = maliry



with 6;,7 = 1, 2 denoting the joint variables, m;, I;,r;,% = 1, 2 denoting the mass, inertia and
location of the center of gravity of link ¢ respectively, and /; denoting the length of link 1.
The elements of the mass matrix are

My, = ¢+ cycosby
My = 2(c3+ cqcosby) (24)
My = c3

The expressions for Ffj and the Gaussian curvature G are given as

o —cC9 sin Gy M5 2 _ Co sin Oo M4 1 —4cysinOy My,
w= e =T gp o Tem g
4C4 sin 02M22 Co sin 02 M12 —C9 sin 92 M12
Iy = oz i, = oz I, = oz (25)
1 [cocosb sin 6\~
G = W ( 2 5 2 + <2M22> (Mlslcg - 2C§M11M122 + C§M12M22 - 4C4CQM121M22 — M122)>

where M2 = M11M22 — M122

The Gaussian curvature is negative when
asc1 — by + 2ascs — ascy + 2asc3
a1 + agoCy + 2(1,364 — a4Cy + 2@504

cosfy < — (26)

where the symbols ay, as, as, a4, as and by are given by (1/2)cy, B2ca M3, 48%cocs M3y, 28%ca ME,,
B%cics, and 4cycs My f2ey respectively with 8 = sin 6y /(M Myy — MZ,). The Gaussian cur-
vature of the unforced RR robot can be negative and hence the the unforced RR robot can
exhibit chaos.

4.5 The RRR robot

Figure 6 shows a three-degree-of-freedom robot with all revolute(R) joints. In terms of the
kinematic and inertial parameters, the kinetic energy of the RRR robot is given as

1 -2 ] - 92 . . . . ..
where 0;,7 = 1,2, 3, are the three joint variables and the elements of the mass matrix are

My, = I+ Iscos® 0y + I;sin® (6, + 05) + I,y sin B, cos B, + I5 cos B sin (6, + 653)

My = I;sinfy + Igcos(fy + 03) + Igcos b
M3 = Igcos(fy + 63) (28)
M22 = 2[5 sin03 +IQ +IG

M23 = I5Sin03+l6
M33 = IG

10



In the above equation, the symbols I;’s are constants dependent on the lengths, masses
and inertia of the links and are given in (Armstrong, Khatib and Burdick 1986). The
configuration space for the RRR robot is 3 dimensional and three Gaussian curvatures of
the 2D subspaces are

_ 1 I3cos(2605) I cos(fy + 63) ) )
G12 = M11M22 — M122 [ 5 — 5 + _[11 sm(292) 2]3 sm(292 + 93)
1
+ —13sin(20y) + I sin 2(0y + 03) + 111 cos(26)+
4(M11M22 _ M122) [( 3 ( 2) 7 ( 2 3) 11 ( 2)
2[3 COS(QHQ + 03))2M22 — ((—I3 sin(292) + I7 sin 2(02 + 03) + [11 COS(202) +
213 cos(205 + 63)) (14 cos Oy — Igsin(fy + 65) — Igsin(6y))) Mis]]
1 .
Gi3 = My My — I, [15 cos(fz) sin (b2 + 03) — I7 cos(f2 + 03)
M3

) ,
+M11M33 M (I7 cos(fy + 05) sin(fy + 65) + I3 cos O3 cos(fz + 63))

Igsin(fy + 63) (Mo
(M1 M3z — M73)? ( 2
I11 cos(265) + 215 cos(26, + 03)) (M?z, — My May) + (I cos(6y + 65) sin(fy + 63) +
I3 cos 0y cos (0 + 05)) M7 ( M3z — MQQ))]

Gy = (2—e)a—ba’®—d—4I;

(—1I3sin(205) + I7sin 2(0y + 03)+

where

a = sinf;
2812 cos? 05 9
= Is1; + 1,151,
¢ M22M33—M22356+256
412 cos® 03
3121,
d = 2LI¢ +3I;

b =

The sign of Gy3 is negative when e > 2a — ba? — d — 415, however, it is difficult to infer
under what conditions the sign of G5 and G;3 are negative. In any case, the RRR robot
can exhibit chaos since G953 can be negative.

4.6 The RRP robot

Figure 7 shows a three-degree-of-freedom RRP robot. In terms of the kinematic and inertial
parameters, the kinetic energy of the RRP robot is given as

1 .92 .92 .9 .o .o ..
KE == 5 <M1101 + M2202 + M33d3 + 2M129102 + 2M2302d3 + 2M1301d3)

11



where 60;,7 = 1,2, and d3 are the three joint variables, and the elements of the mass matrix

are

Mll = Kl —+ sin2 HQ(KQ + K3d3 + Klodg)

My = —Ky;cosbqds

M3 = —Kgsinf,

My = Ki+ Ksds + Kgds
Mys = 0

Mz; = Ky

where the symbols K; are constants given by

2
3z

mgk
K5 = 2m323

mgkgyy + m3k§yy
Ky =Kip=mg3

Kg = —m3d2

where my,, k), da2, 23 are the masses, inertias and lengths respectively associated with the

links(Paul 1981).

The configuration space for the RRP robot is 3 dimensional and the expressions for the
three Gaussian curvatures of the 2D subspaces are

GlQ

Gos
Gs1

1

M11M22 - M122
[(Kz + Ksds + Kyod3) My My — (2 + Ko + Ksds + K10d§)M221]
(K2 + K3d3 + Klodg)(K7d3 sin 02)(M123 - 2M12M121 - M11M22M21)

(K2 + K3d3 =+ Klodg)MQQSin2 202
4(M11M22 - ]\4122)2

{(—K2 — K3ds) cos(26,) +

4(M11M22 - ]\4122)2 }

(Ks + 2Kgd3)*Kg — Moy K
2(—K8 sin 02) + K1 + sin2 HQ(KQ + K3 + Klodg)

For the RRP robot, for all positive values of K;, GG3; is positive. However, GGo3 can be
negative, if My Kg > (K5 + 2Kgd3)>? K2 and the RRP robot can exhibit chaos.

5 Numerical study of robot control equations

As mentioned before, the equations of motion inclusive of the control torques cannot be anal-
ysed using the criteria of Gaussian curvature alone. To study them we resort to numerical

12



integration and use the several well known diagnostic criteria for chaos. The main diagnos-
tic criteria for chaos are phase plots, Poincaré maps, Lyapunov exponents and bifurcation
diagrams (Moon 1987). In this section, we first briefly discuss these criteria, then present
the equations of motion of a feedback controlled RP and RR robot in a form amenable for
numerical study, and finally present some numerical results. We chose the RP and the RR
robots since these have negative Gaussian curvatures and the state equations are 4 dimen-
sional. The state equations of the RRR and RRP robots are 6 dimensional and require
significantly more computation and hence were not chosen for simulations. The feedback
controlled PP and PR robot didn’t exhibit chaotic motions even after extensive searches in
the absence of friction and potential energy.

5.1 Diagnostic criteria for chaos

Phase plots are plots of state velocity versus state position. For a periodic input, the phase
plots of a non-chaotic system are closed and have one or more but finite number of periods
or loops. In the case of a chaotic system, the phase plots is not closed and there are infinite
number of periods or loops. The phase trajectories tends to fill up a certain region of the
phase space.

A section transverse to the flow in the phase space of an n dimensional continuous system
is an n—1 dimensional map called the Poincaré map. For a system, driven by a periodic input
of period T', the Poincaré sections can be defined by the planes ¢ = T where, 1 = 1,2, 3...
and can be pictured as a stroboscopic sampling of the velocity and position at every time
period 7. For a non-chaotic system, the Poincaré section contains one or more but finite
number of points. For a chaotic system, the Poincaré map fills up a bounded region region
and has fractal dimension. This is also called the strange attractor.

However, the most important and useful tool to identify chaos are the Lyapunov expo-
nents. The Lyapunov exponent is a measure of the average long-term exponential rate of
divergence of all adjacent trajectories as t — oo. For an n dimensional system, there are n
Lyapunov exponents and one or more positive Lyapunov exponent with a bounded attrac-
tor indicates chaotic motion. The algorithm given by Wolf et al.(Wolf, Swift, Swinney and
Vastano 1985) to compute the Lyapunov exponents has been widely used to determine the
Lyapunov exponents and in this paper we use the same algorithm.

Once a system is found to be chaotic, bifurcation diagrams are used to study the pre-
chaotic or post-chaotic behavior as a critical parameter is varied. Bifurcation diagrams
describes the nature of transition from periodic motion to chaos, as the parameter is varied,
enables one to anticipate chaotic behavior and to indicate the route to chaos. Bifurcation
diagrams can be obtained by the geometric approach of Kawakami(Kawakami 1984), con-
tinuation methods or the brute force approach(Parker and Chua 1989). In this paper, we
have computed the bifurcation diagrams by the brute force method.

13



5.2 The planar RP robot under feedback control

Figure 4 shows the RP robot. Neglecting compliance and friction at the joints, the equations
of motion of a RP robot, moving in a horizontal plane, can be written as

(m1l12 + Il + .[2 =+ m2d22)9“1 + 2m2d291d2 = Pl
m2d2 - m2d2912 = F2 (29)

where, m;, l;, I; and denote the mass, position of the center of mass of link 7, and inertia of
link 7 respectively. We use the following non-dimensional parameters:

L+ 1, mg
= 1 = —
P (1+ 2 )s P2 i
mll% kgm? maly kgm
_ — A 30
Ps 1.0 kgm?’ PA= 10 kgm (30)
dy
X = =
Iy
r F.
= - mp==
p3 P4

and consider the two control laws described in section 2, namely, (i) proportional plus deriva-
tive(PD) control scheme and (ii) model based control. Although, in general, there are two
proportional and two derivative gains, to restrict the parametric plane we choose both of
them to be equal and denote them as K, and K,. Using the normalised time, 7 = wt, and
the normalised gains,

K, = K,/u’
K, = K,/w (31)
we can, after simplification get a system of 4 first order coupled, nonlinear and autonomous

ordinary differential equations. These are the PD control equations of a planar RP robot
and are given as

p1+ ,02X2 0 0’1,
0 o XII
_ p%[K;(A1 sinT — 6;) + K} (AicosT — 6)) + 014] ]

[K;(AysinT — X) + K (AycosT — X') + X (32)

- | L
pa

where (-)" denotes derivative with respect to non-dimensional time 7.
In the model based contrgl\ scheme joint torques are calculated, as described in section 2.

The quantities M/(TS’) and C(6, ) are the estimated mass matrix and centrifugal and Coriolis
torques vector which are computed by perturbing the non-dimensional parameters as

= (I+ep
p2 = (1+¢€)p2 (33)
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The model based control equations for a RP robot in terms of the non-dimensional
parameters are

(,01 —+ ,02X2)0111 = (pl + p2X2)(1 + 6)[K;(A1 sinT — 91) + K:(Al COST — 0’1) + 0'1’(1]
—2pgeX HllX '
X" = (1+4¢[K:(AssinT — X) + K7 (AycosT — X ) + X,] — eX6,”  (34)
The above non-dimensional equations (32) and (34) were used for the numerical sim-

ulations and were more helpful in systematically obtaining values of length and inertial
parameters for which the RP robot exhibits chaotic motions.

5.3 The planar RR robot under feedback control

Figure 5 show a two-degree-of-freedom RR robot. Similar to the RP robot above, the
equations of motion of a planar 2R robot can be derived in the non-dimensional form with
the introduction of the following non-dimensional variables:

. m17‘12 + ]1
pr= maoro? + Iy
_ m1l12
i = maoro? + Iy
= (35)
_ Ky
Py = w?(mara? + 1)
K,
Pk, =

w(meory? + 1)

The equations of the robot under PD control, using the above non-dimensional variables,
can be written as

pr + 1+ prr(1+2p.cosby) 1+ prrprcosby 6]
1+ prrpy cos by 1 0,

+ —PI1Pr sin 02(20’1 + 0’2)0’2 0
0 pr1p1"” sin 6,

(36)

/

[ pr, (61 — ArsinT) + pi, (6, — Ay cosT)
i, (02 — AgsinT) + py, (6, — Ay cosT)

where, (-) denotes derivative with respect to 7.
The RR robot equations under model based control can be written as
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pr + 14 prr(1+2p.cosby) 1+ prrp,cosby 6,

1+ prrpr cos by 1 0,
[ —pr1pysin 62(26; + 6,)6, 0
+
12 .
0 priprt, sin b,

Od]{—Al sin T + K;(H’l - A1 COS 7') + K;(&l — A1 sin T)} + &11{—2(141 + AQ)
cos By sinT + sin (68, + 6,0, + K cos 05[2(f, — A cos )+
(0 — Ay cos )] + K cos 5[2(6; — Ay sinT) + (6 — ApsinT)]} + ayrr{—Azsint
+ K7 (0, — AycosT) + K (02 — AysinT)}

arr{—(A, + Ay)sint + K*[0, — Ay cosT + 0, — Ay cos 7] + K30
—AisinT + 6y — AgsinT|} + ayr{—sin7[A; cos Oy + 0’12] + K cos 6[6,
—A; cos 7] + K cos Bo[0) — A sinT]}

(37)
where, in addition to the non-dimensional variables defined for the PD case, we have five
additional variables defined by

~ ~ ~9
A A2 PN ~
miTi +]1 +m27'2 +Ig+m2l1

mors + Iy
Mal17
arp =
mary? + I
A A2 -
MoTy” + Iy
oy =
m27'22—|—12
K,
K, = —
w
K* _ Kp
p w?

—~

where (-) denote the estimated quantities obtained in a manner similar to the RP robot.

5.4 Numerical results

The equations of motion for the RP and RR robots under feedback control were numerical
integrated using a variable step, variable order, predictor corrector Adams algorithm(Gordon
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and Shampine 1975). In order to ensure that the numerical results were not an artifact of
the numerical integration scheme, the results were verified with Runge-Kutta 4-5 integration
routine. The results were also checked for relative and absolute error tolerances of 107% and
10~°. The numerical work was done on Sun Sparcl0 and IBM RS 6000 workstations. A
large number of values of the non-dimensional parameters were tried in our numerical study.
In this paper we present results for only one set of values for the RP and the RR robot.

For the RP robot, the amplitude of the repetitive motion are assumed to be wradians
for #; and 1.0 for X. The frequency w was assumed to be 1.0rad/sec. The non-dimensional
parameters of the RP robot were chosen as p; = 2.5, po = 0.5, p3 = 0.4 and p; = 2.0 and
the equations of motion of the RP robot under feedback control were numerically integrated
with various initial conditions. After an initial transient period, the global behavior of the
trajectory was found to be similar. Figure 8 and 9 shows phase plots for typical non-chaotic
and chaotic cases for the PD controlled RP robot where we plot the non-dimensional variable
X given by dy/l; and its derivative X DOT. It can be seen that, in the non-chaotic case the
trajectory settles to a limit cycle, whereas in the chaotic case the trajectory moves around in
a bounded region of the phase space. It may be noted that these phase plots are a projection
of the actual trajectory in R* phase space.

A typical plot of the largest Lyapunov exponent for RP robot with chaotic parameters
is shown in figure 10, and figure 11 shows the time evolution for non-chaotic parameters.
It can be seen that Lyapunov exponent is positive for the chaotic case and negative for the
non-chaotic case.

Figure 12 shows the Poincaré map for a set of chaotic parameters. This map was obtained
by sampling the results of numerical integration at intervals of forcing period i.e., 2r. The
resultant map is in R* space and only the (6y,6;) projection is shown in figure 12 where 6,
is in radians and 6, is in rad/sec.

We performed a search of the (K, K;) space for the RP robot by varying K in steps of
1.0 and K in steps of 0.1. Figures 13 and 14 shows the values of K and K for which the
largest Lyapunov exponent is positive for the PD and model based control respectively. These
chaos maps shows the values of gains for which the RP robot control equations show chaotic
behavior. The initial conditions (0 radians, 0, 7 rad/sec, 1.0) for 6;, X, 01, X respectively were
used to obtain the chaos maps.

Figures 15, 16 show bifurcation diagrams corresponding to one range of parameter (K =
0.5). As the parameter K is varied the response changes from periodic to chaotic motion.
The period doubling phenomenon can be seen in these figures. In figure 15 6 is in radians
and X in figure 16 is the non-dimensional number dy/[;.

Similar to the RP robot above, we performed similar numerical study for the RR manip-
ulator. The non-dimensional parameters for the RR robot were obtained from the inertial
parameters of the first two links of the CMU DD arm II(Khosla 1986). These are given by
pr = 3.1637, prr = 0.9385, p, = 0.52, ay = 0.9146, ayr = 0.01952, and aj;; = 0.1513. The
amplitude of the repetitive motion was chosen as 7/2 radians and 7 /4 radians for #; and 6,
respectively. The forcing frequency was assumed to be 2.0 rad/sec.
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Figures 17 show the typical Lyapunov exponents for the RR robot for the PD and the
model based control respectively. We conducted a search of the (K, K,) space for values of
gains which give positive Lyapunov exponent. Figure 18 gives the values of the controller
gains for the RR robot under PD control which give chaotic motions. Figure 19 shows the
values of the gains in the case of a model based control with a large underestimation of
e = —0.9. To obtain the chaos maps, we have used the initial conditions (0,7, 0,7/2) for
0, 91, 0y, 0y respectively.

We have obtained such chaos maps for several values of underestimations and it was
observed that the region of chaos was larger when the underestimation is larger. For small
amounts of underestimations(less than 50%), there are no values of (K, K,) which give
positive Lyapunov exponents.

Figure 20 shows the bifurcation diagram for 6, for the RR robot with model based control
for e = —0.9 and K, = 49. It clearly shows a period doubling route to chaos. The period
doubling phenomenon was observed for several other values of gains and underestimations.

6 Conclusion

In this paper, we have explored the possibility of chaotic motions in two and three-degree-of-
freedom, serial, rigid robots containing revolute(R) and prismatic(P) joints under feedback
control. We presented an analytical criteria, based on the concept of Gaussian and Rieman-
nian curvature, which can be used to predict chaos in the case of unforced motion of the
robots in the absence of compliance, friction and potential energy. For the forced motion,
we present numerical simulation results for the two-degree-of-freedom RP and RR robots.
From the analytical and numerical study we make the following major conclusions:

e The Gaussian curvature of the configuration space of the PP and the PR robot with
the mass matrix as the metric is zero. Hence, the PP and the PR robot cannot have
kinematic source of chaos. The equations of motion, without any forcing, can be
integrated in closed form for both the robots.

e The Gaussian curvature of the configuration space of the RP and the RR robot with
the mass matrix as the metric can be negative. Hence the inertial motions of a RP
and the RR robot can exhibit chaos. For the three-degree-of-freedom RRR and RRP
robots there exists values of mass, length and inertia for which the Gaussian curvatures
of the 2D subspaces are negative and hence these robots can also exhibit chaos.

e In case of the forced motion, the RP and RR robots can exhibit chaotic motions
for a simple PD controller and for a model based controller with mismatch in model
parameters. However, inspite of extensive numerical experiments, the PR manipulator
did not exhibit chaos with either the PD or the model based controller. The existence
of chaotic motions were verified by careful numerical simulations and by use of the
largest Lyapunov exponent.
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e Chaotic motions are more likely to occur for small values of derivative gains and for
large mismatch between the dynamic model and the actual robot parameters in case
of model based control. It is more easily seen for underestimated models.

e The route to chaos appears to be through period doubling.

The study apart from mathematical interest can serve as a tool in the design and analysis
of actual robot controllers. The study can also help in obtaining conditions for better tra-
jectory tracking in feedback controlled actual robots in the presence of friction and potential
energy.
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Figure 8: Phase plot for non chaotic parameters for RP robot with PD control.

30



XDOT

PD control Kp*=1.2 Kv*=0.7 Chaotic
= T

Figure 9: Phase plot for chaotic parameters for RP robot with PD control.

31



largest Lyapunov exponent —chaotic

07 I T T T T
0.6 Kp*=1.2 -
0.5 Kv*=0.7 -

044 \ :

largest lyapunov exponent

0.1 y

0
0 100 200 300 400 500 600 700 800 900 1000
normalized time

Figure 10: Lyapunov exponent for chaotic parameters for RP robot with PD control
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Figure 11: Lyapunov exponent for non chaotic parameters for RP robot with PD control
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Figure 16: Bifurcation diagram for X for RP robot with PD control
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Figure 17: Largest Lyapunov exponent for RR robot with PD and model based control
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Figure 19: Chaos map for RR robot under model based control(e = —0.9)
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