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Abstract

In this paper, we present a compact closed-form expression for the singularity manifold of
a class of 6-6 Stewart platform manipulators most commonly used in research and industry.
The singularity manifold is obtained as the hyper-surface in the task-space, SE(3), on which
the wrench transformation matrix for the top platform degenerates. This condition leads to an
extremely large expression containing algebraic and trigonometric functions of the architecture,
position and orientation variables. We present algorithms for efficient symbolic simplification
of such large expressions. Using these algorithms, for a given architecture and orientation, the
singularity manifold is obtained as a cubic surface in <3. The symbolic computations yield
a simple parametric expression for the surface in terms of the architectural and orientation
parameters of the manipulator, and allows us to completely characterise and visualise the
singularity manifold. We show that, in general, the cubic surface is a one-parameter family
of hyperbolas in planes parallel to the base of the manipulator. It is further shown that the
hyperbola degenerates to a parabola in a unique plane, and to a pair of straight lines in four
other planes. The explicit parameterization allows us to obtain the location of each of these
special planes analytically. For a given architecture and position, the singularity manifold is a
surface in SO(3), which can be, in general, algebraically described by a 6th degree polynomial
in the Rodrigue’s parameters. In this paper, we present explicit expressions for the polynomial
defining the orientation singularity manifold in terms architecture and orientation parameters.
The theoretical results are illustrated with several numerical examples.

1 Introduction

In parallel manipulators, singularities lead to loss of rigidity in certain direction(s), and unbounded
loads at one or more passive joints. Therefore identification and avoidance of singularities in such
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manipulators are issues of practical importance, and they have attracted a significant volume of
research. However, due to the inherent complexity of the parallel kinematic structures, analysis of
their singularities is particularly difficult. Closed form results are hard to come by, and geometric
characterisation of the singularity manifold is generally restricted to relatively simple manipulators,
such as the 3-DOF planar parallel manipulator [21] or 3-DOF spatial parallel manipulator [1, 8].
Singular configurations of the Stewart platform manipulators (SPMs) have been studied by different
researchers using various techniques, such as screw geometry, line geometry, and computational
algebra. Hunt [11] describes one of the earliest known singular configurations of a 3-3 SPM using
screw theory. The result of Fichter [4] also concerns the 3-3 SPM, and SPMs with semi-regular
platforms (SRSPMs). Merlet [16, 17] has used Grassmann geometry to study a greater variety
of SPM architectures, and has presented a comprehensive treatment of singularities of 3-3 and 6-3
classes of SPMs. However, due to the complexity of the more general 6-6 SPM’s, the same formalism
has not been applied to these manipulators [17].

Determination of the singularity manifold of the 6-6 SPMs is an active area of research, and in
recent times, researchers have used various computational algebra tools to arrive at the analytical
form of the same. St-Onge and Gosselin [22] have used the singularity condition proposed in [6], and
derived a polynomial expression for the singularity manifold of the general SPM. Kim and Chung
[12] have used an alternate formulation of the linear velocity relationships to arrive at a similar
expression with lesser number of terms. St-Onge and Gosselin [23] have refined their earlier work
to report the algebraic structure of the singularity manifold of the SPM for various architectural
classes. The analytical expressions have been derived in terms of sums of determinants of 6 × 6
symbolic matrices, and the degree of the minimal polynomial expression representing the singularity
locus has been presented for various SPM architectures. It is mentioned, for example, that a SPM
with semi-regular hexagon has a cubic singularity locus with the degree of the position variables,
x, y, z as 2, 2 and 3, respectively, and the polynomial has 16 non-zero coefficients resulting from 48
non-vanishing determinants. However, the coefficients of the cubic have not been explicitly obtained,
and the dependence of the singularity manifold on the architectural and pose parameters is very
difficult to obtain from the formulation. Further, in St-Onge and Gosselin [23], the visualisation
of the singularity manifold is through a CAD software and an explicit parameterization of the
singularity manifold would be far superior. Di Gregorio [7, 9] has proposed a method, based on
expansion of ten 3× 3 determinants, to obtain the singularity locus, and he has mentioned that the
singularity locus is of degree 3 in terms of position variables and degree 6 in terms of Rodrigue’s
parameters. However, in this case too the explicit expressions for the singularity locus have not
been presented.

In the above mentioned body of literature, the visualisation of the 5-dimensional singularity
manifold has been done mostly in terms of its 3-dimensional projection on <3, i.e., the positional
subspace of SE(3). Li et al.[13] present analytical expression of the singularity locus in terms of x,
y, z and three Euler angles. They report that the singularity locus can be at most cubic in sine and
cosine of the Euler angles and they present in a numerical example the plot of the singularity locus
in terms of the tangent half-angle of the three Euler angles when x = y = z = 0. It is, however, not
clear if the degree of six, in terms of tangent half-angles, is applicable to any arbitrary position.

This paper presents compact, explicit solutions to the above mentioned problems for an SRSPM.
From the condition of the degeneracy of the wrench transformation matrix of the top platform,
we obtain an analytical expression defining a 5-dimensional manifold in SE(3), in terms of the
architectural, position, and orientation parameters. For a given architecture and orientation of the
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top platform, the singularity manifold M ∈ SE(3)1 reduces to the singularity surface Sp ∈ <3.
The surface Sp is cubic in z, and quadratic in x, y where p(x, y, z) represents the center of the top
platform in a global reference frame, and thus the degree of the singularity locus is consistent with
those reported in [12, 23, 7, 9]. We, however, further show that Sp intersects planes parallel to the
base of the manipulator in a one-parameter family of hyperbolas except for a unique plane, where the
intersection is a parabola. In addition, there are 4 planes in which the hyperbolas degenerate into
a pair of straight lines. This geometric characterisation leads to an explicit parametric description
of Sp, aiding easy visualization and further study of its properties. For a given architecture and
position, the singularity manifold reduces to a surface SO ∈ SO(3), which is of 6th degree in
the Rodrigue’s parameters, and gives the orientation singularities at any point p(x, y, z). The
degree of the singularity locus is again consistent with those mentioned in [9, 13], and we present
explicit closed-form expressions for the polynomial defining SO. The two surfaces, Sp and SO
present complimentary descriptions of the singularity manifoldM of the SRSPM. The closed-form
expressions in a simple and compact form and the geometric characterization of Sp are the main
contributions of this paper. These analytical results are expected to make the important task of
path planning, singularity avoidance and design easier.

The initial analytical expression obtained from the condition of the degeneracy of the wrench
transformation matrix contains a very large number of terms involving trigonometric and algebraic
functions of the position, orientation and architectural variables, and special symbolic computation
and simplification algorithms have been developed and used to reduce the analytic expression to
the compact form mentioned above. The algorithms developed for symbolic computations are
not limited to singularity analysis of a SRSPM alone and can be used for a variety of parallel
manipulators and multi-body systems, and hence they embody another important contribution of
this paper.

The theory and algorithms developed in this paper relies only on a certain structure of the
wrench transformation matrix, and is therefore applicable to a wide variety of spatial parallel
manipulators, including all forms of the SPM, such as 3-3, 3-6, 6-3, 6-6, with regular, irregular,
planar, or non-planar top and bottom platforms. In this paper, we have chosen the 6-6 SRSPM to
illustrate the theory and algorithms developed as this is the most common architecture of SPMs
used in numerous applications, such as the flight simulators, tank cabin simulator, radio-telescope
pointing device etc. (for a more detailed and interesting list of applications, refer to [17]). The paper
is organized as follows: in section 2, we present the kinematic modeling of the Stewart platform
manipulator and the SRSPM. In section 3, we present the algorithms for symbolic computations
and simplification of expressions containing algebraic and trigonometric terms. In section 4, we
present the analytical expressions for the singularity manifolds of SRPSM. In section 5, we present
several numerical examples illustrating the theory developed in this paper, and finally, we present
the conclusions and scope for future work in section 6.

1In this paper, we use the standard terms SE(3) to denote the space of rigid-body motion, se(3) to denote the
space of twists, SO(3) to denote the space of orientations, and se∗(3) to denote the space of wrenches (for details,
see for e.g., [19]).
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2 Kinematic modeling of a Stewart platform manipulator

In this section, we describe the geometry of the Stewart platform manipulator, and present a kine-
matic model of the same for the purpose of singularity computations. From the general kinematic
equation for singularity, we obtain the singularity condition for the special case of a SRSPM.
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Figure 1: Geometry of the Stewart platform manipulator

2.1 Formulation of singularity in the task space

We derive the singularity condition of the Stewart platform in terms of the task-space coordinates,
i.e., using a parameterization of SE(3). We denote the position of the centre of the top platform,
the point p, by the vector (x, y, z)T , and the orientation of the top platform by R ∈ SO(3). The
loop-closure equations can be written as

p+Rai − bi − lisi = 0 i = 1, ..., 6 (1)

where li denotes the length of the ith leg and ai, bi locate the leg connection points with respect to
the platform centers in respective frames (see figure 1(a)), and si denotes the ith screw axis along
the respective leg. The screw axis can be written in terms of the Cartesian, and actuated variables
as

si =
1

li
(p+Rai − bi) (2)

Denoting the actuation force along the ith leg as fi, the wrench imparted on the top platform may
be expressed in the base reference frame as

W i = (fisi; (Rai)× fisi) (3)
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Using the expression for si from equation (2), W i may be written as

W i =

(
fi
li

(p+Rai − bi);
fi
li

((Rai)× (p− bi))
)

(4)

Denoting the force and moment parts of the resultant wrench applied on the top platform due to
all the leg forces as W =

∑6
i=1W i = (F ;M), the equation for statics of the top platform may be

written as



1
l1

(p+Ra1 − b1)1 . . . 1
l6

(p+Ra6 − b6)1
1
l1

(p+Ra1 − b1)2 . . . 1
l6

(p+Ra6 − b6)2
1
l1

(p+Ra1 − b1)3 . . . 1
l6

(p+Ra6 − b6)3
1
l1

((Ra1)× (p− b1))1 . . . 1
l6

((Ra6)× (p− b6))1
1
l1

((Ra1)× (p− b1))2 . . . 1
l6

((Ra6)× (p− b6))2
1
l1

((Ra1)× (p− b1))3 . . . 1
l6

((Ra6)× (p− b6))3







f1

f2

f3

f4

f5

f6




=

(
F
M

)
(5)

Equation (5) can be written compactly as

W = Hτ (6)

where τ = (f1, f2, f3, f4, f5, f6)T is the generalized leg force vector, and the 6× 6 matrix on the left
hand side of the equation is the wrench transformation matrix of the top platform, H. It may be
noted that the use of equation (2) ensures that equation (6) is kinematically consistent, namely the
loop closure equations are satisfied.

The wrenches lie in the column space of H for all joint forces τ . For a fully actuated non-
redundant 6-degrees-of-freedom spatial manipulator, H is a 6× 6 matrix, and in a general config-
uration, it is invertible. The column space of H spans se∗(3) in such a case, i.e., all the possible
wrenches W at the end-effector can be supported by the joint force vector. However, if there exists
a wrench of finite magnitude in se∗(3) that can not be supported by a finite joint force vector τ ,
then the left-nullspace of H, i.e., the orthogonal complement of the column space ofH with respect
to se∗(3) is non-null, and W lies in that space. This implies that

DH = det(H) = 0 (7)

The singularity manifold M is defined by the equation (7). Further, from equation (5), DH may
be written as

DH =
1

l1l2l3l4l5l6
det

(
(p+Ra1 − b1)T . . . (p+Ra6 − b6)T

((Ra1)× (p− b1))T . . . ((Ra6)× (p− b6))T

)
(8)

and, M, as defined in equation (7) is clearly independent of li. Hence, the singularity condition
can be restated as

det(H1) = det

(
(p+Ra1 − b1)T . . . (p+Ra6 − b6)T

((Ra1)× (p− b1))T . . . ((Ra6)× (p− b6))T

)
= 0 (9)

where H1 is the 6× 6 matrix on the right-hand side of the above equation.
It may be noted that this form is true for all SPMs, and similar spatial parallel manipulators,

whose wrench transformation matrix is of the form of equation (5). The singularity condition for
a SPM, equation (9), can be further simplified for a SRSPM by a suitable choice of a coordinate
system and a parameterization of SO(3) and this is discussed next.
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2.2 Geometry of the SRSPM

The SRSPM has hexagonal top and bottom platforms, with alternate sides in each platform having
identical length. There is a 3-way symmetry in each platform, and the adjacent pairs of legs are
arranged symmetrically about the three radial lines of symmetry in each platform. The angular
spacings between the adjacent pairs of legs are denoted by 2γt, and 2γb for the top and bottom
platforms respectively. Without any loss of generality, the circum-radius of the bottom platform is
scaled to unity2 and thereby one architectural parameter is eliminated from all subsequent compu-
tations. The top circum-radius is denoted by rt.

In literature, it is a de facto convention to choose one of the three axes of symmetry in the
platforms as the local X direction. Therefore, the angular spacing of the legs (in the top platform
for instance) become γt = (−γt, γt, 2π/3 − γt, 2π/3 + γt, 4π/3 − γt, 4π/3 + γt) with respect to
the corresponding X axis. However, we choose the X axis to pass through the connection point
of the first leg in each platform, such that the spacings are given by γ t = (0, 2γt, 2π/3, 2π/3 +
2γt, 4π/3, 4π/3 + 2γt), γb = (0, 2γb, 2π/3, 2π/3 + 2γb, 4π/3, 4π/3 + 2γb) respectively in the top and
bottom platform. In this way, three of the leg connection points lie on the axes of symmetry, and
the arrangement results in a significant reduction of complexity in all subsequent computations.
The manipulator along with the frames of reference used is shown in figure 1(a), and the bottom
platform, in figure 1(b).

With the above choice of the coordinate system, the SRSPM is described by 9 parameters:
(rt, γb, γt) defining the architecture, and 6 local coordinates of SE(3) - as seen later an algebraic
representation of the rotation matrix is chosen using the Rodrigue’s parameters c = (c1, c2, c3)
(see Appendix A for details) as this helps in symbolic computations. Therefore, the singularity
manifold, M, can be described by a hyper-surface in <9, each point of which defines one singular
configuration3.

3 Simplification of algebraic-trigonometric expressions and

their canonical forms

In kinematic computations and in attempts to obtain closed form analytic expressions, we frequently
come across large and complex mathematical expressions involving algebraic and trigonometric
terms. The symbolic simplification of large and complex expressions is an old problem and is
known to be NP hard and the use of a computer algebra system (CAS) is necessary to simplify
and manipulate such expressions. In this section, we describe a scheme for this purpose using three
canonical forms of such expressions. We have used the scheme in conjuction with Mathematica[24]
in our work to obtain compact, closed form, analytic expressions for the singularity manifold, M,
of a Stewart platform manipulator.

2We use radians for the angular unit, while the length unit for base platform can be chosen as convenient. All
other lengths are non-dimensionalized.

3It may be noted that the 9 variables determine li’s via the inverse kinematics relationships and hence li’s
themselves do not influence the dimension of the M.
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3.1 Complexity of a symbolic expression and limitations of heuristic
simplification schemes

The notion of complexity of an expression, in the domain of symbolic computation, tend to be
case-specific, and therefore non-unique. Likewise, the definition of the most simplified or canonical
form of an expression is also subjective. Various practical (albeit heuristic) measures of complexity
are used in CAS’s to detect possibilities of automatic simplification. One common practice is to
construct the tree description of the expression, and use the total number of leaves or terminal nodes
as a measure of complexity (e.g., the default measure used in the simplification schemes of the CAS
Mathematica). The heuristic measures do not necessarily make use of the algebraic structure of the
expression, and are not proof against missing out certain non-trivial simplifications. Apart from
this theoretical limitation, the practical difficulties of such simplification schemes can be forbidding.
We discuss the most outstanding issues below.

• For any large and complex expression, such as det(H1) = 0, the simplification algorithms take
very long time and quickly use up all the computer memory. In the context of Mathematica,
FullSimplify quickly runs out of memory and one has to compromise by using the more
rudimentary Simplify. However, Simplify does not simplify completely, and we are left
with still complex descriptions of the actual expression. Due to the incomplete simplification
of the coefficients of a polynomial, some of the actually zero coefficients may not be identified
as zeros. This would give wrong information about the degree of the polynomial if it happens
so with the leading coefficient, or report a wrong algebraic structure in general.

• It is known that a general univariate polynomial having degree greater than 4 can only be
solved numerically (see, for example, [10]), and that the zeros of a polynomial can be sensitive
to the errors in the coefficients, particularly if the degree of the polynomial is high [20]. Due to
accumulation of errors in the lengthy numerical evaluation of the incompletely simplified coef-
ficients, numerically obtained zeros of a high degree polynomial can be significantly erroneous.
Further, the actual zeros which escape identification, can show up as small non-zero values,
and corrupt the accuracy all subsequent computations. Although it is possible to increase the
numerical precision of the evaluation process almost arbitrarily within a CAS, it can only be
done at the cost of greater computational time, and inflexibility of implementation.

To overcome the problems associated with heuristic simplification schemes, we develop a deter-
ministic substitute for a class of expressions involving both trigonometric and algebraic terms. The
end result of these schemes in each case is a canonical form of the input expression.

3.2 Deterministic simplification schemes using canonical forms of ex-
pressions

Let E be a symbolic expression involving m algebraic variables x = (x1, x2, . . . , xm), and l trigono-
metric variables γ = (γ1, γ2, . . . , γl) with the property that it can be cast as a polynomial in at least
one of the variables4. Without loss of generality, we choose the lexicographical variable order (i.e.,
x1 � x2 � · · · � xm) for our discussion (see, for example, [3]).

4In the case of absence of any such variable, we have to use only trigonometric simplifications.
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It is known in literature that multivariate polynomials over various coefficient domains, such
as <,C,Q, can have several canonical representations, such as the nested canonical form and the
monomial-based canonical form (see [5, 2] for various representations of multivariate polynomials).
We propose to generalize the ideas behind these representations to the case where the coefficients
are complicated expressions of trigonometric variables, and employ these concepts for simplification
of complex expressions. Apart from the above two forms, we use a combination of the these, and
term it the hybrid canonical form. The common features of all three schemes are:

• Isolation of algebraic and trigonometric variables using the algebraic structure of the expres-
sion.

• Decomposition of the original expression into number of smaller terms.

• Grouping and simplification of the trigonometric subexpressions.

• Reconstruction of the original expression from simplified subexpressions.

In the following, we discuss these three forms, their merits and demerits.

3.2.1 Simplification using the nested canonical form

We explain the scheme for the case of univariate polynomials, and then generalize it to the multi-
variate case. Let E be a degree n1 polynomial in x1 represented as

E =

n1∑

i=0

C1
i x

n1−i
1 = C1 · p1 (10)

where the power vector p1 consists of the powers of x1: p1 = (xn
1

1 , x
n1−1
1 , . . . , x1, 1) and the coefficient

vector C1 = (C1
0 , C

1
1 , . . . , C

1
n1−1, C

1
n1) contains the corresponding coefficients. Note that in such a

description, all the trigonometric terms appear only in the elements of the coefficient vector C1. The
major consequence of this step is that the original expression is broken into (n1 +1) separate terms,
algebraic complexities of each of which are lesser than that of E due to the absence of the variable
x1. In spite of the fact that (n1 + 1) expressions have to be simplified now, the computational
cost of simplifying C1 is lesser and the final results better than simplifying E directly [2]. The
simplification scheme for E may be written as

simplify(E) =
n1+1∑

i=0

Simplify(C1
i )p

1
i = Simplify(C1).p1 (11)

where simplify denotes our scheme of simplification, and Simplify denotes the simplification operator
of the CAS employed. It may be noted that the coefficients can be simplified sequentially, or in
parallel, as the case may be, and then put together to reproduce the original expression in a
simplified form.

The gains in speed and compactness become significantly more prominent with the increase in
depth of transformation of type (10), i.e., with more number of algebraic variables. We treat each
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of C1
i as our input expression now, and repeat the same procedure as above in a recursive manner.

Using the above notation, we can write

C1
i =

n2
i∑

j=0

C2
ijx

n2
i−j

2 = C2
i · p2

i (12)

where p2
i = (x

n2
i

2 , x
n2
i−1

2 , . . . , x2, 1) and C2
i = (C2

i0,C
2
i1, . . . ,C

2
n2
i−1,C

2
n2
i
) is the corresponding coeffi-

cient vector, which is free of x1, x2. The integer n2
i denotes the degree of C1

i in x2. At this stage,
the simplified form of E would be given as

simplify(E) =

(
n1∑

j=0

Simplify
(
C2
j

)
· p2

j

)
· p1 (13)

A comparison of equations(11, 13) illustrates how the operator Simplify penetrates deeper into the
expressions down the coefficient tree with each algebraic variable isolated. It is important to note
that all simplifications are done only at the leaves of the coefficient tree. As a result, individual calls
to the simplification routine deal with progressively smaller, and simpler expressions as we move
down the tree, and yield much faster, better results than can be obtained at the higher levels of the
tree with comparable computational cost.

The process can be continued recursively, resulting in the set of vectors C3
ij at the next level,

up to Cm
i1i2...im−1

at the final level. These final vectors are independent of x, and contain the
trigonometric terms in γ. The coefficients of the lowest level are now subjected to the deterministic
trigonometric transformations and the corresponding simplifications obtained with remarkable gain
in speed and compactness. The algorithm can now trace back via compositions of the form of
equation (13), and return the final simplified expression.

As an example of nested canonical form of expressions, we cast the singularity polynomial of
equation (20) of section 4.2 in this form:

E =x2(E1z + E2) + x(y(E3z + E4) + E5z
2 + E6z + E7) + y2(E8z + E9)+

y(E10z
2 + E11z + E12) + E13z

3 + E14z
2 + E15z + E16 (14)

We observe that the above scheme of simplification has several advantages:

• There is a great increase of speed in the simplification process. Depending on the particular
structure of E, an increase of 10 to 100 times was observed in our computations.

• The final expression is obtained in a canonical form. From the description of the scheme
above, it is apparent that we have traversed the coefficient tree for a multivariate polynomial
(which is unique up to the choice of variable order) down to the leaves. The set of leaves,
however, depend only on the power-products of xi’s present in E, and is therefore unique for
each expression. The leaves may consist of only algebraic expressions in constants from <,C,Q
etc., and trigonometric functions of γi. We can first expand these expressions algebraically, and
then apply simplifying trigonometric transformations. Both of these steps are deterministic in
nature, and produce unique results for a given set of simplifying transformations. Therefore
the final expression obtained in this process is not subjected to any heuristic treatment at any
stage, and has a deterministic structure. We call the multivariate polynomial with simplified
trigonometric coefficients as the nested canonical form of E.
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• The returned expression is free of expressional redundancies at least as far as trigonometric
terms are concerned. In a heuristic simplification scheme, such as minimization of leaf-count
of the expression tree, the algebraic structure of the expression is not taken into considera-
tion. Many trigonometric cancellations and/or simplifications may be overlooked as the terms
concerned appear at different nodes of the expression tree, and expanding the tree, at least
on the onset, can be unfavorable in terms of leaf count. Even the final canonical expression
need not be the best in terms of leaf-count. However, the trigonometric terms that belong to a
particular monomial, and can therefore potentially combine according to trigonometric rules,
are brought together under the same node by our scheme. It is therefore guaranteed that all
possible simplification steps are attempted for a given set of trigonometric transformations
available.

• The algebraic structure information (e.g., power products of all the elements of x, or any subset
thereof), can be obtained trivially from the canonical form. Further algebraic manipulations
using the simplified expressions are greatly facilitated due to their standard form.

• One great advantage for algebraic geometry computation with the canonical form is that due
to exhaustive simplification of the coefficients, it is possible to identify the zeros among them,
if any. Due to the complexity of the expressions, the zeros may not be apparent, and are easy
to miss in a heuristic simplification scheme.

There are some disadvantages in using the nested form as the final expression. In general, in
a multivariate polynomial, all possible power products are not present. In fact, with increasing
number of variables, the number of missing power-products is expected to increase rapidly, as all
the children of a node corresponding to a missing power at any level can only be zeros. Since many
of these zeros can only be identified at the leaves, we can end up with a lot of redundant zeros
among them. Further, the same expression can have different coefficient trees if the variable order
is changed. Some of the orders can produce better results than the others for the same expression,
and the choice of the best order is again heuristic. Primarily to overcome these problems, we study
another standard form, known as the monomial-based canonical form.

3.2.2 Simplification using the monomial-based canonical form

In this representation, we retain the non-zero coefficients of individual power-products in explicit
form, and express the polynomial as a sum of monomials in xi’s. At different levels, the expression
E can be written as

E = D1 · q1 = D2 · q2 = · · · = Dm · qm (15)

The vector qj consists of power-products of x1, x2, . . . , xj including unity, and the vector Dj consists
of the corresponding coefficients. The simplification is done at the lowest level, and the simplification
scheme can be written in analogy with equation (11) as

simplify(E) = Simplify(Dm) · qm (16)

To construct such a description, we follow the same steps as in the nested canonical form, starting
with a variable order. For the case of a single variable x1, the results are also exactly the same. For

10



the multivariate case, we construct the coefficient and power arrays in the same way as in equation
(10). However, before moving to the next level, we eliminate the zero coefficients from C1. Let the
new coefficient vector be C1′, and let its size be m1. We modify the power vector p1 accordingly,
and call it p1′ . The coefficients of the next level can be constructed similarly as

C1′
i = C2′

i · p2′
i (17)

Now, we construct the array of all power products of x1, x2 by taking the union of the arrays p′ip
2′
i :

q2 =
m1⋃

i=0

p′ip
2′
i (18)

The corresponding array of coefficients, D2, can be constructed similarly, and the process can
repeat (m−1) times to give the final arrays of power products qm and coefficients Dm respectively.
The elements of Dm correspond to Cm

i1i2...im−1
, and are independent of x, and contains all the

trigonometric terms which can be simplified in a similar fashion. In fact, given one canonical form,
it is not difficult to construct the other. However, this form offers some important advantages:

• Compactness of representation and ease of manipulation: We maintain the coefficients and
the powers-products in two vectors explicitly after eliminating all missing terms. Therefore
the representation is more compact and easy to maintain and manipulate than the previous
one.

• Uniqueness of representation: Given a set of variables, the final vectors Dm and qm are
invariants as sets, and a change of variable order can only reorder them.

• Identification of trivial zeros of an equation: If we have an equation of the form E = 0, by
converting it to the monomial-based canonical form E = Dm · qm, we get all the power-
products in the array qm. It is trivial to obtain the GCD of these power-products, which
corresponds to the trivial zeros of the equation. Canceling off the GCD from qm, these trivial
zeros can be eliminated, resulting in an equation of lower degree.

• Identification of special structures of an equation: It is possible for the power-products to show
certain special patterns, which can be identified trivially from the array qm. For example, in
many cases of kinematic analysis, there is symmetry of even order associated with a certain
variable, causing the variable to occur only in even powers in qm. Therefore, the square (or
some higher even power) of the variable can be replaced by another symbol, reducing the
degree of the resulting equation to half (or lesser) of the original.

An example of an expression cast in this form is the left-hand side of equation (20), where the
algebraic variables are x, y, z.

The disadvantage of the second canonical form of E becomes apparent with increasing number
of algebraic variables, as the array qm starts growing in size. It is difficult to anticipate a priori the
actual size of these arrays, as the algebraic structure of E is not known in general. Therefore one
can always obtain the monomial-based canonical form as a starting point of simplification. If the
arrays are found to be unacceptably large in size, we can arrive at a compromise between ease of
operation and size by introducing another form of great practical value: the hybrid canonical form,
which is discussed next.
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3.2.3 Simplification using the hybrid canonical form

The hybrid form makes use of both the nested and the monomial-based canonical forms. In this
case, we divide the algebraic variables x into two groups, namely primary algebraic variables, and
secondary algebraic variables. The final expression is returned in the monomial-based form in the
primary algebraic variables, while the individual coefficients are put into the nested canonical form.
As an example, we write below the hybrid canonical form of the polynomial in equation (20), where
x, y are the primary variables, and z alone is the secondary variable:

E =x2(E1z + E2) + xy(E3z + E4) + y2(E8z + E9) + x(E5z
2 + E6z + E7)+

+ y(E10z
2 + E11z + E12) + E13z

3 + E14z
2 + E15z + E16 (19)

The advantages of this canonical form are the following:

• By choosing the primary variables as the ones which are expected to be involved in further
symbolic computations (such as elimination), we get the corresponding power-products in
explicit form, thereby making algebraic manipulations particularly simple.

• The secondary variables are often the ones that are to be evaluated, rather than manipulated
symbolically, and subsequently merged numerically into the coefficients of the power-products
of the primary variables.

• For relatively large-sized problems, it appears much easier to look into the one sub-problem at
a time, e.g., the effect of one variable on the zeros of a polynomial. The partitioning scheme
of the hybrid form allows for such focused analysis (see the derivations of Sp and SO in the
next section for such examples).

For relatively large-scale problems, the hybrid canonical forms turn out to be the most suitable,
and we use them extensively in this paper. We also note that after applying one or more of the above
simplifications, the expression E can always be subjected to the standard simplification schemes
based on number of leaves minimization. It is our observation that such post-processing steps can
improve the compactness of the final expression as these steps can take advantage of the highly
structured canonical forms.

In the next section, we apply these schemes to simplify the singularity condition of the SRSPM,
and reduce it to a form amenable to further analysis.

4 Singularity manifold of the SRSPM

In this section, we describe the derivation of the singularity manifold (M) of the SRSPM in closed
form, and discuss its salient features. For a given architecture and orientation, the singularity
manifold is shown to reduce to a cubic surface Sp ∈ <3. A complete geometric characterization of
the surface, and its explicit parameterization are obtained in the following discussion. Further, using
the Rodrigue’s parameters (c1, c2, c3) to represent orientation, we show that for a given architecture
and position, M reduces to a 6th degree surface SO in the local coordinates ci. Finally, using the
ball parameters (see Appendix A for details), we derive the set of rotation angles that lead to a
singularity for a given axis of rotation.
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4.1 Derivation of the singularity manifold

The singularity manifold M is defined by the equation (9) in section 2 and is given as DH1 =
det(H1) = 0. The computation of the determinant of the 6× 6 matrix H1 presents great difficul-
ties. In reference [22], the authors point out the problems of relying on the default determinant
computation routines of a CAS, and come up with a customized procedure based on recursive cofac-
tor expansions. In reference [23], the authors use a similar algorithm and report that the singularity
manifold can be obtained via a cascade of 590 coefficients for a general SPM, and in [13], the au-
thors report obtaining the singularity condition via a computation of 3981 symbolic determinants.
In this paper, we have done all the symbolic computations in the CAS Mathematica [24]5, and we
obtain det(H1) in a non-simplified form using the default routine Det. The size of the Mathematica
expression of the determinant is quite large, of the order 2.7 MB. However, we are able to simplify
the same using the procedures described in section 3.

The algebraic variables appearing in det(H1) are x = (rt, c1, c2, c3, x, y, z) and the trigonometric
variables are γ = (γb, γt). However, det(H1) is a rational function in ci due to the parameterization
of R used (see equation (40) in Appendix A), and we need to rationalize it first in order to use our
simplification schemes. Noting that the only denominator in R (and in det(H1)) is (1+c2

1 +c2
2 +c2

3),
we replace it by a dummy variable c0, and multiply H1 by c0 to get rid of all denominators. We
now study the algebraic structure of det(c0H1) using the monomial-based canonical form, and find
that it is of degree 6 in ci, and degree 3 in x, y, z, and degree 6 in rt. To isolate the orientation
parameters, we construct next the hybrid canonical form with rt, x, y, z as primary variables, and
c1, c2, c3, c0 as secondary variables. This results in a coefficient array of 71 elements, whose total
size is about 324 MB in the non-simplified form. After simplification, only 24 non-zero coefficients
remain, while the rest are identified as zero. Further, from the power vector, it is possible to identify
the common factor r3

t among its elements, which is canceled off subsequently (rt can not be zero for
a top platform of non-zero dimension). Similarly, the coefficients have c0 as their common factor,
which is also canceled off, as c0 being a sum of squares of real numbers, can never be zero. Next,
we substitute the actual expression of c0 into the coefficients, and simplify each of these to their
monomial-based canonical forms with respect to the variables c1, c2, c3. These steps reduce the size
of the coefficient vector drastically from 324 MB to about 1MB, though no further cancellation
of non-zero factors can be performed at the last stage. Since all the trigonometric simplifications
are complete in a deterministic sense at this stage, we use the heuristic Simplify command of
Mathematica. This results in another remarkable contraction of the coefficients, bringing them
down to about 45 KB which is approximately one page of Mathematica textual output. It is also
possible to recognize the common factor 27

4
(1 + c2

1 + c2
2 + c2

3)3 among the simplified coefficients at
this stage, which we cancel off. The singularity condition, i.e., the equation forM is now obtained
in terms all the manipulator parameters in a simplified form. The split of algebraic variables
now needs to be changed for constructing the two singularity surfaces. In particular, to define
Sp, the singularity condition is reconstructed in the hybrid form, with only x, y, z as the primary
variables, and rt, c1, c2, c3 as the secondary variables. After simplification, this final form reduces
to 16 monomials, whose coefficients take only about 43 KB in Mathematica. The highest degree
of these monomials is found to be 3. Similarly, to construct SO, we construct the hybrid canonical
form with only c1, c2, c3 as the primary variables, resulting in a 6th degree polynomial, with 77

5We have used Mathematica version 5.1 for 64 bit Linux (x86 64) on a PC with a single AMD Athlon 3200+
processor running at 2.0 GHz, and 2 GB of RAM.
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monomials, having a total size of about 165 KB.
It is therefore obvious that further manipulation, and solution of equation (9) would be much

easier in terms of the position variables, than in terms of ci, i.e., the description of Sp would be
much simpler than that of SO.

In the following, we explain discuss the properties of Sp and SO respectively.

4.2 The singularity surface in the Cartesian space

As discussed above, the singularity condition in equation (9) can be reduced to the following poly-
nomial equation for a given set of architectural parameters rt, γb, γt and orientation parameters
ci:

Sp ,E1x
2z + E2x

2 + E3xyz + E4xy + E5xz
2 + E6xz + E7x+ E8y

2z + E9y
2 + E10yz

2+

E11yz + E12y + E13z
3 + E14z

2 + E15z + E16 = 0 (20)

The Ei’s are the simplified coefficients of the nested canonical form in the algebraic variables(rt, c1, c2, c3)
and in trigonometric variables γb, γt. The Stewart platform is in a singular configuration if the co-
ordinates of the center of the top platform, (x, y, z), satisfy the above equation.

4.2.1 Comparison with existing results

Equation (20) is similar to those presented in [22, 12, 17, 23, 13], but is not exactly the same. In
particular, the degree of the singularity expression in [22] is 4, with 32 monomials. In [12], the
expression is much tighter, with 20 monomials, and degree 3 for the general case. In the case of the
SRSPM, we show above that 4 of these monomials (in particular, x3, x2y, xy2, y3) vanish, resulting
in an expression that is cubic in z alone, and quadratic in x, y. The least number of monomials is
presented in [17], where the expression of the determinant of inverse Jacobian has two monomials
(x2z, y2z) less than what we have in equation (20). The variation in the reported algebraic structure
of the singularity condition can be attributed mainly to the following facts:

• Frames of reference and the structure of the SPM’s considered in these works are not identi-
cal. As the authors point out in [22], some of their coefficients vanish in different frames of
reference. In [23], the authors discuss the algebraic structure of the singularity equation for
various SPM structures and point out which terms vanish for different architectures.

• In the above works, the final singularity expressions are obtained via a sequence of steps, and
therefore it is quite possible that some actual zero coefficients are not identified as zeros due
to incomplete simplification in the intermediate steps. This fact is apparent in the higher
degree of the equation reported in [22] than in others.

In [23], from Table 1, the singularity manifold for an SRSPM is defined as polynomial which is
cubic in z and quadratic in x and y. After removing the cubic terms x3, x2y, xy2, y3 in their
general equation the number of coefficients in the polynomial matches with our result. However,
the explicit coefficients are not derived (and the further simplification to the family of hyperbolas,
with its degeneracy to parabola and straight lines is not carried out) in [23] (see Section 4.2.2 for
details). The closest geometric result, to the best of our knowledge, is given by [21] where the
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authors have shown that the singularity manifold of a planar three-degree-of-freedom manipulator
consists of various conic sections, including ellipse, hyperbola and parabola.

In this paper, we have derived Ei ’s explicitly in terms of the architecture, and orientation
parameters, and we obtain compact closed form expressions for the coefficients. To illustrate the
the compactness of the final forms of these expressions, we write below the coefficients of z3, z2, and
z respectively:

E13 =8
(
c1

2 + c2
2 − c3

2 − 1
) (
c1

2 + c2
2 + c3

2 + 1
)

sin3(γ)
((
c3

2 − 1
)

cos(γ)− 2c3 sin(γ)
)

E14 =8(c1
2 + c2

2 − c3
2 − 1)rt sin(γ + 3γt)((c3c1

3 − 3c2c1
2 − 3c2

2c3c1 + c2
3) cos(γ + 3γt)+

(c1
3 + 3c2c3c1

2 − 3c2
2c1 − c2

3c3) sin(γ + 3γt)) sin2(γ) + 8(c1
2 + c2

2 + c3
2 + 1) sin(2γ + 3γt)

((c3c1
3 + 3c2c1

2 − 3c2
2c3c1 − c2

3) cos(2γ + 3γt)− (c1
3 − 3c2c3c1

2 − 3c2
2c1 + c2

3c3)×
sin(2γ + 3γt)) sin2(γ) (21)

E15 =− 8(c1
2 + c2

2)(c1
2 + c2

2 − c3
2 − 1)rt

2 sin(γ)((c3
2 − 1) cos(γ)− 2c3 sin(γ)) sin2(γ + 3γt)+

8(c1
2 + c2

2)(c1
2 + c2

2 + c3
2 + 1) sin(γ)((c3

2 − 1) cos(γ)− 2c3 sin(γ)) sin2(2γ + 3γt)+

(c1
2 + c2

2)rt(−4c3
3 + 4(c3

2 − 1) cos(4γ)c3 + 4c3 − 2(c3
2 + 1)2 sin(2γ)+

4 cos(6γt)((c3
2 − 1) cos(γ)− 2c3 sin(γ))2(sin(2γ)− sin(4γ)) + (3c3

4 − 2c3
2 + 3) sin(4γ)+

8(2 cos(2γ) + 1) sin2(γ)(− cos(γ)c3
2 + 2 sin(γ)c3 + cos(γ))2 sin(6γt))

where γ = γb − γt. It can be noted that the explicit functional dependence of the coefficients is
easily seen in the above expressions.

Some existing results in singularity of the SRSPM can be readily obtained from these expressions:

• Architecture singularity [14]: It can be seen that E13, E14 and E15 vanish when sin γ = 0,
i.e., γb = γt, and the two platforms are similar. Indeed, all Ei ’s vanish under this condition.
Therefore the manipulator is singular at all possible configurations, i.e., it is architecturally
singular.

• Fichter’s singularity [4]: When the top platform is horizontal, we have c1 = c2 = 0, c3 =
tan(θz/2), θz ∈ [0, 2π] being the rotation about the vertical axis. Upon substituting these
conditions, all Ei ’s vanish except E13, and from equations (20,21), we have

8(c2
3 + 1)2 sin3(γ)((1− c2

3) cos(γ) + 2c3 sin(γ))z3 = 0 (22)

Ignoring the possibilities of architectural singularity(γ = 0) and the coplanarity of the two
platforms (z = 0), the only real solution of equation (22) is θz = γ ± π/2. The top platform
is aligned with the bottom when θz = γ, therefore θz = γ± π/2 implies that the top platform
is rotated by ±π/2 with respect to the bottom about the vertical axis, which is the singular
configuration reported by Fichter.

4.2.2 Geometric characterization of the singularity surface Sp
Equation (20) describes the singularity surface Sp for a given set of architectural parameters rt, γb, γt,
and a given orientation c1, c2, c3. We observe that Sp is cubic in z and quadratic in x, y. Therefore,
absorbing the z-terms into the coefficients of power-products of x, y, we can re-write equation (20)
as

C , ax2 + 2hxy + by2 + 2gx+ 2fy + c = 0 (23)
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Equation (23) implies that each z-section of Sp is a conic section. The coefficients of the standard
form of the conic section, namely a, b, h, g, f , and c, were expressed in terms of Ei, z. It is well known
that all the properties of a conic section can be derived in terms of the coefficients a, b, h, g, f , and
c. Most importantly, we can associate a function δ = h2 − ab with the conic section C, and note
that C defines an ellipse if δ < 0, a parabola if δ = 0, and a hyperbola if δ > 0 respectively. Casting
δ as a polynomial in z, we find that δ is a quadratic of the form:

δ = e0z
2 + e1z + e2 (24)

The sign of δ depends on the value of the discriminant ∆ = e2
1 − 4e0e2. Simplifying to the nested

canonical form with respect to rt, x, y, it is observed that ∆ is zero identically. Therefore, δ is a
perfect square of the form

δ = (z − zp)2, zp = − e1

2e0
(25)

The above equation implies that δ ≥ 0, and hence C can not be an ellipse at any section. In
particular, it is a hyperbola in each horizontal section, apart from a unique section at z = zp where
it is a parabola. Expression of zp is given in terms of the manipulator parameters as:

zp =((1 + c2
3)rt sin(γ + 3γt)(−c3

1 + 3c1c
2
2 − 3c2

1c2c3 + c3
2c3) cos(γ + 3γt)+

(−3c2
1c2 + c3

2 + c3
1c3 − 3c1c

2
2c3) sin(γ + 3γt))/(

sin(γ)(c2
1 + c2

2)(1 + c2
1 + c2

2 + c2
3)(2c3 cos(γ) + (c2

3 − 1) sin(γ))
)

(26)

We can also conclude that the curve C, and hence the surface Sp is unbounded.
It is also possible for the hyperbolas to degenerate to a pair of straight lines. Since all the Ei’s are

differentiable functions, the surface Sp is smooth and extends infinitely in the Z direction, the only
possibility of such degeneracy is when the hyperbola gradually deforms into its asymptotes, and
continue to deform to reappear as a hyperbola that is conjugate to the one prior to the degeneracy.
The condition for this is given by:

det



a h g
h b f
g f c


 = 0 (27)

Expanding the determinant, we cast it as polynomial in z, and it turns out to be a quintic:

f0z
5
l + f1z

4
l + f2z

3
l + f3z

2
l + f4zl + f5 = 0 (28)

Simplifying fi to the nested polynomial form in rt, and ci, we find that f0 = 0, i.e., equation (28)
is a quartic in reality. It is still difficult to obtain the number of real solutions for zl due to the
complexity of fi. However, we conclude the following: Sp can degenerate into a pair of straight in
0, 2 or 4 planes defined by z = zl. In these sections alone the two sheets of Sp meet at a point, as
major axis of the hyperbolas change from X to Y or vice-versa.

It may be noted that this geometric characterization is possible due to the compact nature of
the coefficients, Ei’s and use of the simplification algorithms described in section 3. In particular,
the simplification of ∆, f0 to zero demonstrates a situation where such computations help reveal
the true algebraic structure of a problem, and substantiates the claims made in section 3 about the
utility of our simplification algorithms.

Consequences of this geometric characterization are as follows:
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• It is possible to obtain an algebraic parameterization of Sp. Apart from the sections z = zp or
z = zl, the surface cuts each z-plane in a hyperbola. Choosing one parameter as z, it remains
to parameterize the hyperbolas in each z plane. The hyperbolas can first be transformed into
their canonical forms via a rotation and translation of their individual planes. The center of
C is given by

x0 =
bg − fh
h2 − ab

y0 =
gh− af
h2 − ab (29)

and the orientation of the axes of the hyperbolas in the global frame can be given by

θc = atan2(a− b, 2h) (30)

where atan2(x, y) is the two-argument inverse tangent function. In the canonical form, assum-
ing X as the major axis, hyperbolas admit the parameterization x = a′

2
(t + 1

t
), y = b′

2
(t − 1

t
)

for the part on the right of the origin, and x = − a′
2

(t+ 1
t
), y = − b′

2
(t− 1

t
) for the other. The

constants a′, b′ can be obtained from the coefficients in equation (23). The curves approach
their asymptotes as t → 0, and cut the major axis when t = 1. We define a bounding box
in each plane, whose length is given by sa′ along the major axis, where s > 1 can be chosen
as per convenience of visualization. Accordingly, the parameter t varies from s−

√
s2 − 1 to

s+
√
s2 − 1. A similar parameterization can be obtained when Y is the major axis. Therefore

the pair (z, t) forms an explicit 2-parameter description of Sp.

• Topology of the nonsingular subspace of <3 at a given architecture and orientation can be
complicated, and possibly vary from case to case. For example, the central portion of the
hyperbolas, containing (x0, y0) in each plane, collapses to a point at each section the hyperbolas
degenerate to a pair of intersecting straight lines. As the hyperbolas extend to infinity, each
of these portions are separated from the rest of <3 by the singularity manifold. However, as
explained above, the number of such sections can be 0, 2 or 4, and further, some of these
sections may not be realizable in a physical sense (e.g., if the section is not between the two
platforms, such that zl < 0 in our case). Moreover, there is a single plane z = zp, in which one
of the parts of the hyperbola transforms into a parabola, while the other vanishes, thereby
providing a corridor connecting the two subspaces of <3 otherwise separated by it. Various
combinations of the feasible (i.e., positive) values of zp and zl lead to different topologies of
the non-singular subspaces.

It is also possible to identify certain horizontal planes where the coefficients of C show some
more special properties. We list some of them below:

• a+ b = 0 (Rectangular hyperbola):

z =rt(1 + c2
3) sin(γ + 3γt)((−3c2

1c2 + c3
2 + c3

1c3 − 3c1c
2
2c3) cos(γ + 3γt)+

(c3
1 + (−3c1c

2
2 + 3c2

1c2c3 − c3
2c3) sin(γ + 3γt))/ (31)

(sin(γ)(c2
1 + c2

2)(1 + c2
1 + c2

2 + c2
3)((c2

3 − 1) cos(γ)− 2c3 sin(γ)))
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• a = b (θc = π
2
, the global Y axis is the major axis of the hyperbola):

z =(c2
1 + c2

2)rt sin(γ + 3γt)((c2 − 3c2c
2
3 + c1c3(−3 + c2

3)) cos(γ + 3γt)+

(c2c3(−3 + c2
3) + c1(−1 + 3c2

3)) sin(γ + 3γt))/ (32)

(sin(γ)(1 + c2
3)(1 + c2

1 + c2
2 + c2

3)((c2
1 − c2

2) cos(γ)− 2c1c2 sin(γ)))

• h = 0 (θc = 0, the global X axis is the major axis of the hyperbola):

z =rt(c
2
1 + c2

2) sin(γ + 3γt)((c1 − 3c1c
2
3 − c2c3(c2

3 − 3)) cos(γ + 3γt)+

(c2 − 3c2c
2
3 + c1c3(c2

3 − 3)) sin(γ + 3γt))/ (33)

(sin(γ)(1 + c2
3)(1 + c2

1 + c2
2 + c2

3)(2c1c2 cos(γ) + (c2
1 − c2

2) sin(γ)))

4.3 Singularity surface in the orientation parameters

We now describe a complimentary representation of M, which is a surface in the local coordinates
of SO(3) for a given architecture and position. The surface, denoted by SO, is such that every point
on it corresponds to an orientation which is singular, and for a given architecture and position, all
such orientations lie on this surface. We note that this representation ofM is not studied very well
and the closest work is by Li et al. [13] where a numerical example is presented.

We start by recollecting the equation defining SO which was obtained as a polynomial consisting
of 77 monomials in ci, including the constant term. The corresponding coefficients are functions of
the architecture and position parameters of the manipulator. The highest exponents in terms of ci
are 5, 5, and 6 respectively, and the total degree of the corresponding equation in ci is 6. Moreover,
although ci provides a very effective means to derive SO in closed form, it is difficult to visualize
the singularities in terms of these parameters due to the following reasons:

• For a given axis of rotation (with the sense associated), the rotation can vary from 0 to π,
and therefore ci can vary from −∞ to ∞. Such infinite range of values make it inappropriate
for visualization purposes.

• From a given set of ci, it is difficult to obtain an intuitive idea of the orientation, unless it is
converted to some parameter set with more apparent geometric significance.

To overcome these short-comings simultaneously, we convert the polynomial in ci to an equivalent
expression in the ball parameters via equation (43) (see Appendix A.2). Writing tθ for tan(θ/2),
we obtain a 6-degree polynomial in tθ as follows:

g0t
6
θ + g1t

5
θ + g2t

4
θ + g3t

3
θ + g4t

2
θ + g5tθ + g6 = 0 (34)

where θ is the rotation about the axis of the finite rotation.
The set of coefficients gi have an one-to-one correspondence with the unit vectors emanating

from the origin of <3. Therefore each such set represents a unique direction and the sense of rotation,
and each solution of equation (34) such that tθ ∈ [0,∞], gives the corresponding angle of CCW
rotation via the transformation

θ = 2 atan2(1 + t2θ, 2tθ) (35)
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The expressions of gi’s are complicated, hence the number of feasible roots of equation (34) can
not be ascertained a priori. We can only conclude that for a given architecture and position, there
are 0, 2, 4 or 6 CCW rotations in [0, π] about any given axis such that the resulting orientation of
the top platform leads to a singular configuration. However, these rotation angles can be computed
relatively easily using the analytical expressions of gi. Moreover, as the rotation axis is made to
sweep through the entire sphere S2 (i.e., α ∈ [−π/2, π/2], β ∈ [0, 2π]), and corresponding feasible
values of θ are obtained, all the singular orientations can be enlisted.

It may be mentioned that the computation of orientation singularity manifold in [13] is in terms
of tangent half-angles of the Euler angles. The general expressions are in terms of 3981 determinants
which lead to 2173 coefficients, whereas our gi’s are in a much more simpler, explicit functional form.
We present the expressions for g4, g5 and g6 to illustrate this.

g4 = z(4z2 cos(γ) sin2(α) sin3(γ) + 4z cos(α) sin(α)(sin(β)(y cos(γ) + 5x sin(γ))

+ cos(β)(x cos(γ)− 5y sin(γ))) sin3(γ) + cos2(α)(−4 cos(3(γ + 2γt))

× cos2(γ) + cos(γ) + 3 cos(3γ) + 4 sin(γ)(y sin(2β − γ − 3γt)− x cos(2β − γ − 3γt)) sin(γ + 3γt))

×rt sin(γ)− 2 cos2(α) sin(2γ) sin2(γ + 3γt)r
2
t + cos2(α)(8y2 cos(β) cos(β + γ) sin3(γ)

+8x2 sin(β) sin(β + γ) sin3(γ)− 8xy sin(2β + γ) sin3(γ)

−4x cos(2β − 2γ − 3γt) sin(2γ + 3γt) sin2(γ) + 4y sin(2β − 2γ − 3γt) sin(2γ + 3γt) sin2(γ)

−2 sin(2γ) sin2(2γ + 3γt)))

g5 = 4z2 sin3(γ)(2z sin(α) sin(γ) + cos(α)(cos(β)(x sin(γ)− 3y cos(γ))

+ sin(β)(3x cos(γ) + y sin(γ))))

g6 = 4z3 cos(γ) sin3(γ) (36)

As in the case of Sp, we observe that for two similar platforms with γ = 0 (γb = γt), g4, g5

and g6 are zero. Indeed, all gi ’s vanish under this condition, and the manipulator is singular at all
possible configurations, i.e., it is architecturally singular.

4.4 Illustrative examples

In this section, we plot the surfaces Sp and SO for a SRSPM to illustrate the results described
above. The geometry of the top and bottom platforms are taken to be the same as the INRIA
prototype [22, 23, 13]. However, the top platform is mobile in our case, and all the lengths are
scaled such that the radius of the bottom platform is unity. The resulting architectural parameters
of this manipulator are as follows:

rt = 0.5803, γb = 0.2985rad, γt = 0.6573rad

and therefore γ = −0.3588rad. The manipulator is shown in figure 2 below in a reference config-
uration, where x = y = 0, z = 1, and R = Rz(γ), such that the axes of symmetry in the two
platforms are vertically aligned. In the following, we present the surfaces Sp and SO respectively
for this manipulator.

4.4.1 Examples of Sp
We choose two different orientations to illustrate Sp. First we take c1 = 0.4, c2 = 0.2, c3 =
0.6. A part of the corresponding surface is shown in figure 3. For this case, zp = 0.4026,
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Figure 2: The SRSPM in a reference configuration

Figure 3: Sp for c1 = 0.4, c2 = 0.2, c3 = 0.6
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and the heights at which the hyperbolas degenerate to pairs of straight lines are given by zl =
(−0.2390, 0.2692, 0.7675, 0.9413). We can see that the two sheets of Sp meet at z = 0.2692, and
then start moving away from each other rapidly as the height approaches zp = 0.4026. The variation
of the major and minor axis lengths shown in figure 4(a) represent these trends quantitatively. The
dotted horizontal line indicates the direction of the major axis, with 0 implying the X-axis, and
1 implying Y . It can be seen clearly that the major and minor axes of the hyperbola interchange
at z = 0.2692, and as it approaches the parabolic section, the major axis of the hyperbola starts
increasing rapidly. The center also moves rapidly away from its initial position, such that its locus
becomes nearly horizontal.
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Figure 4: Properties of the conic section C at various z-sections (c1 = 0.4, c2 = 0.2, c3 = 0.6)

The second example is chosen such that c1 = 0, c2 = 0.1, c3 = 0.1. This combination illustrates
the multiple cross-overs of the two sheets of Sp clearly. Two views of the surface are shown in figure
5(a) and figure 5(b) respectively.

The parabolic section in this case is located at z = −0.3041, and the interchange of axes takes
place at z = (−0.2448,−0.0919, 0.0810, 0.4528). In figures 6(a) and 6(b), we see the variation of
the axis lengths, and the locus of the center of C.

4.4.2 Example of SO
To illustrate the surface SO, we use the position x = y = 0, and z = 1. It is difficult to plot the
surface, as no explicit parameterization has been obtained in this case. However, we evaluate the
points on SO numerically, and plot them together. Figure 7 shows such a plot of SO. It can be seen
that the surface seems repeated thrice along the β axis. To get a better view of the surface, we look
into one-third of it in greater detail in figure 8. Figure 9 presents another view of the same part of
SO.
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(a) View 1

(b) View 2

Figure 5: Two views of Sp for c1 = 0, c2 = 0.1, c3 = 0.1
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5 Examples of singular configuration

We present a few examples of a singular configuration of the SRSPM. We use the same architecture
as in section 4.4. The orientation of the top platform is also chosen as in the examples of Sp, and
the position is set to x = y = 0. The z component of position is obtained from equation (20), which
yields 3 solutions for each set of x, y and other parameters. We use only the positive values of z in
the following.
Example 1: We choose x = y = 0, c1 = 0.4, c2 = 0.2, c3 = 0.6 and evaluate a singularity corre-
sponding to Sp. For these numerical values, equation (20) reduces to

− 0.1115z3 + 0.0533xz2 + 0.3502yz2 + 0.0478z2 + 0.1046x2z − 0.1431y2z

− 0.3778xz + 0.1582xyz − 0.2817yz + 0.2994z + 0.0266x2 + 0.0854y2 + 0.0988x

− 0.1512xy + 0.0046y − 0.1550 = 0

Substituting x = y = 0 in the above polynomial, we get

− 0.1115z3 + 0.0478z2 + 0.2994z − 0.1550 = 0

and the solution of the above cubic gives z = 0.5282, 1.5735,−1.6732. For the two positive z values
the manipulator configurations are shown in figures 10(a) and 10(b) respectively.

(a) z = 0.5282 (b) z = 1.5735

Figure 10: Singular configurations of the SRSPM at x = y = 0, c1 = 0.4, c2 = 0.2, c3 = 0.6

Example 2: For the values chosen as x = y = 0, c1 = 0, c2 = 0.1, c3 = 0.1, there is only one positive
solution for z given by z = 0.2091. The corresponding singular configuration is shown in figure 11.
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Figure 11: Singular configurations of the SRSPSM at x = y = 0, c1 = 0, c2 = 0.1, c3 = 0.1

Example 3: We choose x = y = 0, z = 0.2091, c2 = 0.1, c3 = 0.1 and evaluate a singularity
configuration corresponding to SO. In this case, the position is fully prescribed, and the orientation
is partially specified. The parameter c1 is computed from the singularity condition. The values of c1

are real and are given by (−0.08889, 0.0000, 0.4139, 1.5384, 21.1170). The roots are distinct which
numerically justifies our claim of deriving the minimal form of SO. Further, the second configuration
with c1 = 0.0000 is theoretically the same as in the second example above, where c1 was set to 0.
The match of the computed solution with the exact result verifies our computations numerically.
We show the set of singular configurations in figures 12(a)-12(e).

6 Conclusion

In this paper, we have presented a detailed analytical description of the singularities of a class of
6-6 Stewart platform manipulators. We have derived the analytical equations of the singularity
manifold M ∈ SE(3). For a given architecture, we have decomposed M as surfaces Sp ∈ <3

and SO ∈ SO(3), consisting of the singular configurations at a given orientation, and rotation
respectively. We have also presented detailed geometric characterization of Sp, and its explicit
parameterization. Such results are novel for any SPM as far as we know, and the methods used
here can be applied to analysis of any SPM or similar mechanisms.

Extensive symbolic manipulations and simplifications have been used throughout the paper, and
for carrying out such tasks efficiently, we have developed simplification algorithms based on three
different canonical forms of algebraic-trigonometric expressions. These algorithms can simplify large
expressions involving algebraic and trigonometric terms, and their applications are not limited to
singularity analysis of SPMs or rigid-body kinematics.

The results presented in this paper should facilitate important functional aspects of parallel
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(a) c1 = −0.0889 (b) c1 = 0.0000

(c) c1 = 0.4139 (d) c1 = 1.5384

(e) c1 = 21.1170

Figure 12: Singular configurations of the SRSPM at x = y = 0, z = 0.2091, c2 = 0.1, c3 = 0.1
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robots, such as detection of singularities, and formal verification of trajectories. With the compact
analytical conditions for singularity allowing parametric study of designs with very less computa-
tions, the task of designing singularity-free workspaces should be greatly facilitated. The methods
described here can also be used without modification to study the singularities of more general
forms of the SPM.
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A Different parameterizations of SO(3)

In this section, we discuss the parameterizations of SO(3) used in this paper.

A.1 Rodrigue’s parameters

Rodrigue’s parameters utilizes the isomorphism between <3 and so(3), and provide an algebraic
parameterization of SO(3) (see, for e.g., [15]). Using the isomorphism, we can obtain a 3 × 3
skew-symmetric matrix A corresponding to a vector c = (c1, c2, c3)T as

A =




0 −c3 c2

c3 0 −c1

−c2 c1 0


 (37)
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There exists a homeomorphism from the neighborhood of 0 ∈ so(3) to a neighborhood of I 3 ∈ SO(3)
due to Cayley, given by

R = (I3 −A)(I3 +A)−1 (38)

where I3 is the identity in GL3(<). Using this transformation, we can get one of the possible
explicit formulæ for the elements of R ∈ SO(3) as

Rij =
1

1 + c2
k

((1− c2
k + 2c2

i )δij + 2(1− δij)(cicj − ckεijk)) (39)

In matrix form, we can write

R =
1

1 + c2
1 + c2

2 + c2
3




1 + c2
1 − c2

2 − c2
3 2(c1c2 − c3) 2(c1c3 + c2)

2(c1c2 + c3) 1− c2
1 + c2

2 − c2
3 2(c2c3 − c1)

2(c1c3 − c2) 2(c2c3 + c1) 1− c2
1 − c2

2 + c2
3


 (40)

For any rotation matrix R. we have tr(R) = 1 + 2 cos θ, where θ ∈ [0, π] is the net rotation
represented by R. Hence we have

1 + 2 cos θ = tr(R) =
3− c2

1 − c2
2 − c2

3

1 + c2
1 + c2

2 + c2
3

If θ 6= 0, mπ where m is an integer, the rotation axis is well defined, and is given by the unit vector
u = (ux, uy, uz), where

2 sin θuk = Rijεijk =
4ck

1 + c2
1 + c2

2 + c2
3

It can be shown that these requirements are simultaneously satisfied if we have:

c = u tan(θ/2) (41)

Equation (41) gives the geometric interpretation of ci, which are known as Rodrigue’s parameters.
These parameters provide a system of local coordinates of SO(3) in the neighborhood of its identity.
The major advantage of this representation of rigid-body rotation is in its algebraic nature, which
makes its use in complicated kinematic analysis computationally economical.

A.2 Ball parameters of SO(3)

The geometric interpretation of ci leads to a 4-parameter representation of SO(3) in terms of
(ux, uy, uz, θ). However, SO(3) is 3-dimensional, and this parameterization involves a constraint, i.e.,
‖u‖ = 1. One can further parameterize the unit vector u to obtain a constraint free parameterization
of SO(3) as explained below.

The unit vector parallel to the rotation axis can be written as

u = (cosα cos β, cosα sin β, sinα)T (42)

where α is the angle made by u with the XY plane, and β is the angle made by the projection of
u on the XY plane with the X axis. We can now express c as

c = tan(θ/2)(cosα cos β, cosα sin β, sinα)T (43)
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The three quantities (α, β, θ) form another local parameterization of SO(3), and are related to the
representation of SO(3) as a ball [18]. The angles α, β serve as the latitude and longitude, while
θ ∈ [0, π] gives the radius. Each point on the surface of this ball represents a rotation uniquely.
However, a given rotation corresponds to two points on the ball, which are antipodal to each other.
This is because the rotation (u, θ) is equivalent to the rotation (−u,−θ) ∀θ ∈ [0, π], and it can
be shown that the ball is a doubly connected domain. The zero rotation corresponds to the center.
Entire SO(3) can be covered if the axis is swept through the unit sphere S2, and the magnitude
of rotation varies from 0 to π for each such axis, i.e., α ∈ [−π/2, π/2], β ∈ [0, 2π], θ ∈ [0, π].
The advantage of this parameterization over more common ones, such as the Euler angles, is that
it yields an intuitive idea of the top platform orientation directly. It can also take advantage of
the compactness of the kinematic expressions in terms of ci via equation (43), providing geometric
insight at the same time.
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