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Abstract

This paper analyses free vibration characteristics of a centrally kinked cantilever beam
of unit mass carrying masses at the kink (my) and at the tip (m;). Frequency factors are
presented for the first two modes for different combinations of my,m; and the kink angle §. A
relationship of the form f(myg, m¢, ) = my + my(4 + % cosd + %0052 0) = constant appears
to give the same fundamental frequency for a given ¢ and different combinations of [my, my].
Mode shapes as well as bending moments at the support and at the kink are also discussed.
The utility of a discrete beam model in understanding the free vibration characteristics is also
highlighted.

Notation

my, = nondimensional kink mass
m; = nondimensional tip mass
e, = effective kink mass

mes = effective tip mass

M}, = bending moment at kink
M, = bending moment at support
0 = kink angle

w = bending displacement

wy = tip displacement

wyg = kink displacement

ET = flexural rigidity

E = Young’s modulus

I = moment of inertia

p = mass density of beam

A = area of beam cross section

L = beam length

K = [w?pA/EI]7

y; = (KL); = eigenvalue of j th mode of vibration
C; = mode shape constants

w; = frequency



p;j = frequency factor

M0t = static moment at support per unit tip deflection
Mdyn = dynamic moment at support per unit tip deflection
D, = Mdyn /M a1 at support

Dy = My /M,

F = flexibility matrix

K = stiffness matrix

M = mass matrix

Mek
mes)

o = mass ratio (

1 Introduction

Free vibration of cantilevers carrying discrete masses along their length constitutes a fundamental
problem in acoustics, seismology, flexible manipulators and a variety of other engineering appli-
cations. This classical problem has been approached at different levels of approximation ranging
from the simplest discrete model of a massless beam with flexural rigidity to Timoshenko mod-
els which take into account shear deformation as well as rotary inertia !. Extensive work has
been done using the massless beam formulation for analyzing the seismic response of multistoried
buildings %2. Similarly, a large amount of results are also available for straight beams with only a

45 or a system of masses . Continuous beam formulation for a kinked cantilever carry-

tip mass
ing a tip mass and central mass using Euler - Bernoulli theory appears not to have been studied
analytically. One of the reasons for this lacuna might be the explosive growth of numerical meth-
ods for vibration and modal analysis in the past few decades. Notwithstanding this situation, it
is important to extend analytical methods to gain better insight for engineering design.

A kinked cantilever beam, as shown in Figure 1, is a viable model of a two link flexible
manipulator with mj representing a motor and m; the payload. In flexible manipulators with
rotary joints, the joints permit free rotation of link during the motion of the payload, however,
the rotations at the joints are stopped by control (actuator) torques once the payload reaches a
desired destination. This maneuver typically induces vibrations in the flexible manipulator and
suppression of unwanted vibration is an important problem in flexible manipulators 7. The two
link manipulator can be modeled as a single cantilever with a kink of some angle § with the
torques M and M representing the bending moments at the kink and support, respectively.
Another example of a kinked cantilever situation arises in plastic bending under impact at the
kink 8. The resulting response after the kink formation is the free vibration of a kinked elastic
beam. In addition, attaching masses to reduce noise and vibration levels have been widely used for
beams, plates and shells ?. Although the emphasis in vibration engineering is on reducing acoustic
radiation, it is important to understand the dynamic stress levels during free or forced vibration.

Hence, understanding free vibration characteristics of a kinked cantilever carrying masses can help
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Figure 1: A Kinked Cantilever



in evolving better active or passive control schemes in the case of flexible manipulators, better
design procedures in impact engineering or reducing acoustic radiation.

This paper deals with the effect of varying tip mass and the central mass on free vibration
characteristics of a kinked cantilever beam. Non-dimensional design factors for the natural fre-
quencies, mode shapes and bending moments are provided in the form of tables, charts and
graphs for ready reference to the designer. Analytical results derived in this paper are veri-
fied using a commercial FEM software package. This paper is arranged as follows: Section 2
presents the mathematical formulation of expressions for the frequencies, mode shapes and the
bending moments of a kinked beam. Section 3 describes, in brief, the FE model used to vali-
date the analytical results. Section 4 presents and discusses the numerical results obtained from
analytical and FE models. The results of the analytical model appear to be in general agree-
ment with the FEM results but they deviate for large kink angles. A relationship in the form
flmg, my,6) = my +my(4 + % cosd + %cos2 d) = constant appears to give the same fundamen-
tal frequency for a given § and different combinations of my and m;. Section 5 presents the

conclusions of this paper.

2 Mathematical Formulation

The free vibration of a cantilever beam is governed by the well-known partial differential equation

*w 0w
ErY 4 02 Y —
ozt TP

0. (1)
where w is the transverse deflection, ET is flexural rigidity, p is mass density and A is cross
sectional area.

The above partial differential equation can be solved by the well known technique of separation
of variables. For a kinked cantilever of total length L, we consider a solution of the form w;(z,t) =
X;(z)T(t) where i = 1,2, denotes the two halves of the beam. The mode shapes X; and X, for

the two halves of the beam are of the form

X1 = Cicos(Kz) + Cysin(Kzx) + Cs cosh(Kz) + Cy sinh(K )
Xy = Cscos(Kz) + Cgsin(Kzx) + Cr7 cosh(Kz) + Cg sinh(K ) (2)

4 w2pA
where K* = ——.
The boundary conditions to determine the constants C; are as follows.
At the fixed support,

wy =w) =0 (3)

The bending displacement continuity at the kink stipulates

w1 CoSd = wa (4)



The shear force balance at the kink, taking an effective mass of my + (m; + 1/2) sin d, gives
EI(w]" — wy cosd) = [mg + (my + 1/2) sin §]uij; (5)

At the kink, the continuity of slope and bending moment requires

w) = wy (6)
uf =
Finally, at the free end
wy =0
ETw})' = myais. (7

In the above equations ()’ and () denote derivatives with respect to z and ¢ respectively. Thus,
there are two boundary conditions at both the free end and the fixed end, and four conditions
at the kink giving a total of 8 equations for 8 unknown coefficients C;. Substitution of assumed

solutions (2) in the boundary conditions lead to the eigen equation
F(KL)[C.....C8]" = 0. (8)

where F(K L) is an 8x8 matrix whose elements are given in the Appendix. For non-trivial solu-
tions, det(F) = 0 gives the equation for the natural frequencies as a function of my, m; and 9.
The roots of this equation give positive values of KL which are used to obtain the frequencies and
the coefficients C;. The eigenvalue y; = KL is related to the frequency w; by

EI

Yjy2
wj = (F) oA (9)

L

The equations (8) and (9) were solved numerically for various sets of values of my, m; and

0 and these results are presented and discussed in detail in section 4. A frequency factor, p;, is

helpful in presenting the results and is defined as the ratio of the frequency of a kinked beam for a

given (my,my,d) to the frequency of a straight beam with no attached masses. For mode 1 (j=1)
and mode 2 (j=2), p; is given by

_ wj(mg, my, 0)

Pi= 7 0;(0,0,0) (10)

2.1 Bending Moments

The bending moments of the kinked cantilever beam can be obtained from the Euler-Bernoulli
beam theory. At the mid-point of the kinked beam, z = L/2, the moment at the kink in terms of
y = KL is given by
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M, = 7[—(3’1 cos - Cy sin o + Cs coshi +Cy smh§] (11)
At the support, z = 0, the moment is given by M, = —2FEIC;y?/L?. The ratio of the moments
at the kink and support, denoted by Dy, is given by
M, 1.y Cy .y Cs y Ci . .y
=— == S+ —=sin> — —coshZ — —sinh = 12
Dy, 7 2[(:os 5 T 2 sin o 2 cosh o o sin 2] (12)

The dynamic bending moment normalized with respect to a unit tip deflection is

. EIX"(0)

In order to compare the dynamic bending moment with the static situation, a static load P

(13)

at the tip is considered (see figure 1). In the static case the bending moment at the support is

given as

PL
Mo = T(l + cos 6) (14)
The corresponding tip deflection is given by
pPL3

24ET
Hence, the bending moment per unit tip deflection is given by

[4 + 3cosd + cos? 4] (15)

o — 3EI  4(1+ cosd)
stat = T2 4 1 3¢cosd + cos? 6

For the straight beam with § = 0, M stat = SEI/ L?. Tt is useful to define the ratio of Mdyn to
Mqt for a straight beam as Dj, given by

(16)

D = =~ (17)

It may be noted that Mt is zero for 6 = m (see equation 16).

The quantity Dy, is the ratio of bending moment at the kink to that at the support under dy-
namic condition. Thus the dynamic bending moment factors Dy and Dy, provide the amplification
in bending moments due to free vibrations. In section 4, numerical values of bending moments

and the ratios discussed above are presented for various values of my, m; and 4.

2.2 Discrete Analysis of the Kinked Beam

A discrete model of a continuous system often helps in understanding the dynamic characteristics
with regard to frequencies, displacements and moments. In this section, a discrete model, with

the beam assumed to be massless, is derived. The discrete model gives inaccurate results for

(=]



small values of my and m;, however, it is shown that the discrete element model predicts many
important features of the continuous kinked beam system.

Assuming that F, I and L are unity, the flexibility matrix of a discrete kinked beam is given
by

F—i 2 3+ 2cosd )
T 48| 34+ 2cosd 8+ 6cosd + 2cos?d |’

The stiffness and mass matrice are given as

K, = F! (18)
_ Me, 0
M= l 0 met]

where meg = My + My sin §; me; = my. Expanding |K; — Mw?| = 0 gives the frequency equation

=0

96)( 1 +4+3cosé+c0325)w2+g 1

4
w5 7
Met Mek MekMMet

From the above equation, we conclude that the product of w?w? is invariant with respect to the

product megme;. Defining a mass ratio o = %Z’Z the individual values of w?, w3 are
9 48 2 2 §)2
Wip = [(+4+ 3cosd + cos 5)j:\/(a+4+3cosé+cos 0)?2 —Ta | (19)
’ Mek

The fundamental frequency is given by,

48 Ta
2 2
= 4 ) NI —4/1— 2
“1 TMek, (or 44 43 cos 9 + cos™ )] \/ (a4 4+ 3cosd + cos? )2 ) (20)
Assuming (a+4+3cgs"5+cos2 5z << 1, we get
24
wi = (21)

Mek + Met(4 + 3 cos d + cos? d)

The above result implies that the fundamental frequency will not change if meg, +me(4+3 cos d +
cos? ) is held constant. Recalling that me, = my + mysind and m.; = my, the condition yields
my + my(4 + 3cosd + siné + cos? §) = C, a constant, for constant fundamental frequency. As
an example, when § = 0, the iso-frequency locus of wy in the my — m; plane is a straight line
my + 8my = C. Figure 2 shows the w; locus for C = 20. In the same figure ws and wjwo
loci are also shown with all the loci passing through (2,4) and (16,0.5) in the mj — m; plane.
These observations are useful in discussing the frequency results for the continuous kinked beam

presented in Section 4.
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Figure 2: Variations of wy,ws and wjwy with my and my

The ratio of tip displacement to kink displacement in the fundamental mode is only a function

of «
Ot 256 + 25
6 80+ 10a’
The bending moment at the support per unit tip deflection in the fundamental mode also depends
only on a.
M a+8 5 2 Ta
5—8 = 24(——)( = T )=/ m)) (22)
t 16 — [(a+8)(1 — (l—m))]

3 Finite Element Analysis

In order to assess the validity of the results obtained using the Euler-Bernoulli beam model, a FE
analysis was undertaken. The beam is modeled using four 2-D beam elements as shown in figure
3 which also shows a typical beam element. Each element has two nodes and each node has 3
degrees of freedom so that it can translate in X and Y directions and rotate in XY plane. For the
node at the fixed end all the degrees of freedom are arrested. A mass element is attached at the
tip and at the kink. A commercial FEM package NISA is used to solve the eigenvalue problem

using a conventional, subspace iteration method for fixed values of F, I, A, L and for different



combinations of my, m; and §. Results for the frequencies, and mode shapes, and comparison of

the FEM results with the analytical results are discussed in section 4.
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Figure 3: (a) FEM model of kinked beam (b) A typical element of the model

4 Results and Discussion

In this section, results related to the natural frequencies, mode shapes and bending moments in a
kinked cantilever with masses attached at the kink and free end are presented and discussed. Only
the effect of my, m; and § on the free vibration characteristics are considered although FE, I, L

also affect the free vibration characteristics.



Frequency Analysis

To obtain frequency factors, equation (8) was solved numerically using the software package
Matlab ' and KL was obtained for various values of my, m; and §. Once KL is known, the
frequency w; and the frequency factor p; is obtained from equations (9) and (10) respectively.
The FEM results, as mentioned before, were obtained from NISA.

Frequency factors and the FEM results are tabulated in Table 1 for the first two modes for
different combinations of my, m; and §. As the values of attached masses increase, the frequency
factors drop as seen in Table 1. It can be also seen from figures 4 and 5, that as the kink angle
increase the frequency factors increase in mode 1 and decrease in mode 2 for a given combination
of my and my. It may be noted that the fundamental frequency increases roughly 3 times as the
kink angle increases from 0 to w. For a 90° kink, the increase in fundamental frequency is about
30% from its value for a straight beam. Thus, the kink effect becomes more pronounced after 90°.

It may be noted that the FEM and analytical results in Table 1 are in good agreement except
at large kink angles for some combinations of my and my. A possible reason for this discrepancy
could be that in the FEM model the nodes were allowed to translate in axial direction and hence
axial vibration is not arrested. Regarding the mode 2 frequency factors displayed in figure 5, there
is an unexplained deviation in the trend for m; = 0, m; = 1 around § = 150°. This combination
of my, m; and ¢ also results in large unexplained values for mode shape coefficients in Table 2.

For a given kink angle it is possible to find an infinite number of my and m; combinations
that give the same fundamental frequency. These combinations appear to fit the equation my +
me(4 + % cosd + %COS2 d) = constant. This result was obtained after trial and error and was
motivated by the discrete beam analysis presented in section 2 which shows that my + [4 +
3cos d + cos? § + sind]m; = constant. It may be noted that the expression inside the bracket,
4+ 13—0 cosd + %cos2 d), is equal to 8 when § = 0 as required by the discrete model. It should,
however, be noted that the above fit is not accurate for low values of my and m;, or for high kink
angles. For a hairpin like kinked beam, e.g. § = 175°, the loci of iso-frequency points are curved

as shown in figure 6. For smaller kink angles the loci are nearly straight as shown in figure 7.

Mode Shapes

The solution of equation (8) also yields C;, j = 1,...,8 which determine the mode shapes for the
kinked cantilever. The mode shapes for my = m; = 0 for different kink angles are presented in
figures 8 and 9. The mode shapes for my = my = 1 for different kink angles are shown in figures
10 and 11.

Mode shape coefficients for various sets of my and m; for the first two modes are given in
Tables 2 and 3. It is possible to use this information to construct the mode shapes for all the
combinations of my, m; and § by means of interpolation. Table 2 applies for the first mode of
vibration in which both segments of the kinked beam bend in the same direction. Table 3 applies

for the second mode of vibration where the two segments bend in opposite directions. This is

10



Table 1: FREQUENCY FACTORS FOR KINKED BEAM

MODE 1 MODE 1 MODE 2 MODE 2
my | my 0 ANALYTICAL FEM ANALYTICAL FEM
0 0 0° 1.0000 1.0000 1.0000 1.0000
0 1 - 0.4430 0.4449 0.7375 0.7539
1 1 - 0.4256 0.4276 0.4297 0.4437
8 1 - 0.3380 0.3397 0.2235 0.2317
80 | 10 - 0.1128 0.1134 0.0727 0.0755
0 0 | 30° 1 1.0299 0.8149 0.8674
0 1 - 0.4432 0.4577 0.4592 0.511
1 1 - 0.4318 0.4348 0.3485 0.3790
8 1 - 0.3409 0.3433 0.2142 0.2206
80 | 10 - 0.1134 0.1144 0.0708 0.0728
0 0 | 60° 1.1136 1.1271 0.6897 0.6977
0 1 - 0.5000 0.5012 0.3557 0.3658
1 1 - 0.4773 0.4772 0.2922 0.2998
8 1 - 0.3636 0.3627 0.1978 0.2018
80 | 10 - 0.1136 0.1144 0.0653 0.0660
0 0 | 90° 1.3295 1.3159 0.5789 0.5808
0 1 - 0.5909 0.5859 0.2922 0.2942
1 1 - 0.5455 0.5504 0.2450 0.2489
8 1 - 0.3864 0.3891 0.1815 0.1854
80 | 10 - 0.1250 0.1259 0.0599 0.0603
0 0 | 150° 2.0114 2.2520 0.4537 0.4733
0 1 - 0.8636 0.8788 0.2577 0.3187
1 1 - 0.7955 0.8010 0.1960 0.2169
8 1 - 0.4545 0.4577 0.1615 0.1659
80 | 10 - 0.1477 0.1488 0.0544 0.0547
0 0 | 175° 2.5909 2.6777 0.4483 0.4620
0 1 - 0.9205 0.9303 0.3721 0.4469
1 1 - 0.8750 0.8811 0.2105 0.2244
8 1 - 0.4773 0.4806 0.1597 0.1659
80 | 10 - 0.1477 0.1488 0.0544 0.0547

11
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indicated by a negative sign for the amplitude ratios presented in Table 4.

The ratio of bending displacements at the tip (w¢) and at the kink (wy) presented in Table
4 decreases with increasing kink angle, and for kink angles larger than 90°, deviations from this
trend are noted. There is a good agreement between analytical results and results obtained from
FEM, and it can be observed that for large values of mj or m;, the kinked cantilever beam can
be reasonably approximated by a discrete model as described in section 2.

The ratio of wg to w; is important in controlling the vibrations of flexible robots. As an
example, consider a 2-link flexible manipulator that delivers a payload to its destination at a
velocity of v; with a kink angle of 60°. Assuming m; = 8 and m; = 1, the frequencies are
w1 = 1.278rad/sec and wy = 4.35rad/sec for a beam of unit length. Let A;; and Ay be the
amplitudes of resulting free vibrations at the tip in mode 1 and mode 2, respectively. Assuming
the velocity at the kink be vy, it is possible to use Table 4 to adjust the velocities v; and v such
that the amplitude of free vibration at the tip is minimum. Theoretically it is possible to achieve
a zero amplitude of free vibration at the tip. Of course, in this example only the first two modes
of vibrations are assumed to be excited. In the general problem the above assumption may not

hold, and higher order modes may also be required to predict correct response of the kinked beam.
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Table 2: MODE SHAPE COEFFICIENTS FOR MODE 1
0 | mg | me| Cy Cy Cs Cy Cs Cs Cy Cs

0 0 1 ]-0.7341 | -1 | 0.7341 1 -0.7341 -1 0.7341

0 1 1 |-0.8650 | -1 | 0.8650 | 0.9999 | -0.8649 | -0.9999 | 0.8648

0° 1 1 1 ]-0.9678 | -1 | 0.9678 0.8945 | -0.8173 | -0.8805 | 0.7485
8 1 1 |-1.4340 | -1 | 1.4340 | 0.5032 | -0.6146 | -0.4515 | 0.3298

80 | 10 | 1 | -2.5144 | -1 | 2.5144 | 0.4307 | -0.7665 | -0.4116 | 0.5842

0 0 1 |-0.7617 | -1 | 0.7617 | 0.9609 | -0.6772 | -0.8445 | 0.5929

0 1 1 ]-0.8791 | -1 | 0.8791 0.9913 | -0.8305 | -0.9442 | 0.8111

300 1 1 1 [-0.9830 | -1 | 0.9830 | 0.8842 | -0.7841 | -0.8256 | 0.6956
8 1 1 | -1.4479 | -1 | 1.4479 0.4947 | -0.5896 | -0.4108 | 0.2909

80 | 10 | 1 | -2.5329 | -1 | 2.5329 0.4181 | -0.7373 | -0.3884 | 0.5487

0 0 1 |-0.7195 | -1 | 0.7195 1.0578 | -0.5336 | -0.6513 | 0.4204

0 1 1 |-0.7671 | -1 | 0.7671 1.1352 | -0.7934 | -0.9624 | 0.8299

60° 1 1 1 ]-0.8981 | -1 | 0.8981 0.9867 | -0.7408 | -0.8059 | 0.6778
8 1 1 | -1.4294 | -1 | 1.4294 | 0.5081 | -0.5399 | -0.3318 | 0.2157

80 | 10 | 1 | -2.5074 | -1 | 2.5074 | 0.4084 | -0.6854 | -0.3484 | 0.4842

0 0 1 |-0.6594 | -1 | 0.6594 1.1884 | -0.2516 | -0.2295 | 0.0324

0 1 1 ]-0.5390 | -1 | 0.5390 1.4601 | -0.7247 | -1.0606 | 0.9251

90° 1 1 1 |-0.7452 | -1 | 0.7452 1.1896 | -0.6598 | -0.7915 | 0.6644
8 1 1 | -1.4116 | -1 | 1.4116 0.5163 | -0.4579 | -0.1951 | 0.0848

80 | 10 | 1 | -2.4846 | -1 | 2.4846 0.3843 | -0.5985 | -0.2776 | 0.3739

0 0 1 |-0.7208 | -1 | 0.7208 0.8453 | 0.4882 | 2.0752 | -2.1691

0 1 1 | 14715 | -1 | -1.4715 | 4.9379 | -0.5271 | -3.8153 | 3.5671

150° | 1 1 1 |-0.1647 | -1 | 0.1647 | 2.1385 | -0.3559 | -1.0582 | 0.9145
8 1 1 | -1.4459 | -1 | 1.4459 0.4539 | -0.2598 | 0.1737 | -0.2713

80 | 10 | 1 | -2.5328 | -1 | 2.5328 0.2798 | -0.3742 | -0.0771 | 0.0800

0 0 1 ]-0.7596 | -1 | 0.7596 0.4897 | 0.7074 | 3.6960 | -2.1691

0 1 1 | 26.8455 | -1 | -26.8455 | 49.8275 | -2.3398 | -48.4828 | 46.5149

175° | 1 1 1 | 10607 | -1 | -1.0607 | 4.2824 | -0.3376 | -2.9800 | 2.7592
8 1 1 ]-1.4391 | -1 | 1.4391 0.4453 | -0.2240 | 0.2485 | -0.3438

80 | 10 | 1 | -2.5250 | -1 | 2.5250 | 0.2622 | -0.3368 | -0.0402 | 0.0277
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Table 3: MODE SHAPE COEFFICIENTS FOR MODE 2

0 mg | my | Cy Cy Cs Cy Cs Cs Cr Cs

0 0 1 ]-1.0185 | -1 | 1.0185 1 -1.0185 | -0.9997 | 1.0181

0 1 1 |-1.0060 | -1 | 1.0060 | 0.9999 | -1.0061 | -0.9998 | 1.0058

0° 1 1 1 |-1.2857 | -1 | 1.2857 | -0.2806 | -1.2444 | 1.8464 | -1.8358
8 1 1 |-1.9881 | -1 | 1.9881 | -1.6194 | -0.6874 | 2.9547 | -2.9305

80 | 10 | 1 |-3.4869 | -1 | 3.4869 | -2.1743 | 0.8403 | 2.6279 | -2.9910

0 0 1 [-1.0985 | -1 | 1.0985 | 0.3995 | -1.3732 | 2.0224 | -1.9933

0 1 1 ]-1.2262 | -1 | 1.2262 | -0.1308 | -1.1886 | 1.8176 | -1.8088

300 1 1 1 |-1.4239 | -1 | 1.4239 | -0.6603 | -1.0697 | 2.2806 | -2.2694
8 1 1 [-2.0519 | -1 | 2.0519 | -1.6951 | -0.6050 | 3.0424 | -3.0173

80 | 10 | 1 |-3.5849 | -1 | 3.5849 | -2.2148 | 0.9225 | 2.6697 | -3.0573

0 0 1 | -1.1627 | -1 | 1.1627 | -0.1461 | -1.3411 | 3.8169 | -3.7784

0 1 1 |-1.3512 | -1 | 1.3512 | -0.5302 | -0.9013 | 2.4185 | -2.4120

60° 1 1 1 [-1.5309 | -1 | 1.5309 | -0.8641 | -0.7959 | 2.5424 | -2.5339
8 1 1 |-2.1543 | -1 | 2.1543 | -1.7940 | -0.4477 | 3.1800 | -3.1544

80 | 10 | 1 |-3.7572 | -1 | 3.7572 | -2.2704 | 1.0711 | 2.7337 | -3.1672

0 0 1 |-1.2378 | -1 | 1.2378 | -0.6265 | -1.1328 | 4.9242 | -4.8734

0 1 1 |-1.4221 | -1 | 1.4221 | -0.6437 | -0.5666 | 2.6044 | -2.6046

90° 1 1 1 |-1.6177 | -1 | 1.6177 | -0.9351 | -0.5013 | 2.6453 | -2.6425
8 1 1 ]-2.3014 | -1 | 2.3014 | -1.9401 | -0.2666 | 3.3715 | -3.3437

80 | 10 | 1 | -4.0067 | -1 | 4.0067 | -2.3806 | 1.2752 | 2.8560 | -3.3549

0 0 1 |-1.5685 | -1 | 1.5685 | -1.6262 | -1.1656 | 6.1934 | -6.0757

0 1 1 |-1.2433 | -1 | 1.2433 | -0.1887 | -0.0395 | 2.5244 | -2.5477

150° | 1 1 1 |-1.6044 | -1 | 1.6044 | -0.6750 | -0.0994 | 2.4487 | -2.4648
8 1 1 ]-2.6869 | -1 | 2.6869 | -2.4504 | -0.0289 | 3.9407 | -3.8969

80 | 10 | 1 | -4.6274 | -1 | 4.6274 | -2.8291 | 1.7450 | 3.3223 | -3.9719

0 0 1 |-1.8783 | -1 | 1.8783 | -2.4117 | -1.8136 | 7.0139 | -6.8313

0 1 1 1-09772 | -1 | 0.9772 | 0.0574 | 0.2764 | 3.6476 | -3.6691

175° | 1 1 1 ]-1.3826 | -1 | 1.3826 | -0.2979 | -0.0179 | 2.2831 | -2.3104
8 1 1 |-2.7589 | -1 | 2.7589 | -2.5616 | -0.0060 | 4.0570 | -4.0093

80 | 10 | 1 |-4.7415 | -1 | 4.7415 | -2.9298 | 1.8284 | 3.4246 | -4.1005
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Figure 9: Mode 2 for my =m; =0
0.5 \
0.4F
e

0.3f

0.2f

0.1f

0
_Ol L
mk=1 mt=1

_02 [ i
-0.3F a=0degree b =30 degree =60 degree g
-0.4r  d=90degree e =150 degree f=175 degree B
_05 1 1 1 1 1 1 1 1 1

-05 -04 -03 -02 -01 0 01 02 03 04 05

x/L

Figure 10: Mode 1 for my = m; =1
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Table 4: VIBRATION AMPLITUDE RATIO

MODE 1 MODE 1 MODE 2 MODE 2
my | ™My 0 ANALYTICAL FEM ANALYTICAL FEM
0 0 0° 2.9453 2.9497 -1.4012 -1.3777
0 1 - 3.1494 3.1488 -0.2093 -0.2070
1 1 - 3.0878 3.0885 -0.4799 -0.4769
8 1 - 2.8419 2.8425 -2.6178 -2.6085
80 | 10 - 2.8299 2.8300 -2.8034 -2.8000
0 0 | 30° 2.7819 2.8184 -1.7700 -1.4938
0 1 - 3.0008 3.0301 -0.3940 -0.3264
1 1 - 2.9387 2.9624 -0.6910 -0.5976
8 1 - 2.6938 2.7036 -2.9717 -2.8485
80 | 10 - 2.6834 2.6906 -3.1472 -3.0568
0 0 | 60° 2.4288 2.4599 -1.9910 -1.8095
0 1 - 2.6890 2.7142 -0.5403 -0.5204
1 1 - 2.6061 2.6275 -0.8870 -0.8508
8 1 - 2.3121 2.3208 -3.6031 -3.5403
80 | 10 - 2.3002 2.3068 -3.8265 -3.7940
0 0 | 90° 1.9483 1.9717 -2.3143 -2.2273
0 1 - 2.3206 2.3366 -0.6319 -0.6575
1 1 - 2.1798 2.4078 -1.0734 -1.0854
8 1 - 1.7799 1.7869 -4.7490 -4.7148
80 | 10 - 1.7668 1.7722 -5.0571 -5.0519
0 0 | 150° 0.8629 1.1705 -7.1548 -2.6714
0 1 - 2.5030 2.8752 -0.3017 -0.1662
1 1 - 1.7019 1.9521 -1.0045 -0.8056
8 1 - 0.7895 0.8015 -10.6223 -9.8592
80 | 10 - 0.7873 0.7949 -10.7502 -10.2860
0 0 | 175° 0.5540 1.3360 -74.3250 -1.5727
0 1 - 3.7362 3.8643 -0.03610 -0.0231
1 1 - 2.2342 2.3500 -0.5075 -0.4419
8 1 - 0.6362 0.6512 -12.7434 -12.3061
80 | 10 - 0.6362 0.6381 -12.6762 -12.5252
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Figure 11: Mode 2 for my = m; =1

Bending Moments

The static bending moment at the support can be calculated using equation (16). The dynamic
moment per unit tip deflection is given by 3(EI/L?)D,. Hence the ratio of dynamic to static
bending moment can be calculated for any particular configuration. It may be noted that this
ratio becomes infinite for § = m, even though the dynamic moment remains finite, equal to
3(EI/L?)Ds. Multiplying the dynamic moment at the support by Dy, gives the dynamic moment
at the kink. The dynamic moment at the support for a straight beam in mode 1 is shown in Figure
12. The kink mass, my is varied between 0 and 80. The tip mass, m; is varied between 0 and
10. The 3-D surface has a maximum elevation of 1.6 for my = 80 and m; = 0 i.e. for negligible
tip mass. When the kink mass becomes negligible, the dynamic factor becomes unity for m; =
10 and my = 0 along the axis of m; = 0. The dynamic factor increases from its unit value for
large m; to a maximum value of 1.17 for my = m; = 0 corresponding to a straight beam without
attached masses. This particular value of D; = 1.17 is obtained for a fixed ratio of 'TZ—’: = 3.8. For
this particular mass ratio, therefore, the dynamic moment at the support is invariant as shown
by the line AB.

The above observation can be partially explained using the discrete model outlined in section
2. According to equation (22), the dynamic moment per unit tip deflection is an explicit function

of the mass ratio (—’t“), and, for £ = 3.8, there is no change in M. For mass ratios greater than

m —
m me
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Figure 12: Dynamic moment for straight beam in mode 1

3.8, the dynamic moment factor increases towards the maximum value of 1.6 depending on the
value of my. For mass ratios less than 3.8, the dynamic factor decreases towards the minimum
value of 1 as shown.

Table 5 gives the bending moments at the kink and at the support. This information is
useful to design the cross sectional dimensions of the links of a flexible manipulator once the tip
displacement is specified. In general, the bending moment at the support is more than that at
the kink in mode 1. However, as the kink angle becomes more than 7/2, there is a reversal in
the trend for small values of m; and m;. Eventually at § = 7, the bending moment at the kink

becomes many times larger than the value at the support.

5 Conclusion

This paper deals with the free vibration characteristics of a kinked cantilever beam carrying dis-
crete masses. FEuler beam theory is used to obtain natural frequencies, mode shapes and static
and dynamic bending moments. The presence of masses at the tip and kink significantly alters the
natural frequencies, mode shapes and bending moments in a kinked beam. The results obtained
in this paper are useful for analysis and design of control schemes for flexible manipulators, or for

predicting seismic response of two-storied structures. In particular, the dynamic moment factors
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Table 5: BENDING MOMENTS

MODE1 | MODE 1 | MODE 1 | MODE2 | MODE 2 | MODE 2
mg | mg | 6 Mayn D; Dy, Mayn D, Dy,
0 0 0° -3.5160 -1.1720 0.3395 22.0334 7.3445 -0.7137
0 1 - -3.0965 -1.0322 0.4659 107.1191 | 35.7064 -0.6137
1 1 - -3.2262 -1.0754 0.4132 47.3841 15.7947 -0.8364
8 1 - -3.8057 -1.2686 0.2215 11.4306 3.8102 -1.1712
80 | 10 - -3.8402 -1.2801 0.2087 10.7814 3.5938 -1.2031
0 0 30° -3.7648 -1.2549 -0.3134 17.2794 5.7598 -0.8713
0 1 - -3.2659 -1.0886 -0.4534 56.0590 18.6863 -0.7881
1 1 - -3.4085 -1.1362 -0.4002 33.1692 11.0564 -0.8816
8 1 - -4.0335 -1.3445 -0.2113 10.3283 3.4428 -1.1939
80 | 10 - -4.0661 -1.3554 -0.1999 9.8329 3.2776 -1.2219
0 0 60° -4.3044 -1.4348 -0.3227 14.7938 4.9313 -0.9339
0 1 - -3.5771 -1.1924 -0.5007 39.2978 13.0993 -0.7930
1 1 - -3.8013 -1.2671 -0.4277 25.1528 8.3843 -0.8740
8 1 - -4.7241 -1.5747 -0.2000 8.7789 2.9263 -1.2208
80 | 10 - -4.7690 -1.5897 -0.1881 8.3690 2.7897 -1.2483
0 0 90° -5.3640 -1.7880 -0.3353 12.2433 4.0811 -0.9726
0 1 - -5.1032 -1.7011 -0.3463 31.2866 10.4289 -0.7331
1 1 - -4.4333 -1.4778 -0.4905 19.7541 6.5847 -0.8340
8 1 - -6.2030 -2.0677 -0.1770 7.1373 2.3791 -1.2751
80 | 10 - -6.2742 -2.0914 -0.1654 6.8291 2.2764 -1.3032
0 0 | 150° | -13.4840 -4.4947 -0.1460 6.0608 2.0203 -1.3482
0 1 - -2.2366 -0.7455 -2.3108 51.8472 17.2824 -0.4202
1 1 - -4.9191 -1.6397 -0.8821 17.8500 5.9500 -0.6364
8 1 - -14.5509 -4.8503 -0.0933 4.8344 1.6115 -1.5205
80 | 10 - -14.5771 -4.8590 -0.0916 4.7550 1.5850 -1.5292
0 0 | 175° | -22.9307 -7.6436 -0.0205 4.0924 1.3641 -1.8459
0 1 - -0.2359 -0.0786 -25.3771 | 408.9152 | 136.3051 -1.8459
1 1 - -2.7272 -0.9091 -1.9628 31.1179 10.3726 -0.4496
8 1 - -18.1914 -6.0638 -0.0784 4.5742 1.5247 -1.5767
80 | 10 - -18.1526 -6.0509 -0.0786 4.5192 1.5064 -1.5797
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provide useful guidelines in design for practical problems. Similar analysis can be extended to
composite beams or multi-link configurations. Finally, this paper highlights the utility of a simple
discrete model of a kinked cantilever model which leads to a better understanding of the results

obtained from numerical and analytical models.
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Appendix: Elements of the 8x8 matrix F(KL) in eqn(8)
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a(l,1) = 1;a(1,2) = 0;a(1,3) = 1;a(1,4) = 0;a(1,5) = a(1,6) = 0;a(1,7) = a(1,8) =
0;a(2,1) = 0;a(2,2) = 1;a(2,3) = 0;a(2,4) = 1;a(2,5) = 0;a(2,6) = 0;a(2,7) = 0;a(2,8) =
0;a(2,8) = 0;a(3,1) = cos(0.5*y;) *cos(d); a(3,2) = sin(0.5*y;) * cos(d); a(3,3) = cosh(0.5xy;) *
cos(6);a(3,4) = sinh(0.5 * y;) * cos(d); a(3,5) = — cos(0.5 * y;);a(3,6) = —sin(0.5 * y;);a(3,7) =
— cosh(0.5 * y;); a(3,8) = —sinh(0.5 * y;);a(4,1) = —sin(0.5 * y;); a(4,2) = cos(0.5 * y;); a(4,3) =
sinh(0.5 * y;); a(4,4) = cosh(0.5 * y;);a(4,5) = sin(0.5 * y;);a(4,6) = —cos(0.5 * y;);a(4,7) =
— sinh(0.5%y,); a(4,8) = — cosh(0.5xy;); a(5,1) = — cos(0.5xy;); a(5,2) = —sin(0.5*y;); a(5, 3)
cosh(0.5 * y;);a(5,4) = sinh(0.5 * y;);a(5,5) = cos(0.5 * y;);a(5,6) = sin(0.5 * y;);a(5,7) =
—cosh(0.5 *y;); a(5,8) = —sinh(0.5 x y;); a(6,1) = sin(0.5 * y;) + mex * y; * c0s(0.5 * y;); a(6,2) =
—c08(0.5 * ;) + M * y; *sin(0.5 * y;); a(6, 3) = sinh(0.5 * y;) + mek * y; * cosh(0.5 * y;); a(6,4) =
cosh(0.5 * Y) 4 mey, * y; * sinh(0.5 * y;); a(6,5) = —sin(0.5 * y;) * cos();a(6,6) = cos(0.5 * y;) *
cos(6);a(6,7) = —sinh(0.5 * y;) * cos(d);a(6,8) = — cosh(0.5 * y;) * cos(d);a(7,1) = 0;a(7,2) =
0;a(7,3) = 0;a(7,4) = 0;a(7,5) = cos(y;);a(7,6) = sin(y;);a(7,7) = —cosh(y;);a(7,8) =
—sinh(y;);a(8,1) = 0;a(8,2) = 0;a(8,3) = 0;a(8,4) = 0;a(8,5) = sin(y;)+me*y;*cos(y;); a(8,6) =
— cos(y;) + Met * y; *sin(y;); a(8,7) = sinh(y;) + me; * y; * cosh(y;); a(8,8) = cosh(y;) + me * y; *
sinh(y;);
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