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Abstract

In this paper, we present a novel differential geometric characterization of two- and
three-degree-of-freedom rigid body kinematics using a metric defined on dual vectors.
The instantaneous angular and linear velocities of a rigid body are expressed as a
dual velocity vector, and dual inner product is defined on this dual vector resulting
in a positive semi-definite and symmetric dual matrix. We show that the maximum
and minimum magnitude of the dual velocity vector, for a unit speed motion, can
be obtained as eigenvalues of this dual matrix. Furthermore, we show that the tip
of the dual velocity vector lies on a dual ellipse for a two-degree-of-freedom motion
and on a dual ellipsoid for a three-degree-of-freedom motion. In this manner velocity
distribution of a rigid body can be studied algebraically in terms of the eigenvalues of
a dual matrix or geometrically with the dual ellipse and ellipsoid. The second-order
properties of the two- and three-degree-of-freedom motions of a rigid body are also
obtained from the derivatives of the elements of the dual matrix. This results in a
definition of the geodesic motion of a rigid body. The theoretical results are illustrated
with the help of a spatial 2R and a parallel three-degree-of-freedom manipulator.

1 Introduction

The instantaneous kinematics of multi-degree-of-freedom rigid body motion is important in
several areas, including mechanism analysis and synthesis, robot control and motion plan-
ning, and spacecraft guidance and control. There are many approaches for studying instanta-
neous spatial kinematics of rigid body motions. A common way is to analyze the trajectories
of points and lines which are the elements of the rigid body(see, for example, [1] through
[7]). Another approach is to use the rotation matrix and a translation vector and obtain

instantaneous invariants(see, for example, [8] through [11]) and a third method is to use

*The authors are with the Dept. of Mechanical Engg., Indian Institute of Science, Bangalore 560 012,
and Dept. of Mechanical & Aeronautical Engineering, University of California, Davis, CA 95616.
e-mail: asitava@mecheng.iisc.ernet.in, bravani@ucdavis.edu



screws, twists and wrenches(see, for example, [12] through [15]), and yet another approach
is to use the notion of kinematic mappings[16].

In this paper, we take a re-look at instantaneous two- and three-degree-of-freedom rigid
body kinematics using classical differential-geometric tools and techniques. These techniques
are for studying differential properties of curves and surfaces and have therefore only been
used, in kinematics, to study trajectories of points (also lines and planes)in rigid body mo-
tions. They do not directly apply to differential kinematic analysis of rigid body motions and
often other approaches are usually used to evaluate velocity and acceleration distributions of
rigid body motions. In this paper we extend these differential geometric tools to the study of
rigid body motions rather than their point or line trajectories. We obtain such an extension
through the definition and use of a metric in the space of dual numbers and vectors'. We
represent the linear and angular velocity of a rigid body moving in three dimensional space,
R3, as a dual vector. We define a metric based on the definition of an inner product of two
dual vectors as a dual number[17, 18]. This allows us to obtain the maximum and minimum
of the dual velocity vector as eigenvalues of a positive semi-definite and symmetric dual ma-
trix associated with the metric. We show that for a unit speed motion, the tip of the dual
velocity vector lies on a dual ellipse and a dual ellipsoid for two- and three-degree-of-freedom
motions respectively.

Our approach for differential kinematic analysis is analogous to study of the second
fundamental form of a surface and the concepts of Christoffel symbols, Gaussian and geodesic
curvatures. Similar to the notion of a geodesic on a surface, we define a geodesic motion
of a rigid body where the components of the dual tangential acceleration are zero. For a
general 2R spatial manipulator, all the dual Christoffel symbols have real parts as zero.
In addition, the cylindroid and its principle pitches are same everywhere for a 2R spatial
manipulator since the first-order properties are independent of the joint variables. The
motion of the central cylindroid axis is a two parameter family of lines obtained by translation
and rotation, and the envelope of this family is a ‘quadratic cone’. The geodesics are straight
lines in the configuration space and these map to a particular family of lines. The foot of
the perpendicular from the origin to the line along the central axis of the cylindroid lies on
a curve on the ‘quadratic cone’. It is also shown that the ‘geodesic curve’ can be closed or
open depending on initial conditions. For the three-degree-of-freedom parallel manipulator
the pitches associated with the line congruence are different at different configurations and

the dual Christoffel symbols are not all zero.

!Dual numbers, first introduced by Clifford[19], have been used extensively in kinematics(see, for example,
[20] through [23]).



We hope that this new approach to differential kinematic analysis of rigid body motions
can lead to better understanding of velocity and acceleration distributions in robot manip-
ulators and other complex motions. The approach can also lead to other new theoretical
results such as the notion of geodesic motions described in this paper.

The paper is organized as follows: In section 2, we present, in brief, the definition of an
inner product of two dual vectors as a dual number, the representation of lines and screws
in terms of dual vectors, and the eigenvalues and eigenvectors of a dual matrix. In section
3, we consider differential kinematics of two and three degree-of-freedom motion of a rigid
body in R?* and show that the maximum and minimum dual velocities can be obtained as
eigenvalues of a positive semi-definite, symmetric dual matrix. Furthermore, we show that
the tip of the dual velocity vector lies on a dual ellipse or ellipsoid. We also obtain second-
order properties and obtain expressions for the dual Christoffel symbols. In section 4, we
illustrate the theoretical results with the help of a spatial 2R serial manipulator and three-

degree-of-freedom parallel manipulator. In section 5, we summarize the main results of this

paper.

2 Mathematical preliminaries

A dual number, @, has the form a + eay where a and a, are real numbers and €2 = €3... = 0.
A dual vector, A, has the form a + ea; where a and a, are real vectors in ®2. The inner

product of two dual vectors A and B can be defined as[17]
<A,B>:a-b+e(a-b0+b-a0) (1)

It may be noted that the above inner product is invariant to the choice of the origin of the
coordinate system used to describe A and B. The inner product is also different from the
inner product defined in [24](or see the English translation [25]) where the inner product has
been defined as (a-bg+ b - ay).

A line in 3 can be described as a dual vector as

ﬁ:Q+€Q0 (2)

where Q denotes the direction of the line, and Q¢ = r x Q is the moment of the line with
r as the position vector of any point on the line from an origin. There are 4 independent
parameters in Q and Qg since |Q| =1 and Q - Qp = 0. The foot of the perpendicular from

the origin to the line, denoted by, ro = (z,y, 2)T, is given as

ro=Q xQq (3)



The inner product of two lines follows from equation (1) and we have

<Li,Ly> = Qi -Qu+e(Qr- Qo2+ Q2 Qo)
= cos¢ — edsin ¢ (4)

where ¢ and d are the angle and the shortest distance respectively between the two lines.

A screw can be also described as a dual vector as
S=S+e€S, (5)

where, in terms of line coordinates, S = Q and Sy = Qy + hQ. In the previous equation
h is called the pitch of the screw and is the ratio of the translational displacement to the
rotational displacement. A screw has 5 independent parameters, i.e., 4 associated with the
line along the screw and a pitch.

The inner product of two screws follows from equations (1) and (4), and we have

< 31,32 > = S-Sy +€(81 . S()Q + S, - 801)
= cos@ + €((h1 + hg) cos ¢ — dsin ) (6)

where h; and ho are the pitches associated with the two screws. The inner product of a
screw with itself, from equation (6), is 1 + €(2h;).
The angular velocity, w, and the linear velocity, v, of a point on a rigid body, can be

together considered as a dual vector of the form

~

V=w+ev, (7)

The quantity YV have also been called a twist and a motor, and can be thought of as a screw

together with a magnitude. In terms of line coordinates, VY is given as

V= |w|(Q+€(Qo + hQ)) (8)

where |w| and Q give the magnitude and the direction of the angular velocity vector respec-

tively. The pitch of the screw may be obtained as

WV

h 9)

el
The eigenvalues of a n x n dual matrix [g] can be obtained from

[f]x —Ax =0 (10)
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where ) is an eigenvalue of the matrix [¢], and x is the corresponding eigenvector. The
eigenvalue is a dual number of the form A=+ €\g, where A\ and )\ are the real and dual
parts of A respectively. Similarly, the matrix [§] may be written in terms of the real, and
dual components as [§] = [g] + €[go]-

The dual characteristic polynomial of [§] is obtained from det([§] — A[I]) = 0, where
[I] is a real n X n identity matrix. Using the real and dual components of [§] and ), the
determinant can be expanded as det[([g] — A[Z]) + €([go] — Ao[])]- The determinant can be
further expanded in terms of the column vectors of the matrices ([g] — A[]) and ([go] — Mo[Z])

as

det([g1]g2]..--|gn])
+ €(det([go|ga]----|gn]) + det([g1|g02]----Ign]) + .. + det([g1]ga]...-|g0n])) =0 (11)

where g; and go; represent the i*® column of ([g|—A[Z]) and ([go] —o[]) respectively. Equation
(11) can be expanded to yield the characteristic polynomial of [¢] in the form

n

> (ar + €ar0)(A +erA™ " Ag) =0 (12)

r=0
where a, and a,o are the coefficients of the dual characteristic polynomial. Equating the real

and dual parts of the above equation to zero separately, we get polynomial equations of the

form
Z a, N =0
r=0
> ar A A + apX =0 (13)

r=0
Solving the first of the above pair of equations we can get n values of A\, and on substituting
A in the second equation we can linearly solve for the n Ay’s as

Z?:o arO)\r

Ag = — =000t
n -1
Zr:() a/TT)\T

(A #0) (14)

If A =0, by applying L’Hospitals rule, we can easily show that )\ is also 0.
For X\ # 0, a principal pitch, h*, can be derived as
_ N
2

When A and )\q are zero, the principal pitch is not defined. In such a situation, the rigid

h (15)

body undergoes a pure translation and, in accordance with classical screw theory, we can
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state that the pitch is infinite. It may be noted that Ay maybe zero for non-zero A. In such
a case h* is zero, and, in accordance with classical screw theory, the rigid body undergoes a
pure rotation.

The eigenvectors, x, may be computed from the standard eigen-problem corresponding

to the real part, namely,

(lg] = AlI)x =0
x| =1 (16)

3 Two- and three-degree-of-freedom motion of a rigid
body

Before we discuss the motion of a rigid body, we briefly present the concept of a velocity
ellipse and ellipsoid[5] traced by an arbitrary point on a moving rigid body. Our approach
is to extend the differential-geometric method and results of point trajectories to the instan-

taneous kinematics of the entire rigid body by use of dual numbers and vectors.

3.1 Point trajectory

Consider a rigid body B undergoing a multi-degree-of-freedom motion, with respect to a
fixed coordinate system. The trajectory traced by an arbitrary point in B, with Cartesian
coordinates (x,y, z), can be expressed as a set of equations in terms of the n independent

motion parameters 6;, i =1,2,....,n ? as®
(z,y,2)" = (04, ...,0,) (17)
The velocity at any point, p, on the point trajectory can be written as

V= 0 = [J(4)]s0 (18)

where 6; is the time derivative of ;, 1, is 01/ 06; evaluated at p, 0 is the vector (91, e Hn)T
and [J()]p is the Jacobian matrix of t evaluated at p. By varying @, we can get any

arbitrary velocity v at p. It is more instructive to look at the variation of v with a normalizing

2For n = 1,2, 3 the point trajectory is a curve, a surface and a solid region in R* respectively. For n > 3
we have a redundant motion.
3These are known as the forward kinematics equations in manipulator kinematics.



T
constraint of the form 8 0 = k%. For k = 1, we have a unit speed motion and by varying k
one can get all possible velocities, v, at the point p under consideration.

The dot product of the velocity with itself can be written as

v-v=01[g0 (19)

where the matrix elements, g;;, are the dot products (,-;),4,j = 1,2, ..,n. The matrix [g]
is symmetric and positive definite and its elements( in the language of differential geometry)
define a metric in the tangent space[26]. We make the following observations from the
definition of [¢] and equations (18) and (19):

e If [g] is non-singular(i.e, det[g] # 0), then we can write
VT ([J]lg ([l ) v =6"6 (20)

The matrix ([J][g]™")([/][g] )" is symmetric and positive definite, and for 0'0=1,
the tip of the velocity vector v lies on an ellipsoid. For two-degree-of-freedom motions
the tip of the vector v lies on an ellipse in the tangent plane as shown schematically in
figure 1. In classical differential geometry of surfaces this defines the so-called Tissot’s
indicatriz(see pages 145-155 of Strubecker[27]).

T
e The principal values of v? subject to constraint @ @ = 1 can be obtained by solving

the eigenvalue problem
916 — A0 =0 (21)

The maximum, minimum and intermediate values of |v| are the square roots of the
maximum, minimum, and intermediate eigenvalues of [g], namely v/Apaz, V/Amin, and
v/ Aint Tespectively. The directions of the maximum, minimum and intermediate veloc-
ities, or the principal velocities, are related to the eigenvectors of [g].

e The principal velocities are defined as
vi=[J())6;, i=1,2,3 (22)

where 0 is the eigenvector corresponding to eigenvalue ;. They can also be expressed

in the form
vi=\Ax i=1,2,3 (23)

where x; in an unit vector along [J(v)]6;.
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These three vectors form the three principal axes of the ellipsoid and determine the

shape of the ellipsoid(for an ellipse there are only a maximum and a minimum). If the
. . A 2 . . o .

normalization @ @ = k* is used, then the maximum and minimum values are scaled

by & but the shape of the velocity ellipsoid(or ellipse) doesn’t change. The elemental

volume(area in case of a surface) is proportional to ky/det[g]

Tangent Plane Rigid Body B

Figure 1: The velocity ellipse in the tangent plane

e The velocity vector, v, or the elements of the matrix [g] determine the first order
properties of the point trajectories. For the second-order properties we consider the

acceleration vector given in terms of the first and second partial derivatives of ¢ as
n .. n - -
a—= Zipﬂz + Z ¢ij9i9j (24)
i=1 ij=1

When the number of independent 6; is two and the point trajectory is in R2, we get

from differential geometry,

2 n
a=Y P, + > (Dijwp, + Lijn)0,0; (25)
i=1

=1

where n is the normal vector, L;;’s are the dot products %,; - n,,j = 1,2, and the six



[yi’s* are called the Christoffel symbols[26] of the first kind, and are given as
Fijk = %- . ¢k (26)

The six Christoffel symbols determine the nature of the curves on the surface and a
curve is said to be a geodesic® if the geodesic curvature is zero. It can be shown [26]
that the geodesic curvature is zero if the tangential acceleration is zero, and if 6 (¢),

6,(t) satisfies the non-linear differential equations
.. 2 k . -
On+ > T50:0; =0, k=12 (27)
4,j=1

the point trajectory is a geodesic. In the above equation, Ffj’s are called the Christoffel
symbols of the second kind, and are given by 7, (¢;; - ¥,)¢%, 4,5,k = 1,2, and ¢*
is the (I, k) element of [g]™!.

The local geometry of the surface is determined by the Gaussian curvature given by

_ det[L]
~ det[g]

(28)

The Gaussian curvature and the Christoffel symbols can also be derived purely in terms
of the metric coefficients, g;; and their first partial derivatives[26]. The second order
properties of a surface are completely determined by the elements g;;, L;;, and Ffj.

e If the number of independent 6; is three and the motion is in 3D space, then there
is no notion of a normal vector. In such a case, we get 18 Christoffel symbols, which

together with the 6 g;;’s completely determine the second-order properties of a surface.

In the next subsection, we extend the above mentioned, well-known differential-geometric
notions of a point trajectory to that of the entire rigid body motion by the use of dual numbers

and vectors.

3.2 Rigid body displacement

A general rigid body displacement can be expressed as a 4 x 4 matrix of homogeneous

coordinates[10] or as 3 x 3 dual orthogonal matrices[20]. By using the properties of these

“By the property of partial differentiation, T';jx = I';ix and there are only 6 Christoffel symbols.
5A geodesic is the shortest distance between two points on a surface.



matrices, and differentiating the matrix elements with respect to time, one can obtain ex-
pressions for left- and right-invariant velocities of a moving rigid body. For our purpose of
studying instantaneous rigid body kinematics, we use the well known form of expressing the

angular velocity and linear velocity of a point on the rigid body as a dual vector[17],

A

V=w+ev, =Y Sib; (29)
i=1

where w, v, are the angular velocity and linear velocity of a point respectively, 5}, 1=
1,2,..,n are n independent screws expressed using dual vectors, and éi, 1 =1,2,...,n are
the time derivatives of the n motion parameters. The above equation can also be written in

terms of the well known dual Jacobian matrix as

V=J]6 (30)

where @ is the vector (0, ...,0,)T and the i*® column of [J] is the screw ;.

Using the inner product between two screws (see equation (6)), we can write
PN ST
<V, V>=80 [§]6 (31)

where the matrix elements g;; are the inner products < Si,gj >, 4,7 = 1,2,..,n. The
elements of the matrix [¢§] are dual numbers and the matrix [g] is symmetric and positive

semi-definite. We make the following observations, analogous to point trajectories, from the
definition of [§] and [J]:

o If [§] is non-singular(i.e., det[g] # 0), then we can write
V(U 1la) (] V=80 (32)

The matrix ([J][g]")([J][g]")" is symmetric and positive semi-definite, and for a
constraint of the form ' @ = 1, the tip of the dual velocity vector V, in analogy with
point trajectories, lies on a dual ellipsoid. For two-degree-of-freedom motions the tip

of the dual vector f), in analogy with point trajectories, lies on a dual ellipse®.

e The principal values of V2 subject to constraint 9T9 = 1 can be obtained by solving
the eigenvalue problem
[9]6 — A0 =0 (33)
6The dual ellipse has been identified as a cylindroid in [28].
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The principal velocities are obtained as
Vi=[J]6;, i=1,23 (34)

where 6 is the eigenvector corresponding to the eigenvalue ;. The principal velocities

can also be written, in analogy with equation (23), as

Vi=VAg, i=123 (35)
where %; is the ¢ dual eigenvector of [J][J7] and is given by x; + exq;.

Expanding \; and %; in terms of real and dual parts and simplifying, we get
. Noi
Vi = \/):(Xz + 6(2—3\ixi + X()i)), )\z 7£ 0 (36)

Comparing with equation (8), we find

wi = Ax (37)
Vi = \/;i(h;xi'{'xm') (38)

where the i® principal pitch is given by

hik_ﬁ

For a two-degree-of-freedom motion the elements of the matrix [g], in terms of the
pitches(hq, hs), the angle, ¢, and the distance, d, between the two screws, S, and 32,

are
g1 = 14+¢€2h)
Gi2 = Ggo1 = cosd+ €((h1 + hg) cos @ — dsin @)
g2 = 1+4€(2hy) (40)

The eigenvalues are given by

A = 2cos®¢/2(1 + e((hy + hy) — dtan(¢/2))

~

Ay = 2sin®¢/2(1 + €((hy + ha) + dcot(¢/2)) (41)

The magnitudes of principal angular velocities are given as

wil = A = V2eos(6/2)
ws| = A = V2sin(4/2) (42)

11



The principal pitches are given by

Bt = 1/2((hy + hy) — dtan(¢/2))
By = 1/2((hy + ha) + dcot(/2)) (43)

The determinant, det[g], is given by

det[g] = sin® ¢(1 + €2(hy + hy + dcot @) (44)

It may be noted that det[g] is zero if ¢ = 0,nm, i.e., the axis of the two screws are
parallel. In such a case the two screws are not independent and we have a one-degree-

of-freedom motion of the rigid body — |ws| is zero from equation (42).

For a three-degree-of-freedom motion of the rigid body, the matrix [g] is 3 x 3 and
it has three eigenvalues. The maximum, minimum, and intermediate values of |V| are
the square roots of the three eigenvalues and are along the three principal axes of the

dual ellipsoid.

. T .
As in the case of point trajectories, it may be noted that the normalization 8" 0 = k?
scales the eigenvalues without changing the shape of the dual velocity ellipsoid(or
ellipse). The elemental dual area is proportional to y/det[g]. For a two-degree-of-

freedom motion we have

det[g] = sin ¢(1 + €(hy + he + d cot ¢)) (45)

To study the second-order properties of the rigid body motion, in analogy with the point
trajectories, we define a dual acceleration vector. We get by differentiating equation
(29),

3 . 3 A . .
a= Z 30, + Z SUGZHJ (46)
where SZ-J- = g—‘gj + 6(%—‘23% + Soi X S;).

The dual components a;, [ = 1,2, 3, are obtained by taking the dot product of Sl and

a, and we get

3 2
a = Z gilﬁj + Z Fiﬂeiﬁj = 1,2,3 (47)
i=1

1,j=1
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where g; = .SA} -S’l and fijl = Sij -S’l. The symbols fijl, in analogy to point trajectories,
are called the dual Christoffel symbols of the first kind.

The dual geodesic can be obtained by setting the dual tangential acceleration to zero.
We get two dual non-linear differential equations of the form

2 2
0=>gubi + > Tibib;, 1=1,2 (48)
=1

ij=1
A geometric interpretation of zero dual tangential acceleration can be obtained by

differentiating the dual velocity vector. Differentiating V in equation (7), we have [17]
a=a+e(a,+v, xw) (49)

where o is the angular acceleration of the rigid body and a, is the linear acceleration
of a point on the rigid body. For three-degree-of-freedom motion, zero dual tangential

acceleration leads to

a =

a+v,xw = 0 (50)

If a is zero, then the angular velocity w is constant, and by taking dot product of
second equation with w we get a, - w = 0. Differentiating the expression of pitch, A,

given in equation (9), with respect to time, ¢, and noting that w is constant, we get

—:—w-ap:() (51)

Hence a geodesic motion with zero dual tangential acceleration corresponds to a con-

stant angular velocity and constant pitch motion.

In the next section, we apply the results to the analysis of serial and parallel manipulators.

4 Illustrative Examples

In this section, we illustrate the concepts developed above by means of two examples, namely
that of a serial 2R manipulator and a parallel three-degree-of-freedom RPSSPR-SPR ma-
nipulator. In the first example we show that the well known cylindroid (see, for example,

Roth 1984) is the same at every point of the workspace. For the second order property, we

13



show that all the dual Christoffel symbols have real part as zero. To obtain, better insight,
we plot the surface traced by the central cylindroid axis and the geodesic. In the second
example, we show that the developed concepts can be applied to the analysis of parallel

manipulators.

4.1 A 2R manipulator

Figure 2 shows a two-degree-of-freedom manipulator with revolute(R) joints. The joint
variables are ¢ and 6. In terms of the link lengths, a;;’s, link offsets, d;’s, and twists «y;’s,

the mapping function 4, for a point (z,y,2)” on the moving rigid body, can be written as
(z,y,2)" = 1p(01,05) = diS1 + a12a12 + d2S5 + azzass (52)
where’

= (0,0, 1)

= (c1,51,0)7 (53)
=

= |

T
§18012, —C1502, Ca12)

T
(cr109 — 8189C19), (8160 + €182C12), SQ1289)
The partial derivatives ¥, and 1), are given by

T T T
P, = aia(—s1,¢1,0)" + do(saiact, sa1281,0)" + ags3(—s1c2 — c182c12, C1C0 — $182€Q2, 0)

Py = ags(—c182 — S1CoCa9, —8189 + C1CaCQ g, SQUCy) T (54)

The linear velocity of the point p(z,y, z) is given by 'gblél + ¢292, and the angular velocity
of the rigid body is given by 51651 + 8202. The dual velocity vector is defined as

where S; = S; + etp, with S;, 7 = 1,2 and ,,i = 1,2 defined in equation (53) and (54)

respectively. The elements of the symmetric and positive definite dual matrix g are

g1 = 1
G12 = Go1 = cas + €(—a1asa42) (56)
g = 1

14



p(z,y, 2)

S1 VA

Figure 2: A spatial 2R manipulator
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and the determinant of [§] is sin® a5 + €ais sin 20y5.

The eigenvalues of [g] are given by

)\1 = 2 sin2 (a12/2) + €aqo sin 12

Ay = 2cos’(a2/2) — €aosin oy (57)
The principal pitches are computed from equation ( 39) as

hi = 0.5 ajstan(ay2/2)
h; = —-0.5 a12 COt(OZlZ/Q) (58)

We make the following observations on equations (56,57,58):

e The coefficients of the matrix [g] are independent of the motion parameters, 6;, and

they depend only on the architecture of the mechanism.
e The eigenvalues of [g§] and, hence, the principal pitches are constant quantities.

e If the angle of twist between the screws, a3 = 0,7, we have det[g] = 0 and the motion

is singular. The screw axes are parallel in this case.

The above observations imply that the dual ellipse, and the cylindroid for the 2R manipulator
will be geometrically the same at all configurations, as they depend only on the architectural
parameters. Hence the first-order properties will be the same at all points in the workspace.
A representative cylindroid is shown in figure 3 for the principal pitches A7 = 3.0 and
h3 =5.0.

Second Order properties

We first observe that all the elements of [§] are independent of the motion parameters
0, and 6. This implies that the partial derivatives, with respect to the motion parameters,
of all the g;;’s are zero. To get better insight, we describe the second-order properties in
terms of the motion of the cylindroid axis. This is analogous to the study of second-order
properties of a surface by considering the variation in the normal vector at different points

on the surface.

"We use the symbols sy and ¢y to denote sin(-) and cos(-) respectively throughout this paper.
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Cylindroid for h1 = 3.000, h2 = 5.000

Figure 3: The cylindroid of a 2R manipulator

The principal screws are obtained from equation (34) as

A 1 4 o

Vi = 2(51—52)

A 1 - A

Vo = —=(&i+ S 59
> \/5( 1+ S2) (59)

The cylindroid axis is given by S = V) x V,, where the real and dual parts of S are given by

S

S = (cosf sinayy,sin ajgsinéy, 0)"
Sy = (cosaiz(aycos b + dosin aygsin @) + ags sin? ay sin 0 sin 6,
cos a12(a19 sin B — dy cos B sin o) — ags cos B) sin® oy sin s,

sin o (—dy sin ayg + a3 cos g sin fy))” (60)
The foot of the perpendicular to the cylindroid axis is obtained from equation(3) as

(.T, Y, Z)T =Try = ( sin (91(—d2 sin Q19 + Q93 COS (X12 sin (92),
cos 01 (da sin g + ass €os ao sin b)),

— dy €08 (1p + Gg3Sin g sin By )7 (61)
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Eliminating 6; and 6 from the above vector equation, we find that the locus of the foot of

the perpendicular is given by

(z? + y?) sin® ap — (dg + zcos agp)? = 0 (62)

From equations (61) and (62), we can infer the following regarding the motion of the cylin-

droid axis:

e The locus of the cylindroid axis for 2R manipulator is a two parameter family of lines
parallel to the XY plane. The envelope of this family is given by a quadratic cone
described by the foot of the perpendicular from the origin ry. The axis of the cone is

along the Z axis.

e The effect of variation in the parameter f; is a rotation of the cylindroid axis about

the Z axis, whereas changing 6, results in the translation of the axis in the Z direction.

The locus of the two parameter family of lines, representing the motion of cylindroid axis
for the 2R manipulator, is shown in figure 4. For clarity, we have shown the family of lines
for only three values of #; with line segments. The locus of the foot of the perpendicular is
shown in figure 5. The numerical values used in these plots are a;o = 1.0,a93 = 1.0,dy =
0.5, 10 = /4.

Geodesic Motion

As mentioned above, the g;;’s are independent of #; and 6, and all fz-jk’s have real part as

zero. The I';;;’s are given by

'm =0
[ = €(saua(—dasaua + ascacans))
f‘211 = e(saiz(dasary — azeacans))
[o1 = 0
T = 0 (63)
f‘122 = e(agsaiasy)
f‘212 = €(—az801257)
[ = 0
It can be observed that fzn = —flgl and f212 = —flgg. The dual geodesic equation, given

in(48), therefore reduces to the second-order linear differential equation of the form

6=0 (64)
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General Motion of the Cylindroid Axis

Figure 5: Locus of the foot of the perpendicular from the origin to the cylindroid axis
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The solution of the above equation is of the form 6;(t) = 6;(0)t + 6;(0), 7 = 1,2, where 6;(0)
and 6;(0) denote the initial values of the velocity and position in the ! parameter, and ¢
denotes time. Eliminating the independent parameter ¢ from the expressions of 6;, we can

write

02 = 0101 + ¢ (65)

62(0) . _ 62(0)61(0)—61(0)82(0)
61(0)" 7 61(0) '
The last equation shows that the geodesics are straight lines in the configuration space.

where ¢; = —

The geodesic motion of the cylindroid axis with ¢; = 2 and ¢; = 0 is shown in figure 6.
It may be mentioned that the ruled surface shown in figure 6 is a one parameter subset of
the locus of the cylindroid axis shown in figure 4. Figure 7 shows the locus of the foot of
the perpendicular for ¢; = 2 and ¢, = 0. It may be mentioned that this curve lies on the
quadratic cone shown in figure 5. It is to be noted that the shape of the geodesic curve
or the locus of ry for geodesic motion, is determined by quantity ¢;, which is a function of
the initial conditions. The curve is closed for rational values of ¢; and open for irrational
values(see figure 8 ). Moreover, it contains 2¢; loops, if ¢; is an integer(see figure 7 ). The
effect of ¢, is to rotate the curve about the Z axis, which is the axis of symmetry of the

curve. Figure 9 shows the XY projection of five geodesic curves for ¢y =2 and ¢ = 1,2, .., 5.

4.2 A three-degree-of-freedom parallel manipulator

In this section, we show that the theoretical analysis developed in the previous sections
is also applicable to the analysis of parallel manipulators. We use the three-loop, three-
degree-of-freedom RPSSPR-SPR mechanism of figure 10 described in [29] for this purpose.

The geometry chosen is same as in reference [29] where the revolute joints axes are
assumed to be co-planar and are perpendicular to the medians passing through the respective
vertices. Assuming that the length of the medians in the base equilateral triangle are unity,
we can obtain the coordinates of the of three spherical joints in the fixed coordinate system.

These are given by

P1 = [(1 — llcl), 0, llsl]T
P, = [—0.5(1 —lycs), V3/2(1 — lacy), loso]” (66)
P; = [—0.5(1 —ls¢c3), —V/3/2(1 — I5¢3), lgss)”
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where 60;,7 = 1,2,3 are rotations at the three passive rotary joints and /;,2 = 1,2, 3 are the
translations at the actuated prismatic joints.
The loop closure equations are obtained from the fact that the distance between the spherical

joints are constant and are of the form

(P; —Pj) - (P; — Pj) = k}

K

L =1,23,i#] (67)

where k;; is the distance between the spherical joints ¢ and j respectively.
Differentiating the three constraint equations with respect to time, we get

3[181 — l1l28102 — 2[1[26182 . 3[282 — l1l26182 — 2[1[28102 .
0 01 + 3[282 — l2l38203 — 2[2[36283 02 +
3[181 — l1l38103 — 2[1[36183 0
0 . 2l1 - 361 + 126102 — 2128182 .
3[383 — l2l36283 - 2[2[382C3 03 + 0 ll +
3[383 — l11361$3 - 2l1l38163 2[1 — 301 + l30163 — 2[38183
2[2 — 362 + 516162 — 2[18182 . 0 .
2[2 - 362 + l36263 - 2[38283 12 + 2[3 - 303 + 120203 - 2[28283 l3 =0
0 2[3 — 303 + 110103 — 2[18183

The above equation can be written in the form

0, b
by | ==K | o (68)
05 I3

where the columns of [K*] and [K] are coefficients of 0;,i = 1,2,3 and [;,i = 1,2, 3 respec-
tively.

Assuming all the lengths k;;’s are v/3/2 (the lengths of the medians of the top platform are
0.5 units each) the coordinates of the centroid of the moving platform are given by

y | = (1/3)(P1+ P2+ P3) (69)
A (—=1/2)(1 — lyc») (—1/2)(1 — lscs)
= 3 ZO + (\/3/2)1(1 —locy) | + (_\/3/22(1 — l3¢3)

and the velocity of the center of the top moving platform is given by

1 lisi ) (=1/2)(l2s2) '\ (=1/2)(Iss3) '\ |
v = g 0 91+ (\/5/2)(1252) 02+ (-\/3/2)([;),83) (93

lic laco lzcs
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. -\ (1/2)(c2) , (1/2)(cs) '\ |
+ 5 0 |h+| (=v3/2)(c) |+ | (V3/2)(cs) |is
0.1 il
72| 6 ) +[L] | I ) (70)
93 j3

where [J}] and [J,] are 3 x 3 matrices obtained from the coefficients of 0;,i = 1,2,3 and

l;,i=1,2,3 respectively. Using equation (68) in equation (70) we get

= ([Jo] = [N K (I, b, )" zaz (71)

The angular velocity of the platform can be obtained by observing that
152—151sz (PQ—Pl)
153—151:w>< (P3—P1)

and
(Pg—Pl)'Plz(U'(Pg XPl)

From the above equations, we get

Py xPy) x (Py—Py)+ (P3—Py)-P)) (P, — P))
B P, x P,-P;

The above can be written in compact form as

0 I
(3] ( 0, ) + [J] ( Iy ) (72)
05 I

where [J*] and [J,] are 3 x 3 matrices obtained from the coefficients of §;, i = 1,2,3, and

l;,i = 1,2, 3 respectively. Using equation (68) in equation (72), we get

w = (L] = LT HED (U, b, l)" Zﬁz (73)

The dual velocity vector can be written as

~ 3 . 3

=1 =1
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Following the mathematical formulation, we can now calculate the dual metric coefficients
and dual Christoffel symbols. At a generic point /; = 0.5 m,l; = 1.0 m,/3 = 2.0 m, and
corresponding #; = 0.4000 rad, #; = 0.7535 rad and 63 = 0.2402 rad, the dual metric

coefficients are

g1 = 2.84834 — ¢(0.09046)
g12 = g1 = 0.38167 — ¢(0.94201)

G13 =0 = —5.76044 — €(1.40285)
Goo = 0.72386 + €(0.43229)
G23 = g3 = —2.70705 + €(2.28721)

g3z = 17.21660 — €(3.02947)

The dual eigenvalues of [g] are given by

Al = 19.62130 + ¢(—2.48751)
X2 = 1.16742 + ¢(—0.20012)
/\3 = 0+€(0)

and the two principal pitches are given by

Kt = —0.06339
R = —0.08572 (75)

It can be shown that at other generic points, the dual eigenvalues, :\,-, 1 =1, 2, are different
implying that the pitches are different at different configuration of this parallel manipulator.
It may be noted, however, that one of the dual eigenvalue is always zero and the third
principal pitch A} is undefined (or infinite) at all configurations. This fact can be resolved as
follows: the three degrees-of-freedom of the platform is partitioned into two angular degrees-
of-freedom and one pure translatory motion. Intuitively this is clear since the rotary joint
axes in the base are in a plane and the top platform can be made to translate parallel to
the Z axis without any angular motion by changing the leg lengths. One can also show

mathematically that one of the principal velocities is a pure dual. In particular, at the
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configuration mentioned above, the principal velocities obtained from equation(34) are

Vi = (—1.71201,—4.04936,0.54134)" + €(0.60671, 0.30574, 1.90821)
V, = (0.34667, —0.00977,1.02330)" + ¢(0.38057, —0.34252, —0.22998)"
Vs = (0,0,0)T +€(0,0,1.21575)T

The dual part of Vs is always in the Z direction, for all points attached to the platform frame,
in any configuration. One can also compute the 18 dual Christoffel symbols. In this case, they
are non-zero. For example, I'3; at the given configuration is —17.02180 — ¢(1.62009). The
geodesic motion for this case cannot be solved easily, as in the case of the 2R manipulator,

since it involves solution of non-linear differential equations.

5 Conclusion

In this paper we have given a new geometric characterization of the differential kinematics
of two- and three-degree-of-freedom rigid body motion. This new characterization has been
obtained by using dual numbers and vectors, expressing the linear and angular velocities of
a rigid body by means of a dual vector, defining an inner product between two dual vectors
as a dual number, and by using concepts from differential geometry. The main result of the
paper is that the tip of a dual velocity vector of a rigid body lies on a dual ellipse or a dual
ellipsoid for a two- and three-degree-of-freedom motion respectively, and the maximum and
minimum values of the dual velocity vectors are the eigenvalues of a positive, semi-definite
dual matrix of inner products. In this fashion velocity distribution in a rigid body motion
can be studied algebraically in terms of eigenvalues or geometrically from the ellipse and the
dual ellipsoid. We have also shown that the second-order properties of rigid body motions
can be studied in a similar fashion. In this regard, we have presented the notion of the
geodesic motion of a rigid body. The theoretical results have been illustrated with the help

of spatial 2R and a three-degree-of-freedom parallel manipulator.
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