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This paper deals with the synthesis of planar and spherical adjustable four-

link mechanisms whose coupler point can approximately trace two or more

paths prescribed by a large number of points. A single adjustment in one of

the mechanism parameters is used to approximately obtain the prescribed

paths. A two stage approach is used to first determine the parameters of the

driving dyad and then the parameters of the driven dyad. The use of novel

and appropriate objective functions with minimum number of variables

and a sequential quadratic programming (SQP) algorithm to search for the

optimal mechanism parameters leads to quick and accurate synthesis of the

four-link mechanisms.

INTRODUCTION

The problem of path generation by a point on the floating or coupler link of a four-

link mechanism is very well studied (see, for example, Erdman and Sandor1). In

a point-to-point path generation problem, for planar and spherical four-link mech-

anisms, the mechanism parameters can be obtained such that the chosen floating

link point is made to pass through at most nine prescribed (also called precision)

points.2,3 For continuous path generation or when more than nine arbitrary points

are prescribed, the point on the floating link point can be made to only approxi-

mately pass through the prescribed points, and in such a case the mechanism pa-

rameters can be obtained through an optimization problem where an appropriately

defined objective function is minimised.4,5 Adjustable mechanisms are capable of

generating multiple paths with change in one or more of the mechanisms param-

eter and their advantages were recognized early (see, for example, textbook by

Tao6). In planar four-link mechanisms, as adjustments are included, the number of

design parameters become more than 10. Synthesis of adjustable planar four-link

1



June 14, 2013 9:29 RPS/INSTRUCTION FILE isrm2013-chanekar-2

2

mechanism with prescribed points has been done by several researchers.7–9 For con-

tinuous paths, genetic algorithm based optimisation has been used by Zhou and

co-workers10–12 and a two-stage synthesis using sequential quadratic programming

(SQP) is reported in Peng and Sodhi.13

In a spherical mechanism all the links move on the surface of concentric spheres

and in comparison to prescribed points in a plane for planar mechanism, points on

the surface of a sphere are prescribeda. Compared to planar mechanisms, literature

on synthesis of spherical mechanisms for finite number of precision points is limited

(see references14,15). For continuous paths, method of constrained least squares

optimization16 for synthesis has been reported. Synthesis of adjustable spherical

four-link mechanisms have also been discussed by some authors.9,17–19

The key step in any optimization based method is the formulation of an ap-

propriate objective function. In this paper, least-squares circle-fitting (for planar)

and a least-squares plane fitting (for spherical) objective function is suggested for

optimal synthesis of adjustable four-link mechanisms. A single adjustment in the

driven link is used to obtain different desired coupler paths and the parameters of

the adjustable mechanism is obtained by using the SQP algorithm. The proposed

formulation, as compared with existing approaches, is superior in terms of lesser

number of optimization variables used and reduction of the search space. The pro-

posed approach is illustrated with the synthesis of one planar and one spherical

adjustable mechanism.

The paper is organized as follows: In section 2, we briefly describe the geometry

of a typical planar and spherical four-link mechanism and present the well-known

kinematic equations. In section 3, we present the formulations of the optimization

scheme and in section 4, we present two examples to illustrate our approach. In

section 5, we present the conclusions.

PLANAR AND SPHERICAL FOUR-LINK MECHANISMS

The planar and spherical four-link mechanisms ABCDP with its parameters is

shown in figure 1. The planar four-link mechanism is very well known and its de-

scription can be found in any textbook on mechanisms. In a spherical mechanism,

the axes of the four revolute joints intersect at the centre of the sphere, the point

O, and the links are the arcs of great circles of the sphere. The spherical link length

is the arc-length measured on the great circle between two ends of the link and for

a sphere of unit radius, the link length is same as the central angle subtended at

O by the arc on the great circle. All angles are dihedral angles, i.e., the angles are

measured between two great circle planes and the line of intersection of the two

circular planes is the axis about which the angle is measured. The coupler angle β

is measured relative to BC. The parameters l2, l5, α2 and α5 are referred to as the

driving side parameters, and the parameters β, l3, l4, α3, α4 and D are referred

aThe points on a sphere can also be thought of as orientations of the floating or coupler link.



June 14, 2013 9:29 RPS/INSTRUCTION FILE isrm2013-chanekar-2

3

A

D
B

C
P

O

x

y

z

5

1

2

3
4

Fig. 1: Planar and speherical four-link mechanism.

to as the driven side parameters throughout the paper. The location of the driving

crank pivot A remains unchanged in our approach. Figure 1 also shows the sketch

of a typical coupler curve traced by a point P . We assume that a large number, 50

to 100, points are prescribed for each desired coupler path and we use a superscript

on the mechanism parameters to indicate the particular path.

For any dyad (or a planar 2R manipulator) shown in figure 2, the workspace of

the end-point lies in between two concentric circles.20 Drawing parallels from the

planar case, the workspace of the end-point of a spherical dyad lies between two

coaxial spherical small circles, i.e., spatial circles about the same axis and different

from the great circle on the surface of the sphere. The point A for planar (spherical)b

is the optimized crank pivot location and A lies inside the desired coupler path if

l2 > l5 (α2 > α5) and outside the path if l2 < l5 (α2 < α5).
12,13 This fact helps in

choosing fixed pivot A. For N given points, Pi, i = 1, 2, ..., N , on each coupler curve,

we define

lmax = max {lP1 , lP2 , . . . , lPN } and lmin = min {lP1 , lP2 , . . . , lPN }
αmax = max {αP1 , αP2 , . . . , αPN } and αmin = min {αP1 , αP2 , . . . , αPN }

where, lPi =
−→
OP = ||rPi − rA||, αPi = cos−1 (rPi · rA) , for i = 1, 2, . . . , N

(1)

Since the coupler point P is on the driving dyad, the curve traced by P must lie

in the area between two concentric circles with radii l2 + l5 (α2 + α5) and |l5 − l2|
(|α5 − α2|) centered at the crank pivot A. The lengths l2 and l5 are computed such

that the above two concentric circles are tangential to the coupler curve. Hence, we

bThe quantities in the bracket represent the corresponding quantity in the spherical domain.
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must have,

lmax = l2 + l5 and lmin = |l5 − l2|
αmax = α2 + α5 and αmin = |α5 − α2|

(2)
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Fig. 2: Crank angle and a dyad in a plane and on the sphere.

In the planar case, for each Pi on the coupler path, the angle θi with respect to

the X− axis (see figure 1) is given as

θi = αi ± γi (3)

where αi is the orientation of
−−→
APi inXY -plane relative to the positive globalX-axis.

The quantity γi is given by

γi = cos−1

(
l22 + l2Pi

− l25
2l2lPi

)
(4)

where lPi
= ||−−→APi||, 0 ≤ θi, αi ≤ 2π and 0 ≤ γi ≤ π.

For the spherical case, the crank angle θi is also given by equation (3). It is

measured with respect to the great circular plane containing αmax and Pmax is the

point on the spherical surface farthest from pivot A. We also have

nmax =
rA × rPmax

||rA × rPmax ||
and nPi =

rA × rPi

||rA × rPi ||

αi = cos−1 (nmax · nPi) and γi = cos−1

(
cosα5 − cosα2 cosαPi

sinα2 sinαPi

)
0 ≤ αi, θi ≤ 2π and 0 ≤ γi ≤ π

It may be noted that in one crank rotation, the crank crosses each of lmax (αmax)

and lmin (αmin) lines once, thus dividing the rotation into two parts. The sign
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of γi in one lmax (αmax) to lmin (αmin) part is opposite to that in the remaining

lmin (αmin) to lmax (αmax) part. Thus for each phase we have two sets of θi. If

direction of rotation is not specified, appropriate θi must be chosen.

For each path point Pi, using the crank angle θi, Bi and Ci are as follows,

xBi = xA + l2 cos(θi) and yBi = yA + l2 sin(θi)

xCi
= xBi

+
l3
l5

[(xPi
− xBi

) cos(β) + (yPi
− yBi

) sin(β)]

yCi = yBi +
l3
l5

[(yPi − yBi) cos(β)− (xPi − xBi) sin(β)]

(5)

For the spherical case,

rBmax =
[
Tnmax
α2

]
rA, rBi =

[
T rA

θi

]
rBmax and nCi =

rBi × rPi

||rBi × rPi ||

rCi =
[
T

nBi

−β

] [
T

nCi
α3

]
rBi

(6)

where, rp =
−→
OP is the position vector of point P , [Tn

δ ] is the rotation matrix,20 n

is an unit vector corresponding to the axis of rotation and δ is the angle of rotation

about n in counter-clockwise direction. In the next section, we state the various

objective functions used for optimization.

FORMULATION OF OBJECTIVE FUNCTIONS

The main idea used in the optimization is that the locus traced by the point C,

as the point P moves along the coupler path, is a circular arc for both planar and

spherical cases. The objective function is the residual error obtained by circle fitting

all the points Ci corresponding to coupler path points Pi and this is minimized in

the planar case. The algorithm used for least-squares circle fitting is from Gander et

al.21 As the intersection of a plane and sphere results in a circle, the points Ci are

plane fitted in the spherical case. The least squares fitting algorithm used in plane

fitting is similar to circle fitting algorithm given in.21 The algebraic fitting or linear

problem in Gander et al.21 is replaced by f = ax + by + cz + d where (a, b, c, d)

which define the plane. The geometric fitting or non-linear least squares problem

is replaced by fs given below as the objective functions. The design procedure is

divided into two stages, Stage I deals with design of the driving dyad and Stage

II deals with the computations of the remaining design parameters. It may noted

that the two stage process does not restrict the solution space – the Stage I is a

necessary condition for the driving dyad. The two stage approach has also been

used by Peng and Sodhi.13

Stage I: Synthesis of driving dyad

To first design the driving dyad ABP , the optimal driving crank pivot location

A needs to be determined. As the workspace of the driving dyad for both planar

and spherical remains fixed for all the given paths, lmax and lmin, remain fixed
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throughout. The optimization problem can be formulated as follows

Minimize : S (xA, yA) , Ss (κ, τ) =

m−1∑
i=1

m∑
j=i+1

[(
limax − ljmax

)2
+
(
limin − ljmin

)2]
where lik = ||rA − riPk

||, limax = max
{
li1, l

i
2, . . . , l

i
N

}
, limin = min

{
li1, l

i
2, . . . , l

i
N

}
(7)

Subject to the following constraints:

Constraint 1 : Search space restriction

xA ∈ [xmin, xmax] and yA ∈ [ymin, ymax] (κ ∈ [0, π] and τ ∈ [0, 2π])

(8)

Constraint 2 : The crank angle should always increase or decrease as P advances

along the coupler curve. The conditions for the counter-clockwise and clockwise

rotation of the crank respectively are,

θi(q+1) − θiq > 0 or θi(q+1) − θiq < 0 for q = 1, 2, . . . ,N− 1 (9)

where, N is the total number of points P i
q on the given ith coupler path and each θq

is calculated using theory given above. The quantities (κ, τ) are the spherical polar

coordinates of A for the spherical case. It maybe noted that one of the conditions

in equation (9) also needs to be satisfied.

The optimization is carried out using the SQP algorithm which converges to

the local minimum nearest to the starting point. Hence, to get the best solutions

the search space is divided into several sub-intervals and the mid-point of the each

sub-interval is taken as the starting point for the optimization in the corresponding

sub-interval. The method gives a single solution for each sub-interval and hence we

get as many solutions as the number of sub-intervals. To sort out the best driving

dyads we select solutions which have objective function value, S, less than a user

chosen maximum value of error Smax. The best solutions for the driving dyad are

used to synthesize the remaining part of the four-bar mechanism. It should be noted

that Stage I optimization only gives the possible locations of fixed pivot A. The

exact location of A and the remaining mechanism parameters are determined after

performing Stage II optimization.

Stage II: Synthesis of driven dyad

Once the optimal location of fixed pivot is obtained, l2(α2) and l5(α5) are found

out as per theory given above. For the optimization functions formulated below, f

and fs represents the planar and spherical cases respectively, (a, b, r) represent the

optimal circle containing the rocker path in the planar case and (a, b, c, d) represent

the optimal plane containing the rocker path in the spherical case.

Type I: Adjustable driven side link pivot

In this type for both planar and spherical the position of fixed pivot D is variable,

but the length of link CD remains same. Sincem paths are to be traced, the movable

pivot C will trace m different circles with m different centres Di but with the same

radius. In the spherical case, all circles will be in planes equidistant from the centre
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O. The optimization problem can be stated as below

Minimize : f (l3, β) =

m∑
i=1

N∑
j=1

(
√
(ai − xiCj

)2 + (bi − yiCj
)2 − r)2

fs (α3, β) =
m∑
i=1

N∑
j=1

(
aixCi

j
+ biyCi

j
+ cizCi

j√
a2i + b2i + c2i

+ d

)2 (10)

Type II: Adjustable driven side link length

In this the length of link CD is variable, but fixed pivot D remains unchanged for

all the m paths. Hence, the movable pivot C will trace m circular arcs with different

radii but with the same center D. In the spherical case, all circles will be in parallel

planes. The optimization problem can be stated as below

Minimize : f (l3, β) =
m∑
i=1

N∑
j=1

(
√

(a− xiCj
)2 + (b− yiCj

)2 − ri)
2

fs (α3, β) =
m∑
i=1

N∑
j=1

(
axCi

j
+ byCi

j
+ czCi

j√
a2 + b2 + c2

+ di

)2 (11)

Subject to the following constraints:

Constraint 1 : l2 < l3 ≤ l3max (α2 < α3 ≤ α3max) (12)

Constraint 2 : −π ≤ β < π (13)

Constraint 3 : l2 < li4 and l2 < li1
(
α2 < αi

1 and α2 < αi
4

)
(14)

Constraint 4 : For link CD to be a rocker, the angular sweep of link CD should be

less than π radians or

ψmax − ψmin < π (15)

Constraint 5 : Grashof’s criterion for crank-rocker type mechanism should be satis-

fied for each ith path.

The cost function f(fs) is the least-square residue error obtained during circle

(plane) fitting. To get the minimum f(fs) in the sub-interval, we need to get circle

(plane) parameters at the optimum point in the sub-interval. During each iteration

in the sub-interval, the optimization problem is converted into a non-linear least-

squares problem with circle (plane) parameters as unknowns. The non-linear least-

squares problem is solved using Gauss-Newton method which needs a starting value

for the unknowns. The procedure for obtaining the unknowns is as follows:

Step 1: The set of Ci’s for each coupler paths are separately circle (plane) fitted to

obtain the circle (plane) parameters for each path.

Step 2: Non-linear least-squares problem given in (10) is formed with circle (plane)

parameters as unknown variables. The starting value of the unknowns are the out-

put of the Step 1. The starting value for the common parameter is the average of

the values obtained for it in Step 1. Step 2 gives the values for the unknowns for
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the corresponding optimization iteration in the sub-interval. Using these values and

equations (10) and (11), we can calculate cost function f(fs) for each optimization

iteration. The remaining mechanism parameters can be calculated using trigonome-

try and vector algebra after Stage 2. The procedure given above can also be applied

forl2 > l5 (α2 > α5).

NUMERICAL RESULTS

In this section, we present two examples, one each from planar and spherical, to

illustrate multi-path generation by adjustable four-link mechanisms. The optimiza-

tion was done using fmincon function of MATLAB.22

Example 1:

This example has been originally studied in Peng and Sodhi.13 We show that our

approach using less number of search variables yields similar results. The given

20 data points are refined to 50 points using spline interpolation. We have xA ∈
[−20, 20] and yA ∈ [−20, 20] and both intervals are divided into 20 sub-intervals

each. The intervals l3 ∈ [3, 20] and β ∈ [−π, π] are divided into 4 sub-intervals each.

The value of Ssmax is chosen to be 0.003 which results in 9 possible locations of

pivot A. The optimization results using the adjustable pivot method are as follows:

A (0.000,−18.551), l11 = 9.830, l21 = 15.254, δ1 = 2.577rad, δ2 = 1.807rad, l2 =

3.0562, l3 = 9.874, l4 = 9.900, β = −0.022rad, l5 = 19.400, S = 0.000733, f = 0.182.

We have compared the total path error (ETotal= error in path 1 + error in path 2)

for the example in.13 The numbers are, Our approach, ETotal = 3.800, Reference13

approach, ETotal = 3.500. The numbers are similar.

The best fitting circles for C and the synthesised paths are shown in figure 3.
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Fig. 3: Numerical results for planar example.

Example 2:

For this example, we transform the points in the Example 1 to the surface of a sphere

centered at (−0.92, 3.46, 0) and with radius 11. The points are then normalized to

be on the unit sphere. The search space, κ ∈ [0, π] is divided into 5 intervals and
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τ ∈ [0, 2π] is divided into 10 intervals. The quantity α3 ∈ [0.3rad, 2.5rad] is divided

into 5 intervals and β ∈ [−π, π] is divided in 3 intervals. The quantity Smax is

chosen to be 10−4 which results in 23 dyads to be chosen. The optimization results

are as follows:

κ = 1.349rad, τ = 4.755rad, Coordinates of A = (0.0417,−0.9746, 0.2201), α2 =

0.3044rad, α5 = 1.1256rad, α1
1 = 0.5146rad, α2

1 = 0.9520rad, α3 = 0.6283rad,

α4 = 0.6290rad, β = 0.0331rad, Coordinates of D1 = (−0.3503,−0.7971, 0.4919)

and D2 = (−0.6662,−0.4983, 0.5549), Ss = 10−7, fs = 0.0083.

The best fitting circles for C and the synthesized paths are shown in figure 4.

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1

 

yx
 

z

Path 1
Path 2
Best fit circles

−0.5
0

0.5

−0.5

0

0.5

−1

−0.5

0

0.5

1

 

y

x

 

z

Path1
Path2
Generated Path

Fig. 4: Numerical results for spherical example.

CONCLUSIONS

This paper dealt with optimization based schemes for synthesis of planar and spher-

ical four-link mechanisms. A sequential quadratic programming approach is used

to synthesise planar and spherical adjustable four-link mechanisms for multi-path

generation. The method presented in this paper uses less number of variables as

compared to existing approaches. In this paper only driven side adjustment is pre-

sented. However, the approach of this paper can be easily extended for adjustments

in the driving, coupler and remaining driven side parameter, and these have not

been presented here due to space restrictions.

This work is continuing and we are in the process of building a prototype for

Examples 1 and 2 to validate the theory presented in this work.
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