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Abstract

The axially translating flexible beam with a prismatic joint can be modeled us-
ing the Euler-Bernoulli beam equation together with the convective terms. In gen-
eral, the method of separation of variables cannot be applied to solve this partial
differential equation. In this paper, we present a non-dimensional form of the Euler-
Bernoulli beam equation using the concept of group velocity and present conditions
under which separation of variables and assumed modes method can be used. The use
of clamped-mass boundary conditions lead to a time-dependent frequency equation for
the translating flexible beam. We present a novel method to solve this time-dependent
frequency equation by using a differential form of the frequency equation. The as-
sumed mode/Lagrangian formulation of dynamics is employed to derive closed form
equations of motion. We show using the Lyapunov’s first method that the dynamic
response of flexural modal variables become unstable during retraction of the flexible
beam, compared to the stable dynamic response during extension of the beam. Numer-
ical simulation results are presented for the uniform axial motion induced transverse
vibration for a typical flexible beam.

1. INTRODUCTION

Modeling issues associated with flexible beams in translational motion and with a prismatic
joint at one end have been receiving attention lately [1 —6]. When a beam with the prismatic
joint is modeled as flexible, the system becomes a moving boundary value problem as the
spatial domain of the system changes with time. Moving boundary value problems have also
been considered in the deployment dynamic analysis of flexible appendages of a spacecraft
[7,8].
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Tabarrok et al.[1] studied the dynamics of an axially moving beam. They presented
properties of the mode shapes of clamped-free beams in flexure, as the beam length varies
with time. They also derived the equations of motion of a simple cantilever beam having
an axial motion on a stationary rigid base by using Newton’s second law. Buffinton and
Kane|2| studied the dynamics of a beam moving at a prescribed rate over two bilateral sup-
ports. Regarding the supports as kinematical constraints imposed on an unrestrained beam,
equations of motion were formulated by using an alternative form of the Kane’s method[9]
and using assumed modes technique to discretize the beam. Wang and Wei[3] studied the
vibration problem of a moving slender prismatic beam using a Galerkin approximation with
time-dependent basis functions and by applying Newton’s second law. Yuh and Young[4] pre-
sented the experimental results to validate the approximated dynamic model derived using
assumed modes method for a flexible beam which has a rotational and translational mo-
tion. Stylianou and Tabarrok[6] developed governing equations of motion for axially moving
beams through finite element discretization. They have used variable-domain beam element
wherein the number of elements used in the model remains fixed, while their sizes change
with time in a prescribed manner. Tsuchiya|8] studied the dynamics of a spacecraft during
extension of flexible appendages under the assumption of small extension velocity. Extensive
discussions about this assumption were made by Jankovic[10].

In all the aforementioned works, it is invariably assumed that the translating flexible
beams can be modeled as Euler-Bernoulli beams in flexure with clamped-free boundary
conditions, leading to a time-independent frequency equation [2,5]. The ‘free’ boundary
condition however may lead to inaccurate mode shapes and over-estimated eigen frequencies
which may have destabilizing effect when the axially moving elastic beam carries a finite
load at the distal end[11]. In such cases the ‘clamped-mass’ boundary conditions are more
appropriate. More importantly, the applicability of assumed modes method to discretize
flexibility of a translating elastic beam may not be valid, as the principle of separation of
space-dependent eigenfunctions and time-dependent modal amplitudes is not valid under
general conditions. Therefore it is imperative to derive conditions under which the assumed
modes method can be used, as this method has some technical advantages[11] over the other
methods for modeling and solving the continuous dynamical systems.

In the analysis of dynamical systems, it is important to discuss the stability properties
for different motion characteristics of the system. Elmaraghy and Tabarrok[12] discussed the
dynamic stability of an axially accelerated elastic beam between two encastré ends subject

to a prescribed periodic root force. They reported regions of instability of this system for



various combinations of the excitation frequency and amplitude of the axial oscillations. In
their investigation, although the beam under study had axial motion, the vibrating length
of the beam remained constant due to the fixed supports at both the ends. Zajaczkowski
and his co-workers[13, 14| later determined the instability regions of an axially moving beam
subject to periodic input force with varying vibrating length of the beam. Stylianou and
Tabarrok[6] investigated the dynamic stability characteristics of a flexible extendible beam
for various extrusion profiles. In a different study, Wang and Wei[3] have reported stability
results for a translating beam with the prismatic joint. It is significant to note that their
results are in contrast to our results in this paper, however, our results are consistent with
the recent results reported by Stylianou and Tabarrok[6].

In this paper, we present a discussion on the applicability of using separation of vari-
ables for a translating flexible beam. We present the notion of group velocity for dispersive
waves and a non-dimensionalized Euler-Bernoulli beam equation based on this group veloc-
ity. We show that if the beam is translating at a constant, slow (compared to the group
velocity) speed, the assumed modes method can be used. The use of clamped-mass boundary
conditions lead to a time-dependent frequency equation for the translating flexible beam. We
present a novel method to solve this time-dependent frequency equation by using a differen-
tial form of the transcendental frequency equation. We then derive the closed form dynamic
equations of motion for the translating flexible beam using the Lagrangian formulation in
conjunction with the assumed modes method. We show using the Lyapunov’s first method
that the dynamic response of flexural modal variables become unstable during retraction of
the flexible beam, compared to the stable dynamic response during extension of the beam.
Finally, we present dynamic simulation results and show that they agree with an FEM based

simulation.

2. MODELING OF A TRANSLATING FLEXIBLE BEAM

Figure 1 shows an uniform flexible beam, of length [(¢) outside the rigid hub at time ¢,
vibrating in the Z-X plane and moving axially at a specified velocity U(t) along the Z
direction. The portion of the beam to the left of origin of the fixed coordinate system
(1 —1(t)), where [° is the total length of the beam, is assumed not to be vibrating. Any
arbitrary material point along the neutral axis of the beam is located by s. We assume
that the beam is inextensible along its neutral axis and hence the axial velocity U(t) is

independent of s[1]. Denoting the elastic displacement of the point with reference to the
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Figure 1: A schematic of the prismatic jointed flexible link with clamped and end-mass
conditions

neutral axis at time ¢t by u(s,t), we can write the free vibration equation of the beam using
the Euler-Bernoulli beam theory (neglecting the shear deformation and rotary inertia effects
[15]) as,

0tu(s,t) 0%u(s,t) 0%u(s,t) 0?u(s,t)  dU Ou(s,t)
El—— +pA| — =+ —F =+ U ——+———|=0 (1
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where s € (0,1(t)), EI is the flexural rigidity, p is the density of the material and A is the
cross-sectional area of the beam. It should be noted in general that the right-hand side of
equation(1) will have the axial root force in the Z direction (see equation(11) of [1], and
equation(19) of [4]). The boundary conditions for the above partial differential equation(1),

for the clamped-mass case are

_ 0?u(s,t) _ Du(s,t)
s Do = 0 EI[ 0s® L:z(t) - _JL[ ot*0s s=I(t)
3 2
lau(s,t)] _ 0 BT [a U(? t)] — M, [a u(i, t)] @)
9s ], ds s=1(t) ot s=1(t)

where My and .J;, are the concentrated mass and rotary inertia of the load at the tip of the

beam (see Figure 1).
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, and if the axial velocity(U) is zero, it reduces to the standard Euler-Bernoulli

The above equation(1) contains the convective terms 2U , U?
dU Ou(s, t)

dt Os
beam equation with clamped-mass boundary conditions. The above equation also represents

, and

a moving boundary value problem as the domain governed by this equation changes with
time. In this most general form, the above partial differential equation cannot be solved
using the separation of variables method, as this method requires the general shape of the
beam displacement not to change with time, while only the amplitude of this shape to change
with time [16]. Therefore, it is required that the numerical solution to the partial differential
equation(1) will have to be determined by either using finite difference or finite element based
schemes. It should be noted that these numerical schemes are however computationally very
expensive for a specified numerical accuracy and special programming considerations are
necessary. Moreover, as the finite element model uses polynomial mode shape functions
which do not belong to the class of complete set of functions, monotonic convergence to
actual solution cannot always be guaranteed [11, 16]. However, convergence can be improved
by considering large number of elements in the model [6]. In the rest of the section we
present conditions under which the separation of variables and the assumed modes method

can be used to solve the above problem.

Let us introduce the non-dimensional variables: n = s/I° and 7 = /(1°/U,)
1 |EI
with U, = oA Note that n, 7, and U, are based on the fully extended length of the
p

beam [°, as this would give the worst! case. The quantity U, is the “group velocity” of the
dispersive waves of the Euler-Bernoulli beam equation[17] and 1°/U, denotes the time taken
for a disturbance induced at one end of the beam to travel the entire length of beam 1°. We
observe that for a rigid body (EI — o), the time(1°/U,) taken for the disturbance to travel
over the entire domain (/%) approaches zero. On the other hand, for a highly flexible beam
(ET is small) or for a very long beam ({° is large), the time for the disturbance to travel
the entire domain will be large. It may be mentioned that for times smaller than [°/U, the
vibratory motion of the beam is not governed by the equation(1). For times much greater
than {°/U, however, the vibratory motion of the translating beam is completely governed by
the equation(1) and one can use the instantaneous mode shapes of the cantilever beam for
discretization of the continuum model under certain conditions.

Rewriting the partial differential equation in terms of the non-dimensional variables,

!We use the non-dimensional U/U, and hence the worst case is when U, is small, i.e. when {° is used.



n, T and the ratio U/U,, we get
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with the clamped-mass boundary conditions:
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We can make the following observations from the above equations(3-4):

1. The coefficients of the first two terms are unity and the third, fourth and fifth terms
are in terms of U/U, and the derivative of U/U, with respect to 7. For a constant axial
velocity, the term containing the derivative of U/U, with respect to 7 is zero. For the
third and fourth terms to be dominant, U/U, should be large.

2. The ratio U/U,, for a given U, is largest for the smallest U,. The smallest U, is

obtained when the beam is fully extended, i.e. when [ = [°.

3. If U/U, < 1, then by dimensional analysis we can neglect the third and fourth terms.
In typical simulations and experiments, see for example in Yuh and Young[4], U is
approximately 0.1 m/sec, and U, is approximately 3.03 m/sec giving U/U, ~ 0.033 <
1. Hence the convective terms can be neglected. We have run simulations with various
axial speeds U, upto 1 m/sec with U, = 59.34 m/sec, and have observed that the
contribution of the convective terms are much smaller compared to the first two terms.
In particular, the tip deflections obtained using the instantaneous mode shapes, after
neglecting the convective terms match quite accurately with those obtained from a

FEM based model derived from the complete partial differential equation[11].

4. Once the convective terms are dropped, we are left with the standard Euler-Bernoulli
beam equation for a clamped-mass cantilever. Separation of variables or the assumed
modes method can then be used with the eigen-frequencies based on the fully extended
length 1°. Even if the length is changing continuously with time(slowly compared to
U,) we can still assume that the “instantaneous eigen-modes” i.e., the mode shapes
of the translating beam at every instant of time approximated by that of a cantilever

beam[4], can be used. However, we have to solve for the slowly and continuously
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changing “eigen-frequencies” (often called ‘quasi-frequencies’ [10]) at each instant of

time. This procedure is illustrated below.

Let the lateral deflection be described as u(n, 7) = 1(n)T€(7), where spatial admissible
functions (1) £ [¢1(n),¥a(n), ..., Ua(n)]" are the complete eigen functions (in the
sense that for arbitrary square-integrable u(n,7) : min || u(n,7) — Y (n)&(7) |[|*=0).

Then following the standard procedure of assumed modes method, we can write

d*e; d*&; :
dni")gi(f) + () dT(zT) - i=1.2. . ..n (5)
For separation of variables, the ratio (d2gi(;_)) J&(T) = —(d4¢i(n)) /¥i(n) must be
dr dn?*

constant [16]. This constant is usually denoted by —w? and are called the ‘eigen-
frequencies’ of the system(5). The eigen-frequencies are related to the roots(3;) of
the frequency equation (also called the ‘wave number’ of system(5)) by the dispersion
U o
relation[17], w; = Tgﬁf. It can be seen that when length of the vibrating beam(l)
changes continuously with time, these eigen-frequencies will also change continuously

with time irrespective of 8; which are determined by the end-conditions.

. We observe from the boundary conditions (equation(4)) that it is reasonable to use
Jr

pAl3

M

TLZ < 1, when the beam is fully extended (i.e. [ = [°). On the other hand, if the
p

rotary inertia(J;) and mass(M},) of the load are comparable to that of the vibrating

“free” end-conditions for the choice of eigen functions(e)(n)) only if < 1 and

beam, it is more appropriate and correct to use the “mass” end-conditions. The mass

end-conditions lead to time-dependent frequency equation as shown in the following.

The eigen functions ¢ (n) satisfying the “clamped-mass” boundary conditions are given
by,
i(n) = Ci [ cos(Bim) — cosh(Bm) + v; (sin(Bin) — sinh(Bin)) ] (6)
where,
sin 3; — sinh 8; + M f3;(cos 3; — cosh ;)
v = : -
cos B; + cosh B; — M B;(sin 5; — sinh 3;)

and (; are solutions of the frequency equation,

(7)

(1 + cosh f;cos ;) — M B;(cosh B;sin 3; — sinh S;cos ;)
— JB3;*(cosh Bisin B; + sinh B;cos 3;) + M JB;*(1 — cosh Bicos 3;) = 0 (8)
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the eigen functions. It can be seen from equation(8) that when ‘clamped-free’ end-

The C; are constants which may be chosen to normalize

conditions are used the roots(f;) of the equation will be constants, however with the

‘clamped-mass’ end-conditions they will change with time, albeit slowly.

. The time dependent frequency equation can be solved by either using a root finding
algorithm at each instant of time or by using a “table look-up” approach. The former
approach may lead to considerable increase in computational time, while the latter
requires a large storage space for the specified accuracy. In the following, we present a
novel method to solve time dependent frequency equation using differential form of the

equation, which then can be solved together with the dynamic equations of motion.

Let us rewrite the clamped-mass frequency equation(8) as,

M B:
f(Bi, 1) = (1 + cosh Bicos ;) — pil/fz (cosh f;sin §; — sinh B;cos ;)
.3 '4
_ ﬁflz?’ (cosh SBjsin §; + sinh B;cos ;) + %(1 —cosh Bicos B;) =0 (9)

Since the frequency equation is continuous in 3; and the roots of the frequency equation
are all distinct[18], we can differentiate equation(9) with respect to time,
df (Bi,1) _ 0f(Bi,1)dBi | 9f(Bi,1) dl

_ s 0f(Bi0) dl _ |
dt o6, dat T ol dt (10)

and rearrange to obtain,

dfi _ f1(8i,1)

@ = LG )
where
My,
(Bl = AlZ —— f;(sinh ;cos B; — cosh S;sin f;)
Al T L 3 (sinh B;cos B; + cosh §;sin 3;)
4M J
QALQZg Bi*(1 — cosh fBicos ;) (12)



and

f(Bi,1) = ll + % (1 — pilLl?’ ﬁi‘l)] (sinh B;cos B; — cosh S;sin ;)

3J
a PA;3 f3; (sinh f3;cos B; + cosh B;sin f3;)

2JL 3 2ML 2-]\4L
. — (1 h 3. .
+ pAl3ﬁz [pAl ( + Al ) cos @COS@]

2M
- & AzL B;sinh Bisin B; (13)

This ordinary differential equation(11) on f;, is a function of the generalized variables
(I and U) and can then be solved together with the dynamic equations of motion of
the system, with the initial condition §;(t = 0) solved from the frequency equation(9)
for I(t = 0).

In summary, we can conclude that although the eigenfunctions ;(n) (see equation(6))
does not strictly satisfy the partial differential equation(3), the translating flexible beam can
be quite accurately modeled as an instantaneous clamped-mass cantilever beam if the axial
velocity U is constant and small compared to the group velocity U,. We can assume that
the separation of variables method can then be used, however, we need to take into account
the slowly changing “eigen-frequencies”. The time-dependent frequency equation due to the
clamped-mass boundary conditions can be solved using a differential form of the equation

together with the equations of motion.

3. DYNAMIC EQUATIONS OF MOTION

The dynamic equations of motion for the translating flexible beam shown in Figure 1 can be
obtained by using the Lagrangian formulation[16]. Without loss of generality, let us suppose
that the rotary inertia(Jy) at the tip of the translating beam is negligible. We assume that
the elastic displacement u(s,t) of a material point of the beam is discretized by assumed

modes method in terms of the instantaneous clamped-mass eigen functions as,

n

u(7, t) = ()&t (14)

=1

where 7) = [(t) is the vibrating length of the translating beam, and n is the number of

ma

modes retained in the expansion. Then, we can write the velocity of the material point with



reference to fixed coordinate system as,

U(t)
VO= & et ), iu) (15)
; ldh’(??) i on &(1) 1)
Then the total kinetic energy of the system is given by,
T = JpAW ~ V() + 3 pAl) [ v V(i + MO MO, (16)

and the total potential energy of the system (neglecting the axial and torsional vibrations of

the translating beam) is given by[15],

V=siw (Z ’ gﬁ;ﬁﬁ)&(t)> i (17)

i=1
The Lagrange’s equations for the translating flexible beam with clamped boundary condition

at the external input end for the generalized flexible variables, and for the rigid-body variable

are given by,

for the rigid-body variable I(%):

d ( 0T or ov
di <8U(t)> am A (18)
for the flexible deformation variable &;(¢):
d ( oT oT ov
- : - + =0 19
# (52w) 2w * 2w 1

Thus the equations of motion for the translating flexible beam utilizing the orthogonality of

the eigen functions can be written in matrix form as,

(o vy ) (e) () ()= (%) -

where F' is the axial input force for the rigid-body axial motion of the beam as shown in
Figure 1. Note that the subscripts r and f correspond to components of the rigid-body, and

the flexible deformation variables respectively.
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The elements of the positive-definite symmetric mass matrix M take on the expressions

below,
My = pAz°+ML+% (t)TC(t)g(t)+l]2MTtL)§(t)TC~J(t)£(t) (21)
m,; = —pAD(E(t) - f‘{—tg’ﬁ(we(t) (22)
Myr = pAIMT + My (@), [ (@) (23)

where I is the n x n identity matrix. The n X n matrices C and D are the domain integration

0v; (1) O
of the eigen functions, whose ijth element is given by, C;; = /0 T w67(7 ) %S ) g3 and

D;; / i (7 )81/1]( )dn respectively. The ijth element of the n x n matrices C, and D
~ o, oY;
due to the end-mass boundary condition is given by, C;; = [ %7(777)] [ wa] ;}n)] , and
n=1 n=1

oY (7
= | (n)]~2 %577) respectively. Note that these domain dependent matrices are
n=1 577 -
=1

functions of the roots(5;) of the frequency equation(9), and they will change with time(¢)
when the clamped-mass end conditions are used.
The terms h, and hy can be computed via the Christoffel symbols, i.e. via differenti-

ation of the elements of the mass matrix, and are given by,

e = —ooeo)” [pact) + 20| e + e [pact + ko] éw
55—8 (1) [ A0 j‘f—t)%ft)] £(t) - &)’ [pADu) - %’ﬁ@] &)
- PR E0 - €0 5 [P0 0 4
by = 00 [pa®0 + MO e - L0 o+ it e) o)
- Uo) o4 (D0 - D)) + 1 (B - D)) | €0 + pavily
M, [BB)Té) (25)

It can be shown that a factorization of h(l, U, ¢, §) exists

e ()= (o @) ()
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d
such that [% (M) — QN] is skew-symmetric.

Note that the potential energy of the system (see equation(17)) is a function of the
vibrating length of the translating beam [(¢), and hence using the Lagrange’s equations(18-
19), we get k, and the stiffness vector k; as,

3EI EI 7 dK(t)

kr = _214(t)5(t)TK(t)5(t)+W6(t) —a &0 (26)
K, = %K(t)&(t) (@7)

8*yi(7)\*
o
We note that the matrix K is time dependent, when the clamped-mass boundary conditions

1
where the n x n diagonal stiffness coefficient matrix K is given by, K;; = / (
0

are used.

It should be remarked that the equations of motion(20-27) reduce to that of the bending
vibration of a beam[16], when there is no translational motion (i.e. [ = U = 0). It can also be
observed that the rigid-body translational motion and flexural vibration motion are coupled,

and it demonstrates the effects of elastic and translational motions on each other.

4. STABILITY ANALYSIS

In this section we discuss the stability characteristics of the free transverse vibratory motion
of an axially moving flexible beam by Lyapunov’s first method[19]. Let us rewrite the

equations of motion of the system(20) in state-space form, defining the (2n + 2) dimensional
X T
state vector x(t) = (I(t), €)7, U(t),€1)") as,

x(t) = f(x) + g(x)F (28)
where,
U()
B 10
0= by + k) — BT, (4 )
—hy(he + kr) — Hyp(hy + k)
and 0
g(x) = h(:r
h,;

12



T T \ !
with ( fr - By ) 2 < Morr My ) and is given by

hrf Hff m,f Mff
1 -1 -1 -1 —1
H— (M — m M7 rm, ) 1 —(myy — m) ;M;;m,f) mZ;fof
—1 —1 — _ _

Note that as the system mass matrix M is symmetric and positive definite, its inverse H
exists, and is also symmetric and positive definite. By the fact that any principal submatrix
of a positive definite matrix is positive definite, we note m,,, My, h,, and Hy; are also
positive definite (and symmetric as M and H are symmetric).

As f(x) and g(x) are continuously differentiable functions, we can linearize the non-

linear system(28) around the reference state trajectory xq(t) = (I4(t), 0, Uy(t),0)”, to get,

() = 100) + BOR) + [5] 0~ x00) + (O - Fut) +T 29

where T represents higher-order terms in the Taylor’s series expansion of f(x) about the ref-
erence state trajectory x4(t). It should be noted that the linearized equations have meaning

only if the higher-order terms in (x(¢) — x4(t)) are smaller than the linear terms, and indeed
r
I’ remain small when x(¢) remains close to x4(t) in the sense that lim N =0
llx—xql[=0 || x — x4 ||
where all norms are lo-norms. We can then rewrite the linearized equations(29) in compact

form by defining 6x(¢) 2 x(t) — x4(t), and 6F(t) £ F(t) — Fy(t) as,
5%(t) = A(t)6x(t) + B(t)6F(t) (30)

The time-varying state matrix A(¢) takes the form,

0 0 1 0
wpg (1) .
‘ 0 —A, 0 —A,
where,
A, = Hy [12’%1{ - Ud(t)(pA‘;—]f - %i—?) — %(MC + 2%6)1 (32)
Av = Hy [pAULOT+ My 10)00) ]+ Uao)(pAIDT — D)+ B~ B a3
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The control distribution matrix B(¢) takes the form,
A 0
B(t) = g(xa(t)) = (34)

Lemma. The system of equations governing the transverse vibratory motion of an axially
mouving beam s stable while the beam undergoes uniform extension and is unstable while the
beam undergoes uniform retraction.

PROOF. As the rigid-body and the vibratory motion are decoupled in the linearized form,

we write only the equations governing the vibratory motion from equation(30) as,

E(t) + AL(t) + AE(t) =0 (35)

and observe that the necessary condition for £(¢) to be stable is that the matrix A, is positive
definite. From the equation(23) and using the fact that the roots of the frequency equation
is a function of the vibrating length of the beam, we can rewrite A, as,
A, = Hyg | FMyg] 4 (pAID” D] + LB~ B) | L)
a(t)
= H; [G; + Gy, Ua(t)

Note that the matrix Gy is skew-symmetric, and the matrix G, is positive definite from
the property of the system mass matrix. Hence the term inside parentheses is a positive
definite matrix. As noted earlier Hy is positive definite, and hence A, is positive definite
only if Uy(t) remains positive. Uy(t) is positive while the beam undergoes uniform axial
extension which implies that the eigenvalues of the system(35) will have negative real parts
during extension of the beam, giving stable dynamic response. On the other hand, as Uy(t)
is negative during the uniform retraction of the beam, A, is negative definite giving rise to
unstable dynamic response. It should be mentioned here that although we have examined
the stability status of the reference state trajectory for the linearized equations, locally the
stability results hold true for the nonlinear system(28) also (see pp.188-190 of [19]). W

It should be mentioned that during extension of the flexible link, the amplitude of
modal position variables increases as the frequency of vibration decreases. However the
motion is stable, since eigenvalues of the system(35) have negative real parts. This is observed
in our numerical simulations (see section 5). On the other hand, during retraction of the link,

the frequency increases and the amplitude of modal position variables decreases. However
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Figure 2: Position response of flexible modal variables for the uniform extension of the beam
(ld(t) =0.54Uyt, Uy = 05m/8)

the motion is unstable as the eigenvalues of the system have positive real parts. Again this
is observed in our numerical simulations. The above results are in contrast to those reported
by Wang and Wei[3], nonetheless, they are in agreement with the recently reported results
of Stylianou and Tabarrok[6].

5. NUMERICAL RESULTS

We now present some numerical results for a typical Euler-Bernoulli beam undergoing both
rigid-body axial and flexural vibratory motions. The beam is assumed to be uniform
with parameter values pA = 0.5kg/m, EI = 100Nm? M = 0.125kg, I° = 3.0m, and
U, = 4.714m/s. In this section, we study only the induced vibration of the beam for pre-
scribed a priori rigid-body uniform axial motion. We present results for two cases of uniform
axial motion?: one, the beam extending with a constant axial velocity of 0.5m/s, and the
other, the beam retracting with a constant axial velocity of —0.5m/s. The first-order dif-
ferential equations corresponding to the transverse vibratory motion (see equation(28)) for
the specified rigid-body variables (l4(t), U4(t)) are solved by the variable step, variable order
(of interpolation), predictor-corrector (PECE), Adams algorithm[20] on a SUN-SPARC 10
Workstation. The initial conditions for flexible modal position variables are so chosen that
the initial potential energy of the system(equation(17)) is same for simulation of both the
cases of axial motion.

Figure 2 shows the response of flexible modal position variables during the uniform

2In this simulation, U/U, = 0.11, and the results show that the assumed modes model give reasonably
accurate results even for such a large U/U, ratio.
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Figure 3: Comparison of tip deflection for the uniform retraction of the beam.

extension of the beam. We observe that the contribution from higher modes to the tip
deflection of the beam is several orders smaller compared to the first mode. This indicates
the convergence of assumed modes model for the problem at hand. In Figure 3, we compare
the tip deflection during uniform retraction of the beam obtained using the instantaneous
mode shapes with those obtained from a FEM based model, and it can be seen that they
match quite accurately. Figure 3 also shows that the vibratory response of the beam based on
FEM has a higher fundamental natural frequency than the assumed modes model as reported
earlier[11]. Furthermore, although the results are not shown here, it has been observed that
the rate of work performed by the axial force (computed from the first equation of the
equations of motion(20) ) is equal to the computed rate of change of the total energy of
the system. Thus, this study demonstrates the validity of the numerical simulation, and
the feasibility of assumed modes model for accurate prediction of vibratory behavior during
uniform axial motions of the flexible beam.

To illustrate the stable response of modal variables during extension vis-a-vis unstable
response during retraction of the beam, we have plotted the position and velocity response
of mode-1 variable in Figures 4 and 5. We observe that the amplitude of mode-1 position
variable increases during the uniform extension case, and its velocity component decreases,
as opposed to the increase in magnitude of the velocity of mode-1 variable during uniform
retraction of the beam. It should be mentioned here that the increase in amplitude of modal

position variables during extension and the decrease during retraction is as anticipated,
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Figure 4: Position and velocity response of flexible modal variables for the uniform retraction
of the beam (l4(t) = 2.5 4+ Uyt, Uy = —0.5m/s).
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Figure 5: Position and velocity response of flexible modal variables for the uniform extension
of the beam (l4(t) = 0.5+ Ugt, Uy = 0.5m/s).
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Figure 6: Time history of real and imaginary parts of the mode-1 eigenvalues for the uniform
retraction and extension of the beam.
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Figure 7: Time history of the calculated force F' during uniform axial extension and retraction
of the beam.

because the flexible beam becomes “softer” as the length increases and “stiffer” as the
length reduces[5]. This is also evident by observing the imaginary part of eigenvalues (which
correspond to the natural frequency of modal variables) in Figure 6. We note that the real
part of eigenvalues corresponding to modal variables remain positive during retraction of
the beam, as opposed to the negative real parts of eigenvalues during the extension of the
beam. In Figure 7, we have plotted the force F' computed from the equation of motion
in the axial direction (see the first equation in (20)) for the specified time histories of /4(¢),
U,(t) and the computed time histories of £(t), €(¢) (from the second equation in (20)). It

is interesting to observe that this force remains negative (i.e. pointing in the negative Z
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Figure 8: Time history of the roots(3;) of clamped-mass frequency equation.

direction, see Figure 1) during both uniform extension and uniform retraction of the beam.
This fact is intuitively clear — to counter the centrifugal force due to transverse vibration
and to maintain constant axial velocity, force has to be applied in the negative Z direction.
However, we have not been able to prove this analytically from the equations of motion
(equation(20)). We also note that the force becomes highly oscillatory when length of the
beam reduces. This is mainly due to the increase in the frequency of oscillation of flexible
modal variables when vibrating length of the beam reduces during axial motion. Finally, we
show in Figure 8, the continuous time dependency of roots(f;) of the frequency equation(9)
due to the end-mass boundary condition for both uniform retraction and extension of the

beam.

6. SUMMARY

In this paper, we have presented a discussion on the applicability of using separation of
variables and the assumed modes method for discretizing a translating flexible beam. Based
on the concept of group velocity of the dispersive waves in beam, we presented a non-
dimensionalized Euler-Bernoulli equation for the translating beam. We showed that if the
beam is translating at a constant, slow (compared to the group velocity) speed, the prin-
ciple of separation of variables can be applied. We showed that when the mass and rotary
inertia of the load are comparable to that of the flexible beam, the mass end-conditions are
more accurate to use for the choice of proper eigen-functions. The clamped-mass boundary
conditions, however, lead to a time-dependent frequency equation. We presented a novel
method to solve this time-dependent frequency equation by using a differential form of the

frequency equation. We then derived the closed form equations of motion for a translating

19



flexible beam using the Lagrangian formulation of dynamics in conjunction with the assumed
modes method. We showed using the Lyapunov’s first method that the dynamic response
of flexible modal variables become unstable during retraction of a flexible link, compared to
the stable dynamic response during extension of the link. The above results were illustrated

with numerical simulations for a typical beam undergoing uniform axial motion.
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