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Abstract

In this paper, we present a differential-geometric approach to analyze the singu-
larities of task space point trajectories of two and three-degree-of-freedom serial and
parallel manipulators. At non-singular configurations, the first-order, local properties
are characterized by metric coefficients, and, geometrically, by the shape and size of
a velocity ellipsoid or an ellipsoid. At singular configurations, the determinant of the
matrix of metric coefficients is zero and the velocity ellipsoid degenerates to an ellipse,
a line or a point, and the area or the volume of the velocity ellipse or ellipsoid becomes
zero. The degeneracies of the velocity ellipsoid or ellipse gives a simple geometric
picture of the possible task space velocities at a singular configuration. To study the
second-order properties at a singularity, we use the derivatives of the metric coefficients
and the rate of change of area or volume. The derivatives are shown to be related to
the possible task space accelerations at a singular configuration.

In the case of a parallel manipulators, singularities may lead to either loss or gain
of one or more degrees-of-freedom. For loss of one or more degrees-of-freedom, the
possible velocities and accelerations are again obtained from a modified metric and
derivatives of the metric coefficients. In the case of a gain of one or more degrees-of-
freedom, the possible task space velocities can be pictured as growth to lines, ellipses,
and ellipsoids. The theoretical results are illustrated with the help of a general spatial
2R manipulator and a three-degree-of-freedom RPSSPR-SPR parallel manipulator.

1 Introduction

Evaluation of singularities plays an important role in several aspects of robotics including
design, trajectory planning, and control. Much of the past research in the area of singulari-
ties of manipulators have been related to the study of manipulator configurations resulting

in singularities (see, for example, (Wang and Waldron 1987; Litvin, Zhang, Castelli and
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Innocenti 1990; Hunt 1986; Martinez, Alvarado and Duffy 1994)), enumeration and clas-
sification of kinematic structure of manipulators and mechanisms with singular configura-
tions(see, for example, (Lipkin and Pohl 1991; Karger 1995; Karger 1996a; Sugimoto, Duffy
and Hunt 1982; Gosselin and Angeles 1990; Litvin, Fanghella, Tan and Zhang 1986; Merlet
1991)), novel designs of manipulators and wrists, including use of redundancy, that would
exclude singularities from the useful portion of the workspace (see, for example, (Stanisic
and Duta 1990; Tchnon and Matuszok 1995; Shamir 1990)), analysis of singular sets for
serial manipulators(see, for example, (Karger 19966)) and planning of trajectories at sin-
gularities(see, for example, (Chevallereau 1998; Lloyd 1996; Nenchev, Tsumaki, Uchiyama,
Senft and Hirzinger 1996; Nenchev and Uchiyama 1996; Martinez et al. 1994; Sardis, Ravani
and Bodduluri 1992)). A serial manipulator is said to be in a singular configuration when
the manipulator Jacobian matrix looses rank. Most of the approaches towards singularity
analysis, in the references mentioned, involve use of linear algebra based techniques such
as singular value decomposition and use of Taylor series expansion of certain measures of
manipulability around a singular configuration. A few researchers have also used concepts
from singularities of maps(Golubitsky and Guillemin 1973) to characterize singularities of
point trajectories and their bifurcations (see (Kieffer 1992; Kieffer 1994)) and singularities
of non-redundant kinematics(Tchnon and Muszynski 1997).

In this paper, we present a differential-geometric approach towards singularity analysis
of non-redundant point trajectories traced by serial and parallel manipulators. The paper
differs from the works mentioned above in that a) it develops a differential-geometric method
for local characterization of singularities, and b) the method is applied to both serial and
parallel manipulators. The main idea of this paper is based on the well-known concept of
a metric on a manifold and the associated concepts of a velocity ellipsoid or ellipse(Ghosal
and Roth 1987), whose size and shape characterizes the local, first-order properties of non-
singular point trajectories. At singular positions, the definition of the metric is no longer
valid and the velocity ellipsoid degenerates to an ellipse, line or a point. These degenerate
forms of the ellipsoids or ellipses give clear geometric picture of the possible task space
velocities at a singular configuration, and we present simple algorithms involving eigenvalues
and eigenvectors of the matrix of metric coefficients to obtain the degenerate forms of the
ellipsoids or ellipses. For second and higher-order properties, we consider the derivatives of
the metric coefficients and the rate of change of the volume of the ellipsoid since familiar
concepts such as curvature is not defined at a singularity. The rate of change of the metric

coeflicients are related to the possible task space accelerations at a singular configuration.



In the case of parallel manipulators, singularities can lead to either loss or gain of one or
more degrees-of-freedom. We use the concept of velocity ellipsoids and ellipses, for loss of
degree-of-freedom in parallel manipulators, by deriving a suitable metric. For gain of one or
more degrees-of-freedom, we show that the singularity can be pictured as a “growth” to lines,
ellipses and ellipsoids. The results of this paper, in addition, to their theoretical interests in
kinematics of manipulators, have applications in trajectory planning and control.

The paper is organized as follows: In section 2, we briefly present the concept of a
metric, the associated velocity ellipse and ellipsoid, the derivatives of the metric coefficients
and then discuss its usefulness for differential analysis of point trajectories traced out by non-
redundant, serial and parallel manipulators. In section 3, we discuss singularities of point
trajectories traced out by two and three-degree-of-freedom serial and parallel manipulators
by considering the metric coefficients, their derivatives and the rate of change of the volume
of the velocity ellipsoid. In section 4, we illustrate our theory with the help of a general
spatial 2R and a three-degree-of-freedom RPSSPR-SPR parallel manipulator. Finally, in

section 5, we present the conclusions.

2 Mathematical Formulation

The trajectory traced by a point in a moving rigid body can be expressed as a set of equations
giving the coordinates of the point in the terms of the n independent motion parameters.
Assuming that the coordinates of the point are the Cartesian coordinates, (z,y, z), and the
n independent motion parameters are denoted by 6;, 1 = 1,2, ..., n, the set of equations can

be written in a symbolic form as

(xvyaz)T:"/J(elv"'aen) (1)

In the case of a manipulator, the vector function ¥ depends on the point chosen on the end-
effector, the geometry and structure of the manipulator and its dimensions. The function
1Y and can be thought of as a mapping which takes points in the motion parameter space,
(01, ...,0,), to points in the 3D (Euclidean) space of the motion. These equations are the
familiar direct kinematics equations for a manipulator.

In the case of serial manipulators with n degrees of freedom, the n motion parameters
are the rotations or translations at the joints and are independently actuated. In the case
of parallel manipulators and closed-loop mechanisms, not all the n motion parameters are

actuated and m of them may be passive. In such a case the degree of freedom of the parallel



manipulator or the closed-loop mechanism is (n —m), and in addition to the above equations,

we have m independent constraint equations of the form

n(0y,....,0,) =0 (2)

where 1(.) denotes the m constraint functions n;(.),7 = 1,2,..,m'.

2.1 Differential kinematics of serial manipulators at non-singular
points

In the case of serial manipulators, the velocity at any point, p, on the point trajectory can

be written as

v=3wd ®)

where 6; is the time derivative of §; and 1, is the first partial derivative of ¥ with respect
to 0; or d¢/00;. The partial derivatives are evaluated at p. The above equation can also be

written in terms of the matrix of first partial derivatives or the Jacobian matrix as

v =[J(4)]p0 (4)

where 6 is the vector (4, ...,0,)T and [J(2))]p is the Jacobian matrix of 9 evaluated at p.
By varying 9, we can get any arbitrary velocity v at p. It is more instructive to look at
the variation of v with a normalizing constraint of the form 00 = k2. For k = 1, we have
a unil speed motion and by varying k one can get all possible velocities, v, at the point p
under consideration?.

The dot product of the velocity with itself can be written as
vov="0[g8 (5)

where the matrix elements g;; are the dot products (¢, -%;),4,5 = 1,2,..,n. The matrix [g],
equal to [J(2)]T[J(#))], is symmetric and positive definite and its elements( in the language
of differential geometry) define the metric in the tangent space(Millman and Parker 1977).

We make the following observations from the definition of [g] and equation (5):

In this paper, we restrict ourselves to non-redundant manipulators, i.e., n < 3 for serial manipulators
and (n —m) < 3 for parallel manipulators and closed-loop mechanisms.

2For a prismatic joint, with joint variable denoted by d;, we use —%— where d is the maximum value

dimaz

d; can take. This ensures that all terms are dimensionally the same.
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e If [g] is non-singular(i.e, det[g] # 0), then we can write
VI (gl (™) v = 678 (6)

The matrix ([/][g] 1) ([/][g] 1) is symmetric and positive definite, and for a constraint
of the form 6§ = 1, the tip of the velocity vector v lies on an ellipsoid. For two-
degree-of-freedom motions the tip of the vector v lies on an ellipse in the tangent plane.
In classical differential geometry of surfaces, this ellipse defines the so-called Tissot’s
indicatriz(see pages 145-155 of Strubecker(Strubecker 1969)).

e The maximum and minimum values of v subject to constraint 00 = 1 can be ob-
tained by solving
V200, = Ov? )00, = 0 (7)

where v*? is given as

v2=0"[gl0 —\NO 61 (8)
The above reduces to solving the eigenvalue problem

(916 — N0 =0 (9)

The maximum and minimum |v| in terms of the maximum and minimum eigenvalues

of [g], Anasr and A, are given as

|V|m'117 = \ /\maz‘

|V|min = )‘min (10)

The directions of the maximum and minimum velocities are related to the eigenvec-
tors of [¢g] and are along the vectors [J(t/))]ez, i = 1,2,3 where 8; is the eigenvector

corresponding to eigenvalue ;.

The maximum, minimum, and intermediate values of |v| are along the three principal
axes of the ellipsoid and determine the shape of the ellipsoid(for an ellipse there are
only a maximum and a minimum). If the normalization 076 = k2 is used then the
maximum and minimum values are scaled by k but the shape of the velocity ellipsoid(or

ellipse) doesn’t change.

e The volume (area in case of ellipse) is proportional to y/det[g]. For an ellipse the area

is kmy/det[g] and for an ellipsoid, the volume is given by k (47/3),/det[g]. It may be
noted that det[g] is equal to the product of the eigenvalues.
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e Yoshikawa(Yoshikawa 1985) introduced an useful manipulability measure /det([.J][.J]T)
which has been used extensively by several researchers for resolution of redundancy(Nakamura
1991). Several authors have also used the singular values of [J] to analyze the first
order properties. However, det[g] used in this paper and det([.J][J]T) ( and the square
root of eigenvalues of [¢g] and the singular values of [.J]) have significant differences. We

list some of them below.

1) The elements of [g] and det[g] define distance, angle and elemental area(or volume)
on a manifold whereas the matrix [J][J]T comes from a least squares type of

3. In this paper, our approach is from

solutions to a system of linear equations
a differential-geometric perspective and not from linear algebra, and the focus of
the paper is on singularities where the definition of a metric on a manifold breaks

down and det[g]| equals zero.

2) As shown later, the quantity det[g] naturally occurs when we consider second
and higher-order properties of a manifold such as the Gaussian curvature. It is
not clear how the the manipulability measure can be used to study second and

higher-order properties of a manifold.

3) The elements of [g] and det[g] are well-defined for all non-redundant manipulators
and mechanisms. The manipulability measure is more suited for redundant ma-
nipulators since det([.J][J]T) is zero for a non-redundant spatial 2R manipulator.

It may be noted that det([J]T[.J]) is always zero for a redundant manipulator.

We next discuss parallel manipulators and closed-loop mechanisms.

2.2 Differential kinematics of parallel manipulators at non-singular
points

As mentioned before, in the case of a parallel manipulator or closed-loop mechanism not all
the n joints are actuated and there are m constraint equations of the form (2). We denote
the (n — m) actuated joints by the vector @ and the m passive joints by the vector ¢. The
velocity vector, v, at any point p on the point trajectory traced by a parallel manipulator

or a closed-loop mechanism can be written as

v=1[J]0+][J]¢ (11)

3The solution to a set of linear equations(Golub and Loan 1989) Az = b, A € R™*" 2z € K", b€ N™, is
given as x = (AT A)=*ATb when m > n and = = AT(AAT)~1b when m < n. (AT A)~1AT and AT (AAT)~!

are called the pseudo-inverse of A.




where the columns of [.J] are the partial derivatives of ¢ with respect to the n —m actuated
joint variables 6; and the columns of [J*] are the partial derivatives of ¥ with respect to
the m passive variables ¢;. The dimensions of [J] and [J*] are (dim(v) X (n —m)) and

(dim(v) x m) respectively. By differentiating the m constraints equations (2), we get

where 1), is the partial derivative dn/06;. Again assuming that the first (n — m) 6,’s are

actuated and the rest are passive, we can rearrange these m equations in the form
0 =[K1]0 + [K*]o (13)

where the columns of [K] are the first (n — m) n,’s and the columns of [K*] are the last m
n,’s. It may be noted that [K™] is always a square matrix of dimension m x m.

Assuming that det[K™*] # 0, we can solve for ¢ from equation (13) as
¢ = —|K*|"'[K]6 (14)
and on substituting in equation (11), we get
v = ([J] = [JK)[K])6 (15)

where 6 is the vector of n — m actuated joint variables.
Equation (15) is similar to equation (3) for serial manipulators and we can define the

matrix of metric coefficients for a parallel manipulator, [¢*], as
[g°] = ([J] = [TIE ) ED (] = [T K] (16)

The matrix [¢*] is symmetric and positive definite* and we can again state that for a nor-
malization constraint of the form 8 8 = k2, the tip of the velocity vector lies on an ellip-
soid(ellipse). The shape and size of the ellipsoid(ellipse) is again determined by the eigen-

values of the matrix [¢*].

4[g*] is clearly symmetric since it is of the form [A]T [A]. It is also positive definite provided that det[K*] #
0 and ([J] — [J*][K*]7'[K]) is non-singular.



2.3 Higher order properties at non-singular points

The velocity vector, v, derived from the first derivative of the mapping function or the ele-
ments of the matrix [¢] (or [¢*]) determine the first order properties of the point trajectories.
For the second-order properties we consider the acceleration vector given in terms of the first

and second partial derivatives of ¥ as

=1 7,7=1
When the number of independent 6; is two and the point trajectory is in R*, we get using

well known results from differential geometry,

2 2
a=> Y0+ > (i, + Limn)o,0; (18)
=1

7,7=1

where n is the normal vector, L;;’s are the dot products ¥,; -n,7,7 = 1,2, and the six Ffj

g
are called Christoffel symbols(Millman and Parker 1977). The Christoffel symbols are given

as
2

Ffj = Z(¢2] ' ’djl)glk iajak = 172 (19)

=1
where ¢'* is the (I,k) element of [g]™!. It may be noted that the six Christoffel symbols
can be expressed as partial derivatives of the metric coefficients g;;’s(or gi;’s for parallel
manipulators)(Millman and Parker 1977).
The second order properties are completely determined by the elements g;;, L;;, and Ffj.

The local geometry of the surface is determined by the Gaussian curvature given by

det[L]

K =
"7 detg]

(20)

and K can also be derived only in terms of the metric coefficients, g;; and their first partial
derivatives(g;; and its first partial derivatives for parallel manipulators)(Millman and Parker
1977).

In case the point trajectory is a solid region in R3(rn = 3), the tangent space is of the
same dimension as the space of the motion and there is no notion of a normal vector. One
can consider 2D sections (surfaces) of the solid region and compute the Gaussian curvature
of each of the sections by computing the appropriate L;;’s and the det[g]’s. Another general

approach is to compute the first and second partial derivatives of g;;’s(g;; in case of parallel



manipulators) with respect to the motion parameters and define the Riemannian curvature
tensor(Millman and Parker 1977) as
9292'1 aQQﬂC 329¢k 82911

Rijkl = (1/2)(80]80k + 00,00, N 89]801 B 00,00,

)+ g% (TarTir — Ty lier) (21)

where ¢g* is the (s,t) element of [g]~! and

_1(99jk dgix agij)

24090, ' 90, 00, (22)

ijk
The above rank four tensor has the properties of curvature since one can show that if all the
Ri;i vanishes everywhere, then the volume of the velocity ellipsoid is constant everywhere
similar to the case when the mapping ¥ is linear and the surface is flat. The Gaussian

curvature of a 2D subspace can also be computed as

R
~ det lg]

K (23)

It may be noted that in the expression of the Gaussian curvature (and Riemannian
curvature) and the Christoffel symbols, det[g](det[¢g*] for parallel manipulators and closed-
loop mechanisms) appears in the denominator. If det[g] or det[g*] is zero, then we have a
singularity. At a singularity, the Christoffel symbols and the Gaussian or the Riemannian

curvatures are not defined®, and hence, we cannot characterize the geometry of the point
i’cja
the derivatives of g;;, to characterize the singularities in two and three-degree-of-freedom

trajectory with I'Y., K or Rjjr. In the next section, we analyze the behavior of det[g] and

motions.

3 Singularity analysis

We start with singularity analysis for serial manipulators where, as discussed above, the
singularity is related to the loss of rank of the matrix [¢g]. In the later part, we will discuss
singularity analysis of parallel manipulators and closed-loop mechanisms, where we can not

only have loss of rank of [¢*] but also loss of rank of [K*].

3.1 Singularity analysis for serial manipulators

As mentioned in the previous section, the first-order properties at a non-singular point is

characterized by a velocity ellipsoid which is in turn completely determined by the metric

®The curvatures and the Christoffel symbols are in the indeterminate form 0/0.



coefficients, ¢;;. At a singularity det[g] = 0 and the matrix [¢g] looses rank. From the
definition of the metric coefficients, the matrix [g] is always square and symmetric, and
hence the loss of rank of [g] is characterized by one or more real eigenvalue of [g] going to
zero. It may be noted that the singular direction are the eigenvectors corresponding to the
zero eigenvalues. We can have the following cases at a singularity as far as the task space

velocity is concerned:

e One eigenvalue is zero, say Ay = 0 and Ay,A3 non-zero. In this case, the ellipsoid
degenerates to the inside of an ellipse, and the task space velocity along the direction

corresponding to the zero eigenvalue will be zero.

e Two eigenvalues zero, say Ay = Ay = 0 and A3 non-zero. In such a case, the ellip-
soid degenerates to a line, and the task space velocity in the plane spanned by the

eigenvectors corresponding to the zero eigenvalues will be zero.

o All three eigenvalues zero. In such a case the ellipsoid degenerates to a point, and

there can be no velocity in any direction.

To consider the possible accelerations, we first consider an arbitrary direction s in the

tangent space. In general s can be written as 7, ¢;4, where ¢; are constants not all zero.

k3

The acceleration along this arbitrary direction is given by

s-a=cl[g)0+ znjcirméjék (24)
i=1
where c is the vector (cy, ..., c,)T and the Christoffel symbols, I';z; can be determined from
the partial derivatives of the metric coefficients as in equation (22)%. In order to find the
acceleration at the singular point, in the arbitrary direction, we have to evaluate both the
terms. It may be noted that [g] is of rank less than n at a singularity.

If s is a singular direction then [g]c = 0, and from equation (24), the first term on the
right-hand side is zero([g] is symmetric). If the second term is non-zero, one can have non-
zero acceleration along a singular direction with non-zero joint velocity. Furthermore the
acceleration 1s a quadratic function of the joint velocities.

If the second term is zero, then one cannot have acceleration along the singular direction

with finite joint velocities. In such a case, to study possible motions, we have to look at

It may be noted that similar formula has been derived by Kager(Karger 1989)(see formula(19)) in the
context of analyzing curvature properties of 6 degree-of-freedom robots.
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higher-order analysis. The dot product of s with the jerk, a, can be written as
s-a=c"[g)0" + Zczrme Oy + chﬁ (039111 + oo+ 0290, (25)

where ( )m denotes the third derivative with respect to t.

Along the singular direction, the first and second term are zero and one can have non-zero
jerk with finite joint velocities if the third derivatives, .., are non-zero. It may be noted
that the jerk is a cubic function of the joint velocities.

We can also analyze singularities, by studying the behavior of det[g] near a singularity.
We denote the values of (6, ..,0,)T which satisfy the singularity condition, det[g] = 0, by

0", and expand det[g] in a Taylor series about 8*. We can write

5(det]g]) = det[g] + 3 adggllg] (1/2) z_j Z ?;Hde; ; 9 50,50, + . (26)

=1

where all the partial derivatives on the right-hand side are evaluated at *.

At a singularity the first term on the right-hand side, det[g], is zero by definition. The
second term is also zero since det[g] is also at an extremum for " — det[g] is the volume of
the ellipsoid and it is always greater than or equal to zero and the minimum is zero. From

differential geometry(Millman and Parker 1977), at a non-singular point, we have

Odet[g]

oo, = 2detly Z en (27)

I';r1 are the Christoffel symbols(Millman

and Parker 1977) of the first and second kind. Since at a singularity, the partial derivatives,

ddetlg]
ab;

terms in the second term of equation (24) may be zero and the accelerations along certain

where (7}, is the co-factor of g, in det[g] and 7,

r?

are zero, some of the Christoffel symbols may be zero. As a consequence some of the

directions may be zero. This is illustrated in detail in the singularity analysis of a general
2R manipulator considered in a later section.

The matrix of second partial derivatives of det[g] determine the second-order properties
92det[g]
56, 26,

the volume of the ellipsoid increases from zero. If the matrix has zero determinant, then the

at a singular point. If the matrix evaluated at 8™ has a positive determinant then
volume stays zero and we have to look at higher derivatives of det[g]. Since, det[g] is product
of the eigenvalues of [g], the matrix of second derivatives of det[g] indicate whether the second
partials of zero eigenvalue is positive or zero. It may be noted that a similar analysis with

the manipulability measure, det[.J.JT], have been done by Bedrossian(Bedrossain 1990) for

11



redundant manipulators and he has termed the first type of singularities as escapable or
hyperbolic singularities and the second type, with all higher derivatives zero, as inescapable

or elliptic singularities.

3.2 Singularity analysis for parallel manipulators

For a parallel manipulator, if the det[K*] # 0, then we can analyze the singularity cor-
responding to the loss of rank of [¢*] or when det[g*] = 0. We can replace [g] by [¢*] in
the analysis performed for the serial manipulator and can derive analogous results. When
det[K*] = 0, we have a different kind of singularity — a singularity associated with the gain
of one or more degree-of-freedom(Gosselin and Angeles 1990). This can be seen readily from

equation (13), reproduced below for convenience,
0 =[K1]0 + [K*]o (28)

We consider the situation, when all the (n — m) actuated joints are locked or 8 is set to
zero. If det[K*] # 0, all the passive joint rates, @, become zero from equation (28) and as
expected we get a structure. From linear algebra, we know that the homogeneous equation,
[K*]é = 0, can have non-trivial solutions (not all ¢; zero) when the matrix [K*] is singular
or det[K*] = 0. This implies that at the configuration corresponding to loss of rank of [K™]
or when det[K*] = 0, the structure can have a non-zero qDZ, and thereby the structure gains
one or more degrees-of-freedom.

A geometric picture of the singularity corresponding to the gain of degree-of-freedom is
as follows:

With all the actuated joints locked(é = 0), at non-singular positions, we get (,b = 0 from
equation (28). Since 6 and ¢ are both zero, from equation (11), we get, as expected, v = 0.
Hence at a non-singular position with actuated joints locked, we can think of the velocity
distribution as an ellipsoid of zero size. At a singularity, the matrix [K*] looses rank. If
the rank is (m — 1) then we can extract the eigenvector of [K*] corresponding to the zero
eigenvalue of [K*]. Let the eigenvector corresponding to the zero eigenvalue be (,51. Since,

clq%) is also an eigenvector with ¢; any scaling constant, from equation (11), we get

v =al/7e, (29)

and there can be motion along the direction of [J*](,'bl. In this case, we can think of the zero
velocity ellipsoid “growing” into a line. If the rank of the matrix [K™*] is (m — 2), then with

a similar reasoning we can get
V= CI[J*](Z.bl + CZ[J*]¢2 (30)

12



where (,51, (2)2 are the two eigenvectors corresponding to the two zero eigenvalues of [ K*] and
¢1, ¢o are the two scaling constants. If we normalize ¢;,1 = 1,2, to be between —1 and +1
(or ¢ + ¢2 = 1), then the tip of the velocity vector traces an ellipse”. If the rank of [K™*] is
(m — 3), then the tip of the velocity vector will lie on an ellipsoid. If the rank is less than
(m — 3), then we have a situation similar to the redundant serial manipulator.

To analyze the second-order properties of the singularities associated with the gain of
degree-of-freedom, we consider the acceleration vector with all the actuated joints locked.

The acceleration vector is given by

a= E¢ b + z b;0id; (31)

6,y=1
where %;, 1,;; are the partial derivatives with respect to the passive joint variables. In
addition, we can differentiate equation (28), and on substituting the condition for locked

actuated joints, = 6 = 0, we get
= (K¢ + [K*]¢ (32)

where [[&"'*] is the time derivative of each term of the matrix [K™*].

As pointed out before, at a singularity, the matrix [K*] looses rank and the second term on
the right-hand side is known from the velocity analysis. Equation (32) can only have a non-
zero ¢ as a solution 1f the vector [[x ](,25 lies in the column space of [K*]. Mathematically P
is non-zero if y ([K*] b) = 0 for all [K*]Ty = 0 and a non-zero ¢ can be easily obtained from
standard techniques in linear algebra(Golub and Loan 1989). The task space acceleration
can be obtained by substituting the non-zero qb in equation (31).

One special case which ensures yT([K*]q',’)) — 0 is when ¢ is zero. When ¢ is zero, the
velocity v is also zero with actuator locked. However, the parallel manipulator can have
non-zero acceleration since (;3 s non-zero.

In the next section, we look at two cases to illustrate the theory developed in the last

two sections.

4 Case studies of serial and parallel manipulators

In this section, we illustrate the theory developed in the two previous sections by means
of two examples, namely a general two-degree-of-freedom serial manipulator and a three-

degree-of-freedom parallel manipulator described in (Lee and Shah 1988).

7¢1 and ey are similar to #; and 65 in the differential kinematics of serial manipulators, and as in section

2, we can easily prove that the tip of v lies on an ellipse.
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4.1 A general 2R manipulator

Figure 1 shows a two-degree-of-freedom manipulator with two revolute(R) joints of general
geometry. The joint variables are §; and #; and the point trajectory is traced by the point
(z,y,2)T in R%. Hence the point trajectory is a surface in R>. In terms of the link lengths,

a;;’s, link offsets, d;’s, and the twists a;;, the mapping function % can be written as®

Figure 1: A schematic of a general 2R manipulator

(z,y, Z)T = (01,0;) = di1S1 + ar2212 + d2S; + azsass (33)

where

S, = (0,0, )T

ajg = (017 S1, O)T

8We will use the symbols ¢;, s; etc. to represent cos(6;), sin(f;) etc. respectively throughout the paper.
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82 = (315a12, —C15802, cal?)T (34)

T
azz3 = [(0102 - 51S2CCY12)7 (3102 + 615260512)7 5a1232]
The partial derivatives ¢, and ¥, are given by

T T T
Y = a1(—s1,¢1,0)" + da(saracr, s01251,0)" 4 ags(—s162 — c153ca3, ¢1ca — $152¢012,0)

1/22 = a23(—c132 — §1C2CQ2, —S153 F C1CoCQ 2, 30é12c2)T (35)

The coeflicients of the metric [g] are given by

gii = aiy+ disal, + as(ch + sscad,) + 2az3a19¢y — 2dyagzcanzsanasy
Ji12 = a23(a1200412€2 — dysaqasy + Cl23€0412) (36)
g2 = agg
and
det[g] = g11922 — g1y = a3s[(a12 + aasca)’saty + (aracarasy 4 dasanscy)’] (37)

It may be noted that the g;;’s and the determinant of [g] are independent of #;. This
is because the metric coefficients are always independent of translation and rotation of a
coordinate system and the effect of #; is equivalent to a rotation of the fixed coordinate
system.

The Gaussian curvature is given as

452 i
312c2a23a12( (38)

det[g])?

At (04, 603) given by (0,0) degrees, the velocity ellipse, in three sectional views and a 3D

2
A235035C2g11G22 (@12 + az3¢2)

K=
) det[g]

view, is shown in figure 2. We have assumed 19 = 45", a;3 = dy = 1 and ag3 = 1.5. The
maximum and minimum values of the magnitude of velocity for 9? + 9; = 1 are \/7.9776
and v/1.0224 along the principal axis of the ellipse as shown in figure 2. The ellipse is in the
tangent plane with normal along (0.9285, —0.2626,0.2626)7 and the maximum and minimum
velocities are along vectors (—0.6417, —2.7143, —0.4456)7 and (0.2971,0.878,—0.9625)7 in
the tangent plane. The Gaussian curvature at (0,0) degrees is 0.3092 implying that the
point (0,0) is elliptic. At the point (0,120) degrees the Gaussian curvature is -0.5791 and
the surface is hyperbolic. One can also obtain points where the surface is parabolic.

At a singular point, det[g] = 0 and this implies

a19 + G93Cy = 0 or SO = 0

a19C012S52 + dgsam(:g =0 (39)

15



2 1
20 S0

-2 -1

-4 -2

-1 -05 0 05 1 -1 -05 0 0.5 1

VX VX

2

1
So

-1

-2

-4 -2 0 2 4 Vy 5 -1y

Figure 2: Velocity ellipse at a non-singular point (61, 603) = (0,0)°
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If sa;3 = 0, then the manipulator is planar and the singularities can occur only if §, =

0, 7. If a9 # 0, then the singularities can occur when

2 2

a — da
tan2a — 23 12
12 d22
(40)
d25a12
tan(fy/2) = — 12
(23 — 412

The above equation implies that the general 2R serial manipulator can have singularities
only for special values of link lengths, offsets and twist angles, and if one has a geometry
satisfying the first equation in (40), the singularities lie along a curve with the value of 6,
given by the second equation in the set of equations (40).

For the values of a;5 = dy = 1.0 and a93 = 1.5, the singularities occur for ayo = £48.1897°
and 03 = £131.8103°. The velocity ellipse for such values degenerates to a straight line along
the unit vector (—0.7454, —0.4444, —0.4969)T. Figure 3 shows the three orthographic views
of this line and also a 3D view of the degenerate velocity “ellipse”. The maximum velocity
for Hi + 93 = 1 is 1.5 along the direction of the straight line. By use of equations (40), one
can calculate the values of a5 and 6, for any other set of values of ay5, dy and ay3 and get
plots as in figure 3.

On substituting a;2 and 6, from equations (40) in expressions for ¢g1; and ¢i2, we can
show that for the general 2R manipulator g;; = ¢12 = 0 at a singularity. Since det[g] is
independent of #; all its partial derivatives with respect to #; are zero. In addition, since
gao 1s constant, all the partial derivatives of g,o with respect to 6, are zero. The partial
derivative of det[g] with respect to 5 is given by

d det][g] 0922 dgn

a912
— -2
90, _ Igg, Ty T 292,

(41)

At the singularity = ag“ = 0 and hence the whole of the right-hand side is zero. From equation
(27), we obtain that

Z Vi P)G r=1,2 (42)

Referring to equation (17) and using the above equation, we get at a singularity,

a-¢¥;, = 0
a-¢, = 922é2 (43)
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Figure 3: Degenerate velocity “ellipse” at a singular point
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The above equation implies that acceleration is only possible along the 4, direction at a
singularity.
On computing the second partial derivatives of det[g], we find that the only non-zero

term is

9 detlg]  I%gn
a0z~ T2 902

The above implies that the singularity in a 2R manipulator is of second order. In addition,

— 2al(s3 + eaty) (44)

the determinant of the matrix of second partial derivatives of det[g] is zero implying that
higher-order analysis is required.

It may be noted that in the planar case, aj5 = 0 and 6§, = 0,7, and the first partial
derivatives of det[g] are zero. In the second partial derivatives of det[g], the only non-zero

term is

0? det|g]
003

Hence the matrix of second partial derivatives has a zero determinant implying that

= 2“%3“%2 (45)

higher-order analysis is required.

4.2 A RPSSPR-SPR parallel manipulator

In reference (Lee and Shah 1988), the three-loop, three-degree-of-freedom RPSSPR-SPR
mechanism of figure 4 has been proposed as a “parallel” wrist. The authors have discussed
the direct and inverse kinematics but they have not dealt with its singularities. In this
subsection, we use the theory developed in section 3, to analyze the singularities for this
parallel manipulator.

The geometry chosen is same as in (Lee and Shah 1988) where the revolute joints axes
are assumed to be co-planar and are perpendicular to the medians passing through the
respective vertices. Assuming that the length of the medians in the base equilateral triangle
are unity, we can obtain the coordinates of the centre of the three spherical joints in the

fixed coordinate system {0}. These are given by

Si = [(1—he), 0, hs]”
Sy = [—0.5(1 —lyey), V3/2(1 — lyey), lysy]” (46)
Sy = [—0.5(1 —lscs), —V/3/2(1 — lscs), lsss]T

where 8;, 1 = 1,2, 3 are rotations at the three passive rotary joints and [;, + = 1,2,3 are the

translations at the actuated prismatic joints.
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Figure 4: The RPSSPR-SPR parallel manipulator
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The loop closure equations are obtained from the fact that the distance between the

spherical joints are constant and are of the form

(SZ—SJ)(SZ—S]):]CQ 27]217273727&] (47)

R

where k;; is the distance between spherical joint ¢ and spherical joint j respectively.

Differentiating the three constraint equations with respect to time, we get

3[181 — lllgSlcQ — 2l1l26182 . 31282 — l1l20182 — 211128102 .
0 = 0 01 + 31282 — l2l38263 — 212130253 92 +
3[181 - l1135103 - 2l1l3€183 0
0 . 2[1 — 3C1 + lQClcQ — 2[28182 .
3[383 - lngCQSg - 2[2[38203 (‘93 —|— 0 ll —|—
3[383 — l1130133 — 2[1[38103 2[1 — 3C1 + l3C1€3 — 2[38183
2[2 — 302 + l1C1C2 — 2[15182 . 0 .
2[2 - 302 —|— l3C2C3 - 2[35283 lz —|— 2[3 - 303 —|— lgCQCg — 2[28253 l3 (48)

0 213 — 303 + 11(21(33 — 2[15183

The above equation can be written in the form of equation (13) as

0, h
(5] o 1) a0
0 Is

where the columns of [K*] and [K] are coefficients of 6, i =1,2,3and [;, i = 1,2,3
respectively.
Assuming all the lengths k;;’s are v/3/2(the lengths of the medians of the top platform

are 0.5 units each) the coordinates of the centroid of the moving platform are given as

(i) = (1/3)(S:1 +S2 +S3)

[ 1-ha (—1/2)(1 — lyey) (—1/2)(1 — lyes)
= 3 ? +| (V3/2)(1 = les) | + g—\/§/2)(1—13c3) (50)

and the velocity of the centre is given by

Lisi\ (—=1/2)l2s2 ‘ (—=1/2)l3s5 .
v = (1/3) K 0 ) 0, + ( (V3/2)l3s, ) 0, + ( (—V/3/2)l353 ) 03]

l1c1 lQCQ l3€3
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7 ) (i o (35 )

+(13) || 0 i+ | (—VE2e b+ | (VB2 |
by i

() ()
b iy

where [J*] and [J] are 3 x 3 matrices obtained from the coefficients of 6;, i = 1,2,3, and

[;, i =1,2,3 respectively. Using equation (49) in equation (51), we get

v = (] = [IE T KD o, )" Zaw (52)

The metric coefficients in this case are the elements of the matrix ([J]—[J*][K*] ' [K])T([J]—
[J*][K*]7'[K]), and the three-degree-of-freedom RPSSPR-SPR parallel manipulator will

loose one or more degree-of-freedom when
det[g"] = det[([J] - [T KD ([J] = [J)[E] ' [K])] = 0 (53)

The above equation is a function of the passive variables 8;, 1 = 1,2, 3 and the three actuated
variables [;, © = 1,2,3. Equation (53) together with the loop closure equations (47) represent
4 equations in 6 unknowns and hence the singularities occur on a high-order 2D surface. It
is very difficult to derive analytical results for this case; we, therefore, present numerical
results.

At a typical non-singular point given by (I1,ls,l3) = (0.5,1.0,2.0) meters, and the
corresponding passive variables,(6;,65,605), given by (0.4,0.7535,0.2402) radians, the tip
of the velocity vector will lie on the ellipsoid shown in figure 5. The maximum, inter-
mediate, and minimum velocities along the principal axes of the ellipsoid are given by
0.3724,0.3162,0.2031 m/sec respectively. The directions of the corresponding principal axes
are (0.9921, —0.0394,0.1187)T, (0.1166,0.6338, —0.7646)T and (—0.0452,0.7724,0.6335)T
spectively.

From numerical solution of the constraint equations and the condition for loss of degree-
of-freedom, we find that the leg lengths, (I1,[3,13), given by (0.5,1.0,1.9710) meters and
the corresponding passive variables, (61,6s,0s3), given by (1.1691,0.4781,0.2355) radians is
a singular point. The tip of the velocity ellipsoid no longer lies on an ellipsoid and the
eigenvalues of the matrix ([J] — [J*][K*]~![K]) are (0.7647,0,2.2773) m/sec. At this singular

point, the mechanism looses one degree-of-freedom and the velocity distribution is the ellipse
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Figure 5: Velocity ellipsoid at a non-singular point
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shown in sectional views and as a 3D plot in figure 6. The centroid of the top platform can

move along any direction in a plane spanned by the vectors corresponding to the two non-zero

eigenvalues.

Figure 6: Velocity ellipse at a singular point

The RPSSPR-SPR parallel manipulator will gain one or more degrees-of-freedom when

det[K*] =

The above equation

(3[151 — l1l28162 — 2[1[26152) X (3[252 — l2l38263 — 2[2[36253) X
(3[353 — l1l3€183 — 2[1[35163)
—|—(3l181 — l1l381€3 — 2[1[36183) X (3[282 — l1l20132 — 2[1[28102) X

(3[383 - l2l3C253 - 2[2[382C3) = 0 (54)

is a function of all the passive and active joint variables and again

together with the loop closure equation (47) represent a set of 4 equations in 6 variables.

Thus the singularities resulting in a gain of one or more degrees-of-freedom also lie on a

2D surface. It is very difficult to get analytical expressions for this surface and we present

numerical results.
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At the values of leg-lengths, (/1,13,13), given by (0.575,0.483,0.544) meters respectively
and the corresponding passive variables, (61, 6,,03), given by (—0.3441, —0.0138,0.2320) ra-
dians, det[ K*] is found to be very close to zero. The eigenvalues of [K™*] are -0.5565, 0 and
0.4509 respectively and the three eigenvectors corresponding to the three eigenvalues are
(—0.8098,0.3571, —0.4656), (—0.3109, —0.8743, —0.3727)T and (—0.0877, —0.4781, —0.8739)7
respectively. Hence at this point, the mechanism gains one degree-of-freedom and the veloc-

ity of the centroid, with all actuated joints locked, is given as

—0.0647 \ 0.0011 '\ —0.0208 \
v=1| o0 0+ | —0.0019 |d,+ | —0.0361 |45 (55)
0.1804 0.1610 0.1763

where (91, 0,, ég)T is the eigenvector a x (—0.3109, —0.8743, —0.3727)T with a arbitrary. It
is clear that the velocity vector lies along a straight line and the mechanism has gained
instantaneously a degree-of-freedom at this singular point. Figure 7 shows the velocity

distribution at the singular point.

0.05 — 1
05
$ 0 S
-05
B 0 0 s ol 31 005 0 o005 01
Vx Vx
1
05
S0
05
2005 0 0.05 Vy 005 01 vy

vy
Figure 7: Velocity at a singular point

At the values of leg-lengths, (I1,l2,13), given by (1.9363,2.9998,1.9363) meters respec-
tively and the corresponding passive variables, (0y,65,605), given by (1.3096,0.9817,1.3096)
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radians, det[K™] is also found to be very close to zero. The eigenvalues of [K*| are 0, 0,
2.8058 respectively. Hence at this configuration the mechanism gains two degrees of free-
dom. The velocity distribution, in this case an ellipse, is shown in figure 8. The singularities

corresponding to gain of two degrees of freedom lie on a curve in 12,

15 T " " 1
1
0.5
0.5
20 §
-0.5
-0.5
-1
-15 -1
-04 -02 0 0.2 0.4 -04 -02 0 0.2 0.4
VX VX
1
0.5
3 o0
-0.5
_1 L i "
2 0 1 2 vy 2 =05y

Figure 8: Velocity ellipse at a singular point

Finally, at values of leg-lengths, (I1,ls,13), given by (0.5,0.5,0.5) meters respectively and
the corresponding passive variables, (61,0z,60s), given by (0,0,0) radians, the eigenvalues
det[ K*] are found to be all zero. Hence at this singular configuration, the mechanism gains
three degrees of freedom. The velocity distribution, in this case would be an ellipsoid.
Geometrically, at this configuration, the moving platform is in the same plane as the base
platform and one can show that there are 8 such possible configurations with /; = 0.5 or 2.0

with all 8; as zero.

5 Conclusion

In this paper, we have presented a general geometric framework for differential analysis of

point trajectories traced out by multi-degree-of-freedom serial and parallel, non-redundant
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manipulators. At non-singular points, the tip of the velocity vector of a point on the end-
effector lies on an ellipsoid or ellipse. At singular configurations, the ellipsoid degenerates to
an ellipse, a line or a point depending on the number of degrees-of-freedom lost at that point.
For a parallel manipulator, at a gain of degree-of-freedom singularity, there is a growth to
a line, an ellipse or an ellipsoid depending on the number of degrees-of-freedom gained. In
both serial and parallel manipulators, the partial derivatives of the metric coefficients and
the rate of change of shape and size of the ellipsoid or ellipse can be used to determine the
possible accelerations at the singular configurations. The developed theory was illustrated

with the help of a serial and a parallel manipulator examples.
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