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Abstract

This article deals with the kinematics of serial manipulators. The serial manipulators are
assumed to be rigid and are modeled using the well-known Denavit-Hartenberg parameters. Two
well-known problems in serial manipulator kinematics, namely the direct and inverse problems,
are discussed and several examples are presented. The important concept of the workspace of a
serial manipulator and the approaches to determine the workspace are also discussed.

Keywords: Serial manipulators, direct kinematics, inverse kinematics, workspace, general 6R ma-
nipulator, redundant manipulators

1 Introduction

A serial manipulator consists of a fixed base, a series of links connected by joints, and ending at
a free end carrying the tool or the end-effector. In contrast to parallel manipulators, there are no
closed loops. By actuating the joints, one can position and orient the end-effector in a plane or
in three-dimensional (3D) space to perform desired tasks with the end-effector. This chapter deals
with kinematics of serial manipulators where the motion of links are studied without considering
the external forces and torques which cause these motions. The serial manipulator geometries are
described using the well-known Denavit-Hartenberg (D-H) parameters. Two well-known problems,
namely the direct and inverse kinematics problems, are posed, their solution procedures discussed
in detail and illustrated with examples of planar and spatial serial manipulators. It is shown
that closed-form analytic solutions to the inverse kinematics problem is possible only for serial
manipulators with special geometries and the most general six-degree-of-freedom serial manipulator
requires the solution of at most a 16th degree polynomial. The solution of the inverse kinematics
problem leads to an important and useful concept of the workspace of a serial manipulator and the
approaches to obtain the workspace and determine its properties are also presented.

As mentioned above, a serial manipulator consists of joints and links. The number of joints
and links determine the degree of freedom of a manipulator which determines the capabilities of a
serial manipulator. We start this chapter with a discussion on this important concept of degrees of
freedom of a serial manipulator.
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2 Degrees of freedom of a manipulator

The degrees of freedom of a serial manipulator1 can be obtained from the well-known Chebychev-
Grübler-Kutzbach criterion

dof = λ(N − J − 1) +
J∑

i=1

Fi (1)

where dof is the computed degree of freedom with N as the total number of links including the
fixed link (or base), J as the total number of joints connecting two consecutive links, Fi as the
degrees of freedom at the ith joint, and

λ = 6, for motion in 3D

3, for planar motion.

The quantity, dof, obtained from equation (1) is the number of independent actuators that can
be present in the serial manipulator. In a broad sense, dof determines the capability of the serial
manipulator with respect to dimension of the ambient space λ. We have the following possibilities:

1. dof = λ – In this case, an end-effector of a manipulator can be positioned and oriented
arbitrarily in the ambient space of motion.

2. dof < λ – In this case, the arbitrary position and orientation of the end-effector is not
achievable and there exist (λ − dof) functional relationships containing the position and
orientation variables of the end-effector.

3. dof > λ – These are called redundant manipulators and the end-effector can be positioned
and oriented in infinite number of ways.

In serial manipulators with a fixed base, a free end-effector and two links connected by a joint,
from equation (1), N = J + 1 and dof =

∑J
i=1 Fi. If all the actuated joints are one- degree-of-

freedom joints, then J = dof.
If J < dof, then one or more of the actuated joints are multi- degree-of-freedom joints and this

is not used in mechanical serial manipulators. This is due to the fact that it is difficult to locate
and actuate two or more one- degree-of-freedom joints at the same place in a serial manipulator. In
biological systems, muscles are used to actuate multi- degree-of-freedom joints – in a human arm
muscles actuate the three- degree-of-freedom shoulder joint.

In manipulators, the J joint variables form the joint space. The variables describing the position
and orientation of a link or the end-effector are called the task space variables. The dimension of
task space is ≤ 6 for 3D motions and ≤ 3 for planar motion. Finally, there are often mechanical
linkages, gears, etc. between actuators and joints. The space of all actuator variables is called the
actuator space. If the dimension of the actuator space is more than 3 for planar motion and more
than 6 for 3D motion, the manipulator is called redundant. If the dimension of the actuator space
is less than the degree of freedom, then the manipulator is called under-actuated.

1The Chebychev-Grübler-Kutzbach criterion can be used to find the degree of freedom of an arbitrary connections
of links and joints and is not restricted to serial manipulators. It, however, does not work for over-constrained
mechanisms. More details can be found in Gogu [1].
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3 Representation of links using Denavit-Hartenberg parameters
and transformation matrix

As mentioned earlier, the serial manipulator consists of a sequence of links connected by joints.
In most industrial manipulators, the links are designed to minimize deflection and consequent loss
of accuracy and repeatability, and, in this sense, the links can be assumed to be rigid bodies.
It is well-known that a rigid body in 3D space can be described (with respect to another rigid
body or a reference coordinate system) completely by six independent parameters – three for the
position vector of a point of interest on the link or the origin of a coordinate system attached
to the rigid body and three angles for the orientation of the rigid body. In 1955, Denavit and
Hartenberg [2], presented a formulation for describing links connected by rotary (R) or prismatic
(P) joints which required only four independent parameters and thus leading to more efficient
computations. Unfortunately, over time, several conventions have emerged with slightly different
interpretations of these four Denavit-Hartenberg or D-H parameters (see, for example textbooks
by Paul [3], Fu et al. [4] and Craig [5]). In this Chapter we follow one of the commonly used and
modern convention described in Craig [5] or Ghosal [6].

Figure 1 shows three rotary (R) joints connecting link i − 2 and link i − 1, link i − 1 and link
i and link i and link i + 1, respectively – although R joints are used in the developement here,
analogous definitions of D-H parameters with prismatic (P) joints and a sequence containing both
R and P joints can be similarly obtained. The key elements of the convention used here are

• the joint axis i is labeled as Ẑi,

• the coordinate system {i} is attached to the link i, and

• the origin Oi of {i} lies on the joint axis i.

It may be noted that the link i is after2 the joint i as shown schematically in figure 1. The X̂i

axis is along the mutual perpendicular between the lines along Ẑi and Ẑi+1 and the intersection of
the mutual perpendicular line and the line along joint axis i determines the origin Oi of coordinate
system {i}. The Ŷi axis, perpendicular to both X̂i and Ẑi so as to form a right-handed coordinate
system, is not shown for clarity.

The first D-H parameter for link i is the twist angle, αi−1, defined as the angle between the
lines along Ẑi−1 and Ẑi and measured about the common perpendicular X̂i−1 according to the
right-hand rule (see figure 1). The twist angle is a signed quantity between 0 and ±π radians.

The second D-H parameter for link i is the link length, ai−1, defined as the distance between
the lines along Ẑi−1 and Ẑi along the common perpendicular X̂i−1 (see figure 1). It is a positive
quantity or zero.

The third D-H parameter is called the link offset, di, defined as the displacement along Ẑi from
the line parallel to X̂i−1 to the line parallel to X̂i. If the joint i is rotary, then di is a constant and
for a prismatic joint di is the joint variable (see figure 1). The quantity di can be positive, negative
or zero.

The fourth D-H parameter is the link rotation angle, θi, defined to be the angle between X̂i−1

and X̂i measured about Ẑi according to the right-hand rule. If the joint i is prismatic, then θi is

2In serial manipulators, the notion of after is clear and natural – the fixed link is denoted by {0} and link 1,
denoted {1}, is after the joint 1 connecting {0} and {1}. In parallel and hybrid manipulators, with one or more loops,
one needs to be careful since the loop can be traversed in more than one way.
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Figure 1: Intermediate links and D-H parameters

constant and if joint i is rotary, then θi is the joint variable (see figure 1). The rotation angle θi is
a signed quantity between 0 and ±π radians.

If the axes of two consecutive joints i − 1 and i are parallel, then there exists infinitely many
common perpendiculars. In this case the twist angle αi−1 is 0 or π and the link length ai−1 is the
distance along any of the common perpendiculars since all are equal. If the joints i − 1 and i are
parallel and the joint i is rotary, then di is taken as zero. If the joint i is prismatic, then θi is taken
as zero. It may be noted that if the two consecutive joints are prismatic and parallel, then the two
joint variables are not independent.

If two consecutive joints are intersecting, then there are two choices for the direction of the
common perpendicular X̂i−1 either along or opposite to the normal to the plane defined by the
intersecting Ẑi−1 and Ẑi. The link length ai−1 is clearly zero.

The above assignment of origins and co-ordinate axes fails for the first and the last link. For
the first link, the choice of Ẑ0 and thereby X̂1 is arbitrary, and for the last link, Ẑn+1 does not
exist. As a consequence, αi−1 and ai−1 for first link and di and θi for the last link are not defined.
In order to overcome this problem, the following is used:

• For the first link, if the first joint is rotary (R), then {0} and {1} are chosen to be coincident
with αi−1 = ai−1 = 0. This also implies d1 = 0 if first joint is rotary and the only non-zero
variable is θ1.

• For the first link, if the first joint is prismatic (P), then the coordinate axes of {0} and {1}
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are chosen to be parallel and αi−1 = ai−1 = θ1 = 0. For the first link with a prismatic joint,
the only non-zero parameter is d1.

• For the last (n) link, if the joint n is rotary (R), then the origins of {n} and {n+ 1} are
chosen to be coincident and dn = 0. The angle θn is taken to be zero when the axis X̂n−1

aligns with axis X̂n. The joint variable in this case is θn.

• If the last joint is prismatic, X̂n is chosen so that θn = 0, and the origin On is chosen at the
intersection of X̂n−1 and Ẑn when dn = 0. The joint variable in this case is dn.

In the above described convention, two of the four parameters of the link i, αi−1 and ai−1,
have subscripts i − 1 and two of them, di and θi, have subscript i. Another consequence of the
convention is that the link length an and the twist angle, αn, need not be defined. The link n is the
end-effector or the tool of the manipulator and, to represent the tool or the end-effector, a separate
coordinate system {Tool} on the tool is used. Usually, this end-effector or tool coordinate system
has the same orientation as {n} and its origin is at some point of interest in {Tool}. For example,
in the case of a parallel jaw gripper schematically shown in figure 2, the origin of {Tool} is at the
mid-point of the jaws.

Figure 2: Parallel jaw gripper with {Tool} frame

Once the links of a serial robot are represented with the Denavit-Hartenberg parameters, the
position and orientation of link i can be obtained with respect to link i− 1. The position vector to
the origin of link i, Oi, from the origin of link i− 1, Oi−1, is given by

i−1Oi = ai−1
i−1X̂i−1 + di

i−1Ẑi (2)

where i−1X̂i−1 is (1, 0, 0)
T and i−1Ẑi is given by (0, −sαi−1 , cαi−1)

T . It may be noted that through-
out this article sine and cosine of an angle θ are denoted by sθ, cθ, respectively.
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The rotation matrix, i−1
i [R], describing the orientation of link i with respect to link i − 1, is

given by the product of two rotation matrices, namely rotation of angle αi−1 about X̂ and rotation
of angle θi about Ẑ

i−1
i [R] = [R(X̂i−1, αi−1)] [R(Ẑi, θi)]

=

 1 0 0
0 cαi−1 −sαi−1

0 sαi−1 cαi−1

 cθi −sθi 0
sθi cθi 0
0 0 1

 (3)

In terms of the commonly used 4× 4 homogeneous transformations, the link i with respect to
i− 1 is given by

i−1
i [T ] =


cθi −sθi 0 ai−1

sθicαi−1 cθicαi−1 −sαi−1 −sαi−1di
sθisαi−1 cθisαi−1 cαi−1 cαi−1di

0 0 0 1

 (4)

It can be seen that i−1
i [T ] is a function of only one joint variable – a function of θi if joint i is rotary

and a function of di if joint i is prismatic.
To obtain the transformation matrix of a link i with respect to any other link, product of

transformation matrices can be used. For example, the link i can be described with respect to the
fixed base or reference coordinate system {0} as

0
i [T ] =

0
1[T ]

1
2[T ] ...

i−1
i [T ] (5)

Since each of i−1
i [T ] is a function of only one joint variable, the right-hand side of equation (5) will

be a function of i joint variables with the other 3∗i Denavit-Hartenberg parameters being constant.

3.1 Examples of D-H parameters and link transformation matrices

To illustrate the concept of Denavit-Hartenberg parameters and link transformation matrices, three
examples are presented in this section.

The planar 3R manipulator

As a first example, the D-H parameters and link transformation matrices of a simple planar three
link manipulator with three rotary (R) joints, shown in figure 3, is obtained.

In this example, all the rotary joint axes are parallel and are pointing out of the paper. The
Denavit-Hartenberg parameters are obtained as follows.

The fixed or reference coordinate system, {0}, is chosen with its Ẑ0 coming out of the paper,
and X̂0 and Ŷ0 pointing to the right and top, respectively. For the first coordinate system, the
origin O1 and Ẑ1 are coincident with O0 and Ẑ0, and X̂1 and Ŷ1 are coincident with X̂0 and Ŷ0

when θ1 is zero. The X̂1 is along the mutual perpendicular between Ẑ1 and Ẑ2. Similarly, X̂2 is
along the mutual perpendicular between Ẑ2 and Ẑ3. For the last frame, X̂3 is aligned to X̂2 when
θ3 = 0. The origin O2 is located at the intersection of the mutual perpendicular along X̂2 and Ẑ2.
The origin O3 is chosen such that d3 is zero. The origins and the axes of {1}, {2}, and {3} are as
shown in figure 3.

From the assigned origins and axes, the Denavit-Hartenberg parameters can be obtained by
inspection. They are presented in a tabular form below.
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Figure 3: The planar 3R manipulator

Table 1: The D-H parameters of a planar 3R manipulator

i αi−1 ai−1 di θi

1 0 0 0 θ1
2 0 l1 0 θ2
3 0 l2 0 θ3

In the above table, l1 and l2 are the link lengths as shown in figure 3. It may be noted that
the length of the end-effector does not appear in the table. To describe the end-effector, we attach
a tool frame, {Tool}, aligned to {3} at the mid-point of the parallel jaw gripper. In figure 3, the
origin of {Tool} is shown at a distance of l3 from O3 along X̂3.

From the D-H table, using equation (4), the link transformation matrices can be obtained by
substitution. For i = 1, ai−1 = 0, αi−1 = 0 and di = 0. Denoting sin θ1 and cos θ1 by s1 and c1,
respectively, one can get

0
1[T ] =


c1 −s1 0 0
s1 c1 0 0
0 0 1 0
0 0 0 1


Similarly, for i = 2 ( ai−1 = l1, αi−1 = 0 and di = 0) and for i = 3 (ai−1 = l2, αi−1 = 0 and di = 0),

1
2[T ] =


c2 −s2 0 l1
s2 c2 0 0
0 0 1 0
0 0 0 1

 , 2
3[T ] =


c3 −s3 0 l2
s3 c3 0 0
0 0 1 0
0 0 0 1


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To find the transformation matrix 3
Tool[T ], the orientation of {Tool} is assumed to be the same as

the orientation of {3} and the origin is at a distance l3 along X̂3. Hence

3
Tool[T ] =


1 0 0 l3
0 1 0 0
0 0 1 0
0 0 0 1


To find the transformation matrix 0

3[T ], multiply 0
1[T ]

1
2[T ]

2
3[T ] resulting in

0
3[T ] =


c123 −s123 0 l1c1 + l2c12
s123 c123 0 l1s1 + l2s12
0 0 1 0
0 0 0 1

 (6)

Finally, to obtain 0
Tool[T ], multiply 0

3[T ]
3
Tool[T ] and get

0
Tool[T ] =


c123 −s123 0 l1c1 + l2c12 + l3c123
s123 c123 0 l1s1 + l2s12 + l3s123
0 0 1 0
0 0 0 1

 (7)

The PUMA 560 manipulator

The PUMA 560 is a six- degree-of-freedom manipulator with all rotary (R) joints. A schematic
drawing of the manipulator is shown in figure 4 with the assigned coordinate systems to the links
of the manipulator.

The coordinate systems {0}, {1}, and {2} have the same origin. In many industrial manipula-
tors, the last three joint axes intersect at a point called the “wrist” and the PUMA 560 is one such
example. The origins of the coordinate systems {4}, {5} and {6} are located at this wrist point.
Once the origins and the coordinate systems are assigned, the Denavit-Hartenberg parameters can
be obtained by inspecting figure 4 and they are presented in a tabular form below.

The link transformation matrices relating successive coordinate systems can be obtained by
using equation (4).

0
1[T ] =


c1 −s1 0 0
s1 c1 0 0
0 0 1 0
0 0 0 1

 , 1
2[T ] =


c2 −s2 0 0
0 0 1 0

−s2 −c2 0 0
0 0 0 1



2
3[T ] =


c3 −s3 0 a2
s3 c3 0 0
0 0 1 d3
0 0 0 1

 , 3
4[T ] =


c4 −s4 0 a3
0 0 1 d4

−s4 −c4 0 0
0 0 0 1



4
5[T ] =


c5 −s5 0 0
0 0 −1 0
s5 c5 0 0
0 0 0 1

 , 5
6[T ] =


c6 −s6 0 0
0 0 1 0

−s6 −c6 0 0
0 0 0 1


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Figure 4: Schematic of a PUMA 560 manipulator

The transformation matrix 0
6[T ] can be obtained by multiplying all the above transformation

matrices. The matrix 0
3[T ] is obtained by multiplying 0

1[T ]
1
2[T ]

2
3[T ] and is given by

0
3[T ] =


c1c23 −c1s23 −s1 a2c1c2 − d3s1
s1c23 −s1s23 c1 a2s1c2 + d3c1
−s23 −c23 0 −a2s2
0 0 0 1

 (8)

The matrix 3
6[T ] is obtained by multiplying 3

4[T ]
4
5[T ]

5
6[T ].

3
6[T ] =


c4c5c6 − s4s6 −c4c5s6 − s4c6 −c4s5 a3

s5c6 −s5s6 c5 d4
−s4c5c6 − c4s6 s4c5s6 − c4c6 s4s5 0

0 0 0 1

 (9)

The transformation matrix 0
6[T ] can be obtained by multiplying 0

3[T ] and
3
6[T ] given in equa-

tions (8) and (9).

A SCARA manipulator

A manipulator with a SCARA configuration is very popular for robotic assembly due to its com-
pliance and rigidity in desired directions. A SCARA manipulator has four degrees of freedom with
three rotary (R) joints and the third joint is prismatic (P). Figure 5 shows a schematic drawing of
a SCARA manipulator and the assigned coordinate systems.

As shown in the figure 5, the coordinate systems {0} and {1} have the same origin and the
origins of {3} and {4} are chosen at the base of the parallel jaw gripper. The directions of Ẑ3
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Table 2: The D-H parameters of a PUMA 560 manipulator

i αi−1 ai−1 di θi

1 0 0 0 θ1
2 −π/2 0 0 θ2
3 0 a2 d3 θ3
4 −π/2 a3 d4 θ4
5 π/2 0 0 θ5
6 −π/2 0 0 θ6

O O

θ
θ

θ

1

2

3

4

O

1

1

2

2

10
,

3 4

3

3

2

,

Z

X

{2}

X

{3}

X

Z

d

{1}

O

{4}

Z

O

Figure 5: A SCARA manipulator

have been as chosen pointing upwards. It may be noted that the Ẑ3 can be chosen in the opposite
direction and O3 can be chosen at some other point – the kinematic properties of the SCARA
manipulator will not chnage but d3 values will be different. In an actual SCARA manipulator,
the translation at the third joint may be realized by means of a (rotary) motor and a ball-screw.
However, in this example, the third joint is assumed to be a prismatic (P) joint.

The Denavit-Hartenberg parameters can now be obtained by inspecting figure 6 and they are
presented in a tabular form below.

The link transformation matrices relating successive links or coordinate systems can be obtained
by using equation (4) and are given below.

0
1[T ] =


c1 −s1 0 0
s1 c1 0 0
0 0 1 0
0 0 0 1

 , 1
2[T ] =


c2 −s2 0 a1
s2 c2 0 0
0 0 1 0
0 0 0 1


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Table 3: The D-H parameters of a SCARA manipulator

i αi−1 ai−1 di θi

1 0 0 0 θ1
2 0 a1 0 θ2
3 0 a2 −d3 0
4 0 0 0 θ4

2
3[T ] =


1 0 0 a2
0 1 0 0
0 0 1 −d3
0 0 0 1

 , 3
4[T ] =


c4 −s4 0 0
s4 c4 0 0
0 0 1 0
0 0 0 1


The transformation matrix 0

4[T ] is obtained as

0
4[T ] = 0

1[T ]
1
2[T ]

2
3[T ]

3
4[T ]

=


c124 −s124 0 a1c1 + a2c12
s124 c124 0 a1s1 + a2s12
0 0 1 −d3
0 0 0 1

 (10)

In the next section one of the main problems in serial manipulator kinematics is posed and
discussed in detail.

4 Direct kinematics of serial manipulators

The direct kinematics problem of a serial manipulator can be stated as follows: given the link
parameters and the joint variable, ai−1, αi−1, di, and θi, find the position and orientation of the
last link in the fixed or reference coordinate system.

The direct kinematics is the simplest possible problem in manipulator kinematics and it follows
directly from the notion of the link transformation matrix of Section 3. If the fixed coordinate
system is {0} and the coordinate system of the end-effector is {n}, one can write

0
n[T ] =

0
1[T ]

1
2[T ]......

n−1
n [T ] (11)

In the above matrix equation, the right-hand side contains ai−1, αi−1, di, θi with 1 = 1, ..., n. In the
direct kinematics problem, all these are known and hence all the 4× 4 matrices on the right-hand
side are known. The direct kinematics problem for serial manipulators can thus be solved by simple
matrix multiplication and extraction of the rotation matrix, 0n[R], and the vector to the origin, 0On,
of {n}.
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Instead of orientation and position of 0
n[T ], it is often of interest to obtain Base

n [T ] (see figure 6).
To obtain Base

n [T ], pre-multiply 0
n[T ] by a known Base

0 [T ]. Likewise to obtain Tool
0 [T ], post-multiply

0
n[T ] by a known n

Tool[T ]. In general,

Base
Tool [T ] =

Base
0 [T ] 0

n[T ]
n
Tool[T ] (12)

One of the advantages of the D-H convention used here is that manipulator kinematics, repre-
sented by 0

n[T ], is independent of the choise of the {Base} or the {Tool}, and very little change
is required if the serial robot changes its end-effector or is moved to some other location on the
factory floor. This feature is not available in several of the other conventions in use for defining
D-H parameters.

The direct kinematics problems for three serial manipulators are solved in the following exam-
ples.

4.1 Example – The planar 3R manipulator

In the case of the planar 3R manipulator (see figure 3), the orientation of the tool or the gripper
can be described by an angle ϕ. From equation (7), one can directly write the position coordinates,
x, y, and orientation of the tool as

x = l1c1 + l2c12 + l3c123
y = l1s1 + l2s12 + l3s123
ϕ = θ1 + θ2 + θ3

(13)

where, c12, s12 etc. represent cos(θ1 + θ2) and sin(θ1 + θ2) etc., respectively.

4.2 Example – The PUMA 560 manipulator

The transformation matrix 0
6[T ] for the PUMA manipulator is obtained by multiplying 0

3[T ] and
3
6[T ]

given in equations (8) and (9). Denoting the elements of the rotation matrix 0
6[R] by rij , i, j = 1, 2, 3,
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and the components of the origin of the coordinate system {6}, 0O6, by (O6x, O6y, O6z)
T , one can

write
r11 = c1{c23(c4c5c6 − s4s6)− s23s5c6}+ s1(s4c5c6 + c4s6)
r21 = s1{c23(c4c5c6 − s4s6)− s23s5c6} − c1(s4c5c6 + c4s6)
r31 = −s23(c4c5c6 − s4s6)− c23s5c6

r12 = c1{c23(−c4c5s6 − s4c6) + s23s5s6}+ s1(−s4c5s6 + c4c6)
r22 = s1{c23(−c4c5s6 − s4c6) + s23s5s6} − c1(−s4c5s6 + c4c6)
r32 = −s23(c4c5s6 − s4c6) + c23s5s6

r13 = −c1(c23c4s5 + s23c5)− s1s4s5
r23 = −s1(c23c4s5 + s23c5) + c1s4s5
r33 = s23c4s5 − c23c5

O6x = c1(a2c2 + a3c23 − d4s23)− d3s1
O6y = s1(a2c2 + a3c23 − d4s23) + d3c1
O6z = −a2s2 − a3s23 − d4c23

(14)

4.3 Example – A SCARA manipulator

For the SCARA manipulator, the matrix 0
4[T ] is given in equation (10). The orientation of the {4}

can be described by the angle ϕ, and the position, (x, y, z) of origin of {4} is given by

x = a1c1 + a2c12
y = a1s1 + a2s12
z = −d3
ϕ = θ1 + θ2 + θ4

(15)

It may be noted that the direct kinematics problem for a serial manipulator is well defined,
easily solvable, and has a unique solution for any number of links.

5 Inverse kinematics of serial manipulators

The inverse kinematics problem for serial manipulators can be stated as follows: given the constant
link parameters and the position and orientation of {n} with respect to the fixed frame {0}, find
the joint variables. For the planar 3R manipulator example, the inverse kinematics problem would
be to obtain θi, i = 1, 2, 3, given the position of the end-effector x, y and its orientation ϕ. In the
case of the spatial PUMA manipulator, the transformation matrix 0

6[T ] is given and the goal is to
find the joint angles θi, i = 1, .., 6. In general, six task space variables are given for 3D motion
(three task space variables for planar motion) and the goal is to find the n joint variables which
make up 0

n[T ]. Depending on n, the following cases are possible:

Case 1: n = 6 for motion in 3D or n = 3 for a planar motion. In this case, there exists required
number of equations for the unknowns.

Case 2: n < 6 for motion in 3D or n < 3 for a planar motion. In this case, the number of task
space variables is more than the number of equations and hence, for solutions to exist, there
must be 6− n (3− n for planar case) relationships involving the task space variables.
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Case 3: n > 6 for motion in 3D or n > 3 for a planar motion. In this case there are more
unknowns than equations and hence there exists infinite number of solutions. These are
called redundant manipulators.

5.1 Inverse kinematics for Case 1

It can be seen from the direct kinematics equations of the planar 3R or the spatial PUMA manip-
ulator (see equations (13) and (14)), the position and orientation of the end-effector are related to
the joint variables by means of non-linear transcendental equations. In order to solve the inverse
kinematics problem, one needs to solve these non-linear equations. Ideally, the goal is to obtain
closed-form and analytical expressions for the joint variables in terms of the given position and
orientation of the last link. Like most sets of non-linear equations, no known general methods for
solving the inverse kinematics problem for an arbitrary serial manipulator was available till the
work of Raghavan and Roth [7]. Before looking at this general method, to obtain insight, it is
useful to solve the inverse kinematics for a few simple serial manipulators.

Example – The planar 3R manipulator

For the planar 3R manipulator shown in figure 3, the direct kinematics equations are given in
equation (13). To solve for θi, i = 1, 2, 3, given x, y, ϕ, one can proceed as follows:

Define X = x− l3cϕ and Y = y − l3sϕ X and Y are known. Squaring and adding, one can get

X2 + Y 2 = l21 + l22 + 2l1l2c2

and one can get

θ2 = ± cos−1

(
X2 + Y 2 − l21 − l22

2l1l2

)
(16)

Once θ2 is known, θ1 can be found using the four quadrant arc tangent formula as

θ1 = Atan2(Y,X)−Atan2(k2, k1) (17)

where k2 = l2s2 and k1 = l1 + l2c2. Finally, θ3 can be obtained from

θ3 = ϕ− θ1 − θ2 (18)

The workspace of the planar 3R manipulator is defined as the set of values of {x, y, ϕ} for
which the inverse kinematics solution exists. The workspace for the planar 3R manipulator can be
obtained by examining equation (16). It is known that

−1 ≤
(
X2 + Y 2 − l21 − l22

2l1l2

)
≤ +1

which implies that
(l1 − l2)

2 ≤ (X2 + Y 2) ≤ (l1 + l2)
2 (19)

where X = x − l3cϕ and Y = y − l3sϕ. Figure 7 shows a 3D plot of the region in {x, y, ϕ} space
where the inequalities in equation (19) are satisfied and the inverse kinematics solution exists. A

14



−10

−5

0

5

10

−10

−5

0

5

10
0

2

4

6

8

X axisY axis

ph
i a

xi
s

(a) 3D workspace of 3R manipulator

X̂0

Ŷ0
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Figure 7: Workspace of a planar 3R robot

projection of the workspace on the X̂0 − Ŷ0 plane is shown in figure 7 for l1 > l2 > l3. We have
four circles of radius l1 + l2 + l3, l1 + l2 − l3, l1 − l2 + l3 and l1 − l2 − l3.

It can be seen from figure 7 that the maximum reach of the planar 3R manipulator are points
on the circle of radius l1+ l2+ l3 and the closest it can reach from the origin are points on the circle
of radius l1 − l2 − l3. This annular region is called the reachable workspace. Points in-between the
other two circles of radii l1 + l2 − l3 and l1 − l2 + l3 can be reached with any ϕ and this region was
named as dexterous workspace by Kumar and Waldron [8, 9]. It can be seen that as l3 increases,
the reachable workspace increases whereas the dexterous workspace decreases.

Given any point in the workspace, the inverse kinematics procedure gives two sets of values of
θ1, θ2, and θ3. This is shown schematically in figure 7 – the given X and Y can be reached by the
two configurations. As with any non-linear equation, the solutions are non-unique and one could
have several solutions. In the planar 3R manipulator, one can have two sets of solutions.

Example – The PUMA 560 manipulator

For the six- degree-of-freedom PUMA 560 manipulator shown in figure 4, the direct kinematics
equations are given in equation (14). In the PUMA 560 manipulator, the last three axes intersect
at a “wrist” point. Due to this geometry, the position of the origin of the last link ({6}) is only a
function of joint variables θ1, θ2, and θ3. Denoting the coordinates of the wrist point by (x, y, z)T ,
one can write,

x = c1(a2c2 + a3c23 − d4s23)− d3s1

y = s1(a2c2 + a3c23 − d4s23) + d3c1 (20)

z = −a2s2 − a3s23 − d4c23
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From the first two equations, one can write

−s1x+ c1y = d3

The above transcendental equation can be solved for θ1 by making the well-known tangent half-
angle substitution

x1 = tan
θ1
2

cos θ1 =
1− x21
1 + x21

, sin θ1 =
2x1

1 + x21
(21)

which converts the transcendental equation to the quadratic

x21(d3 + y) + 2xx1 + (d3 − y) = 0

The above quadratic can be solved in closed form for x1 and one can obtain

θ1 = 2tan−1

(
−x±

√
x2 + y2 − d23
y + d3

)
(22)

It may be noted that tan−1 gives an angle between 0 and π and hence 0 ≤ θ1 ≤ 2π. However, due
to the ± sign before the square root, there are two possible values of θ1.

To obtain θ3 observe that

x2 + y2 + z2 = d23 + a22 + a23 + d34 + 2a2a3c3 − 2a2d4s3

which involves only sine and cosine of θ3. Again using tangent half-angle substitutions one can get

θ3 = 2tan−1

(
−d4 ±

√
d24 + a23 −K2

K + a3

)
(23)

where the constant K is given as (1/2a2)(x
2 + y2 + z2 − d23 − a22 − a23 − d24). Again, tan−1 gives an

angle between 0 and π and hence 0 ≤ θ3 ≤ 2π. Due to the ± sign, one can get two possible values
of θ3.

Finally, to obtain an expression for θ2, observe that the Z component of the wrist point is only
a function of θ2 and θ3. The third equation in (20) can be written as

−s2(a2 + a3c3 − d4s3) + c2(−a3s3 − d4c3) = z

and one can obtain

θ2 = 2tan−1

(
−a2 − a3c3 + d4s3 ±

√
a22 + a23 + d24 + 2a2(a3c3 − d4s3)− z2

z − (a3s3 + d4c3)

)
(24)

Again 0 ≤ θ2 ≤ 2π and there exists two possible values of θ2 due to the ± sign. Since θ3 appears
on the right-hand side of equation (24) in c3 and s3 and one can have two possible values of θ3,
there exists four possible values of θ2.

16



The last three joint angles θ4, θ5 and θ6 can be obtained from 3
6[R] given by

3
6[R] =

 c4c5c6 − s4s6 −c4c5s6 − s4c6 −c4s5
s5c6 −s5s6 c5

−s4c5c6 − c4s6 s4c5s6 − c4c6 s4s5


One can also write

3
6[R] = 0

3[R]T 0
6[R]

and since θ1, θ2, and θ3 are now known, the right-hand side is known. Let the right-hand side
matrix elements be denoted by rij , i, j = 1, 2, 3. The following algorithm can be used to obtain θ4,
θ5, and θ6.

Algorithm rij ⇒ θ4, θ5 and θ6
If r23 ̸= ±1, then

θ5 = Atan2(±
√

(r221 + r222), r23)
θ4 = Atan2(r33/s5,−r13/s5),
θ6 = Atan2(−r22/s5, r21/s5)

Else
If r23 = 1, then

θ4 = 0
θ5 = 0,
θ6 = Atan2(−r12, r11),

If r23 = −1, then
θ4 = 0
θ5 = π,
θ6 = −Atan2(r12,−r11),

The inverse kinematics of a PUMA 560 gives rise to two values of θ1, two values of θ3, four values
of θ2, i.e., there exists 4 sets of values of (θ1, θ2, θ3) for a given wrist location. The above algorithm
gives two sets of values for (θ4, θ5, θ6) for each set of (θ1, θ2, θ3). Hence a PUMA 560 manipulator
can have at most eight possible configurations.

The workspace of a PUMA 560 manipulator is the set of values of the position and orientation
of the last link, n, for which the inverse kinematics solution exists. It is not possible to imagine or
describe the workspace since it is a six dimensional entity. One can, however, obtain the reachable
workspace of the wrist point. The position vector of the wrist point is given in equation (20) and
the set of all (x, y, z) satisfying equation (20) is a solid in 3D space. The bounding surface(s) of
the solid can be obtained as follows:
Squaring and adding the three equations in equation (20) and simplifying, one can get

R2 = x2 + y2 + z2 = K1 +K2c3 −K3s3

where K1, K2, and K3 are constants. The envelope of this family of surfaces satisfies

∂R2

∂θ3
= 0

which gives
K2s3 +K3c3 = 0
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Eliminating θ3 from these two equations, and denoting a23 + d24 by l2, one can get,

[x2 + y2 + z2 − ((a2 + l)2 + d23)][x
2 + y2 + z2 − ((a2 − l)2 + d23)] = 0 (25)

The above shows that the bounding surfaces for the wrist point are spheres.
The orientation workspace for a PUMA 560 are like a set of three Euler angles about two distinct

axes. In particular, they are the so-called Z − Y − Z rotations except that the second Y rotation
is −θ5. As it is well-known, except for two special ‘singular’ configurations, the three Euler angles
can be obtained for any arbitrary rotation matrix. Hence, at every point in the 3D solid, the last
link can be oriented arbitrarily except at the two ‘wrist singular’ configurations.

Numerical example of a PUMA 560
For the PUMA 560, the numerical values of the constant Denavit-Hartenberg parameters and the
ranges of the joint variables are given by

i αi−1 ai−1 di Range of θi
degrees m m degrees

1 0 0 0 −160 ≤ θ1 ≤ 160

2 -90 0 0 −245 ≤ θ2 ≤ 45

3 0 0.4318 0.1245 −45 ≤ θ3 ≤ 225

4 -90 0.0203 0.4318 −110 ≤ θ4 ≤ 170

5 90 0 0 −100 ≤ θ5 ≤ 100

6 -90 0 0 −266 ≤ θ6 ≤ 266

For an arbitrarily chosen θ1 = 90, θ2 = 30, θ3 = 60, θ4 = 135, θ5 = −60 and θ6 = 120, the
transformation matrix 0

6[T ] is obtained as

0
6[T ] =


−0.7891 0.0474 0.6124 −0.1245
−0.4330 −0.7500 −0.5000 −0.0579
0.4356 −0.6597 0.6214 −0.2362

0 0 0 1

 (26)

The above 0
6[T ] can be used as an input to the inverse kinematics algorithm. Using the inverse

kinematics equations, eight sets of solutions are obtained as

i θ1 θ2 θ3 θ4 θ5 θ6
1 139.85 2.48 60.00 -0.80 65.29 -122.53

2 139.85 2.48 60.00 179.20 -65.29 57.47

3 90.00 30.00 60.00 -45.00 60.00 -60.00

4 90.00 30.00 60.00 135.00 -60.00 120.00

5 139.85 150.00 125.38 -178.64 147.61 58.28

6 139.85 150.00 125.38 1.36 -147.61 -121.72

7 90.00 177.52 125.38 -111.60 138.80 155.68

8 90.00 177.52 125.38 68.40 -138.80 -24.32

As expected, one of the solutions (set 4) matches the chosen values of θi, i = 1, ..., 6, in the
direct kinematics.
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Figure 8: Workspace of the wrist point of the PUMA 560

The workspace of the wrist point of the PUMA 560 for the numerical values assumed in this
example is shown in figure 8. It may be noted that the actual workspace of the PUMA 560 robot
is only a subset due to the presence of joint limits.

In above two examples, and in general for Case 1, analytical solution of the inverse kinematics
problem requires the elimination of joint variables from sets of non-linear transcendental equations
to finally arrive at a single equation in one joint variable which can then be solved. When three
consecutive joint axis intersect (PUMA 560 is such an example) instead of dealing with non-linear
equations containing all six joint variables, the inverse kinematics problem can be decomposed into
two problems each involving only three equations in three joint variables [10]. This decoupling was
first noticed by Pieper [11] who worked on the well-known Stanford Arm. It was later shown that
when three consecutive joint axis intersect, one needs to solve at most a fourth-order polynomial
in the tangent of a joint angle, and the manipulator wrist point can reach any position in the 3D
workspace in at most four possible ways. Since fourth-degree polynomials can be solved in closed
form (see p. 24 in Korn and Korn [12]), the inverse kinematics of all six- degree-of-freedom serial
manipulators with three intersecting axes can be solved in closed form.

For the PUMA 560, the workspace of the wrist point is bounded by two spheres. This is due
to the fact that the PUMA has a special geometry. In a general serial robot with three joint axis
intersecting at a wrist, it can be shown that the boundaries of the solid region traced by the wrist
point form a torus which is a fourth-degree surface [13]. Typically, it is not a complete torus since
the joints cannot rotate fully and some points on the torus and inside cannot be reached. The effect
of joint limits on the workspace has been studied by several authors (see, for example, [14, 15]).

For serial manipulators where three consecutive joint axis do not intersect, the elimination
procedure to solve the inverse kinematics problem is much more complex. Several researchers
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worked on this problem – Duffy and Crane [16] first derived a 32nd order polynomial and it was
finally demonstrated by Raghavan and Roth [7] that the inverse kinematics of an arbitrary 6R
serial manipulator required the solution of at most a sixteenth-degree polynomial. Alternately, the
inverse kinematics of any serial manipulator can also be solved numerically and this is illustrated
for a serial robot where only the last two joint axis intersect.

Manipulator with non-intersecting wrist

The three axes intersecting wrist, as in the PUMA 560 manipulator, is a fairly complicated design
and also difficult to manufacture. In addition, there is always some manufacturing tolerance that
makes it impossible to have three axes intersecting exactly at a point. Consider a robot similar to
the PUMA 560 but with a non-zero offset d5 which makes the last three joint axis non-intersecting.
For such a robot, the last column of 0

6[T ] can be written as

x = c1(a2c2 + a3c23 − d4s23)− d3s1 + d5(s1c4 − c1s4c23)

y = s1(a2c2 + a3c23 − d4s23) + d3c1 − d5(c1c4 + s1s4c23) (27)

z = −a2s2 − a3s23 − d4c23 − d5s4s23

Equations (27) are in four joint variables (θ1, θ2, θ3, θ4) in terms of known x, y, and z. To solve for
the unknown joint variable, one additional equation is required containing the same joint variables.
The additional equation, in this example, can be obtained by examining the rotation matrices.
Since the inverse of a rotation matrix is the same as its transpose,

3
6[R] = 0

3[R]
T 0
6[R]

where 0
6[R] have known elements rij , i, j = 1, 2, 3. The above equation can be expanded to obtain c4c5c6 − s4s6 −c4c5s6 − s4c6 −c4s5

s5c6 −s5s6 c5
−s4c5c6 − c4s6 s4c5s6 − c4c6 s4s5

 =

 c1c23 s1c23 −s23
−c1s23 −s1s23 −c23
−s1 c1 0

 r11 r12 r13
r21 r22 r23
r31 r32 r33


(28)

From the (1, 3) and (3, 3) terms of the above matrix equation, for θ5 ̸= 0, π, one can get

s4(r13c1c23 + r23s1c23 − r33s23) = c4(r13s1 − r23c1) (29)

Equations (27) and (29) can be solved for (θ1, θ2, θ3, θ4) by using any available numerical
scheme. Using the D-H parameter values for the PUMA 560, d5 = 20 mm, the 0

6[T ] given in
equation (26) and using the numerical solver fsolve in Matlab [17], one can obtain

θ1 = 96.11, θ2 = 169.11, θ3 = 128.93, θ4 = −115.51

Once (θ1, θ2, θ3) are obtained, θ4, θ5, and θ6 can be solved by considering left- and right-hand sides
of the matrix equation (28). For θ5 ̸= 0, π,

θ5 = Atan2(±
√

(1, 3)2 + (3, 3)2, (2, 3))

θ4 = Atan2((3, 3)/s5,−(3, 1)/s5)

θ6 = Atan2(−(2, 2)/s5, (2, 1)/s5)
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where the terms (3, 3), (2, 2), etc. are from the right-hand side of equation (28) and are known
once θ1, θ2, and θ3 are known. For the numerical values chosen above, two sets of values, namely,
θ4 = −115.51, 64.49, θ5 = 141.99,−141.99, and θ6 = 146.54,−33.46 are obtained. It can be verified
that one value of θ4 is the same as the value obtained using fsolve. It may be noted that θ5 = 0 or
π is a singular configuration for the non-intersecting wrist.

Efficient numerical techniques, such as the Newton-Raphson method using available Jacobian
matrices of serial manipulators (see Chapter on velocity analysis), can solve the inverse kinematics
problem of a serial manipulator extremely quickly in very few iterations (typically 2 or 3). The
two main issues associated with any numerical technique are the choice of the initial guess and
effort required to find all solutions. In practice, the choice of the initial guess is not serious since
the initial guess can be the previous values of the joint variables3. The second difficulty is not
easily overcome even though continuation methods [18] can be used to obtain all the solutions.
Analytical expressions have the advantage of finding all possible inverse kinematics solutions and
also give insight into the nature of the workspace. This has been a motivating reason for finding
general algorithms for the inverse kinematics of arbitrary serial manipulators.

Inverse kinematics of a general 6R robot

As mentioned earlier, in the 1990’s Raghavan and Roth [7] developed a general algorithm to solve
the inverse kinematics of an arbitrary 6R serial manipulator. The manipulator is arbitrary in the
sense that none of the fixed Denavit-Hartenberg parameters (link lengths, twist angles, or link
offsets) have special values, such as 0, π/2, or π, which results in simpler equations and easier
elimination of one or more joint variables. The salient features of the algorithm are presented next.

For a general 6R serial manipulator, the direct kinematics equations can be written as

0
6[T ] =

0
1[T ]

1
2[T ]

2
3[T ]

3
4[T ]

4
5[T ]

5
6[T ] (30)

where i−1
i [T ] is in terms of the four Denavit-Hartenberg parameters and is a function of only one

joint variable θi (or di) and the other three Denavit-Hartenberg parameters are constants (see
equation (4)). For the inverse kinematics problem, the left-hand side 0

6[T ] is given and the six joint
variables in each of i−1

i [T ], i = 1, 2, ..., 6 are to be obtained.
The first step is to recognize that i−1

i [T ] can be written as a product of two 4 × 4 matrices,
(i−1
i [T ])st(

i−1
i [T ])jt. The first matrix (i−1

i [T ])st is a function of ai−1 and αi−1 and is constant and
the second matrix (i−1

i [T ])jt is a function of the joint variables θi (for a rotary joint) or di (for a
prismatic joint). Thus one can write

i−1
i [T ] = (i−1

i [T ])st(
i−1
i [T ])jt

=


1 0 0 ai−1

0 cαi−1 −sαi−1 0
0 sαi−1 cαi−1 0
0 0 0 1




cθi −sθi 0 0
sθi cθi 0 0
0 0 1 di
0 0 0 1

 (31)

3For accurate control, a manipulator end-effector is commanded to move by a small amount from its present
position and orientation. The joint values at the future commanded position and orientation are expected to be close
to the known current values and these current values of the joint variables serve as a very good initial guess for the
numerical procedure.
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The second step is to rewrite equation (30) as

(23[T ])jt
3
4[T ]

4
5[T ](

5
6[T ])st = (23[T ])

−1
st (12[T ])

−1(01[T ])
−1 0

6[T ](
5
6[T ])

−1
jt (32)

It maybe seen that the left-hand side is only a function of (θ3, θ4, θ5) and the right-hand side is only
a function of (θ1, θ2, θ6). In addition, it can be found that in the six scalar equations obtained by
equating the top three elements of columns 3 and 4 on both sides of equation (32) do not contain
θ6. Denoting the third and fourth columns by p and l, one can rewrite the six equations as

[A](s4s5 s4c5 c4s5 c4c5 s4 c4 s5 c5 1)T = [B](s1s2 s1c2 c1s2 c1c2 s1 c1 s2 c2)
T (33)

where [A] is 6×9 matrix whose elements are linear in s3, c3, 1, and [B] is 6×8 matrix of constants.
The third step is to eliminate four of the five variables, θ1, θ2, θ3, θ4, and θ5 in equation (33).

As pointed out by Raghavan and Roth [7], the minimal set of equations are 14 in number. These
are the three equations from p, three equations from l, one scalar equation from the scalar dot
product p ·p, one scalar equation from the scalar dot product p · l, three equations from the vector
cross product p× l, and three scalar equations from (p ·p)l− (2p · l)p. It is shown that all these 14
equations contain the same variables as in equation (33) with no new variables. The 14 equations
can be written as

[P ] (s4s5 s4c5 c4s5 c4c5 s4 c4 s5 c5 1)T = [Q] (s1s2 s1c2 c1s2 c1c2 s1 c1 s2 c2)
T (34)

where [P ] is a 14 × 9 matrix whose elements are linear in c3, s3, 1, and [Q] is a 14 × 8 matrix of
constants. To eliminate four out of the five joint rotations, use any eight of the 14 equations in
equation (34) and solve for the eight variables s1s2, s1c2, c1s2, c1c2, s1, c1, s2, c2. Note, this is always
possible since this involves solving eight linear equations in eight unknowns. Once this is done,
substitute the eight variables in the rest of the six equations and get an equation of the form

[R] (s4s5 s4c5 c4s5 c4c5 s4 c4 s5 c5 1)T = 0 (35)

where [R] is a 6× 9 matrix whose elements are linear in s3 and c3.
In the fourth step, the tangent half-angle formulas (see equation (21)) are introduced for s3, c3,

s4, c4, s5, c5, and after simplification, obtain

[S]
(
x24x

2
5 x24x5 x24 x4x

2
5 x4x5 x4 x25 x5 1

)T
= 0 (36)

where [S] is a 6× 9 matrix and x(·) = tan(θ(·)/2).
In the fifth step, x4 and x5 are eliminated using Sylvester’s dialytic method (for a treatment of

elimination of variables from a set of non-linear equation, see references Salmon [19] and Raghavan
and Roth [20]). Six additional equations are generated by multiplying equations in equation (36)
by x4. In the process, three additional ‘linearly’ independent variables, namely, x34x

2
5, x

3
4x5, and

x34, are generated, and a system of 12 equations in 12 unknowns are obtained. The equations can
be written as (

S 0
0 S

)(
x34x

2
5 x34x5 x34 x24x

2
5 x24x5 x24 x4x

2
5 x4x5 x4 x25 x5 1

)T
= 0 (37)

Following Sylvester’s dialytic method, the determinant of the coefficient matrix is set to zero and
this gives a 16th-degree polynomial in x3. The roots of this polynomial can be solved numerically
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and then one can find θ3 = 2 tan−1(x3). Since there can be 16 real solutions to the polynomial, the
general 6R serial manipulator has 16 possible configurations.

In the final step from known θ3, x4 and x5 (and θ4, θ5) are obtained from equation (37) using
standard tools of linear algebra. Once θ3, θ4, and θ5 are known, using equation (36), the right-hand
side variables s1s2, s1c2, ..., s2, c2 are solved from the eight linearly independent equations and
thus unique θ1 and θ2 are obtained. Finally, to obtain θ6, equation (30) is rewritten as

5
6[T ] =

4
5[T ]

−13
4[T ]

−12
3[T ]

−11
2[T ]

−10
1[T ]

−10
6[T ] (38)

Since θi, i = 1, 2, ..., 5 are known, the (1, 1) and (2, 1) element gives two equations in s6 and c6
which gives unique values of θ6.

It may be noted that if the 6R manipulator has special geometry, i.e., some Denavit-Hartenberg
parameters are 0, π/2, or π, the 16th-degree polynomial in x3 can be of lower order. In addition,
if one or more joints are prismatic, then the inverse kinematics problem becomes simpler since
the prismatic joint variable is not in terms of sines or cosines. The 16th-degree polynomial is not
amenable to analysis as in the case of a planar 3R or the PUMA 560 and it is not possible to obtain
the workspace or the boundaries of a general 6R serial manipulator. However, if all the roots of
the 16th-degree polynomial are complex, then 0

6[T ] is not in the workspace of the manipulator and
this reasoning can be used to get some idea of the workspace of the general 6R serial manipulator.

Finally, in industrial applications, a choice needs to be made from the possible inverse kinematic
solution sets to move the end-effector to the desired position and orientation. This is done in two
steps – first, all solution sets in which atleast one joint variable is outside the joint limits is rejected.
For example, out of the 8 possible solutions in the numerical example for the PUMA 560 serial
manipulator, solution sets 2, 5 and 7 are not possible since the value of θ4 is outside the joint
limits of θ4. Likewise solution sets 6, 7 and 8 have θ5 outside its range. In the second step, out of
the remaining possible inverse kinematic solutions (solutions 1, 3 and 4 for the PUMA 560), the
solution set which is closest to the previous joint values is chosen. This strategy will not work if the
solution branches come close to each other or if they intersect. Typically, path planning for a serial
manipulator is done such that it is away from a singularity where the solution branches intersect.

5.2 Inverse kinematics for Case 2

In many robotic applications such as welding or painting, the rotation of the welding torch or the
paint gun about its own axis is not required. To decrease cost and to simplify the design and
manufacture, many welding or painting robots have five degrees of freedom with five actuators.
Likewise, in the assembly of electronic components on a printed circuit board, it is simpler to
assemble from one direction. Hence an assembly robot such as the SCARA robot has only four
degrees of freedom. In these industrial robots n < 6, and the tool or the end-effector cannot be
positioned and oriented arbitrarily in 3D space. There exists 6−n (3−n for planar manipulators)
relationships or constraints involving the position and orientation variables, and the given 0

n[T ]
must satisfy these relationships or constraints. In most situations, the constraints are obvious since
the manipulator was designed with the constraint in mind. For example, in the case of the SCARA
manipulator of section 4.3, the tool can be positioned arbitrarily in 3D space but its orientation
capabilities are restricted to rotations about Ẑ4 (see figure 5). Hence, the constraints would be
that rotations about X̂4 and Ŷ4 are zero. For the SCARA manipulator, given x, y, z, and ϕ, the
inverse kinematics problem can be solved as
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θ2 = ± cos−1
(
x2+y2−l21−l22

2l1l2

)
θ1 = Atan2(y, x)−Atan2(l2s2, l1 + l2c2)
d3 = −z
θ4 = ϕ− θ1 − θ2

(39)

The constraints or the relationships between the position and orientation variables in any serial
manipulator can be, in principle, determined from the direct kinematics equations. For example,
in a five- degree-of-freedom robot, one can obtain six equations from 0

5[T ] in terms of the five
joint variables. Elimination, using Sylvester’s dialytic method or any other approach, of the five
joint variables from the six equations can yield a single equation in terms of the position and
orientation variables of the tool. This single equation would be the constraint and would represent
a five dimensional subspace of the reachable workspace. A manipulator with four joints would
lead to two expressions involving the position and orientation variables and thus one would get
four-dimensional subspace. Obtaining explicit expressions for the constraints is, however, difficult
in practice due to the difficulties in elimination of variables from non-linear equations.

5.3 Inverse kinematics for Case 3

In the case of a redundant manipulator, the number of joint variables are more than the number
of equations. As an illustration, consider the planar 3R serial manipulator shown in figure 3. In
addition, consider that the orientation of the last link is not of interest. In such a situation, there are
only two equations relating the (x, y) coordinates of the end-effector with the three joint variables,
θi, i = 1, 2, 3, and these are

x = l1c1 + l2c12 + l3c123
y = l1s1 + l2s12 + l3s123

(40)

For the inverse kinematics, (x, y) are given and the task is to find θ1, θ2, and θ3. Since there are
only two equations, there exists an infinite number of solutions for θ1, θ2, and θ3 for a given (x, y).
In order to obtain a finite number of θ1, θ2, and θ3, one more equation involving θ1, θ2, and θ3 is
needed. One can impose a simple constraint such as θ3 equals constant (the third joint is locked),
but that defeats the purpose of designing and building manipulators with more than required joints
and actuators. The availability of an extra joint can be used for optimization. Several researchers
have suggested the use of redundancy to minimize joint rotations, joint velocities, and accelerations.
Several others have also suggested the use of redundancy for avoiding singularities and avoiding
obstacles (see the textbook by Nakamura [22] and the references therein). Obtaining meaningful
and useful equations is known as the resolution of redundancy, and this is the key issue in inverse
kinematics of redundant robots. The resolution of redundancy can be achieved at various levels,
such as position, velocity, accelerations, and torques. In this chapter, the example of the redundant
planar 3R manipulator is used to illustrate the minimization of joint rotations – minimzation of
joint velocities, accelerations and torques use the pseudo-inverse of the manipulator Jacobian matrix
and this is discussed elsewhere.

A candidate function for optimization is θ21 + θ22 + θ23. Minimization of θ21 + θ22 + θ23 subject to
constraints given in equation (40) results in the planar 3R manipulator following a given trajectory
with least rotation of the joints and can be formulated as follows:

Minimize f(θ) = θ21 + θ22 + θ23
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subject to

g1(θ) = −x+ l1c1 + l2c12 + l3c123 = 0

g2(θ) = −y + l1s1 + l2s12 + l3s123 = 0

where θ denotes the three joint variables (θ1, θ2, θ3), and (x, y) are points on the trajectory of
the end-effector. Using the classical method of Lagrange multipliers, differentiating the modified
objective function, one can get three equations

∂f

∂θ
= λ1

∂g1
∂θ

+ λ2
∂g2
∂θ

g1(θ) = 0

g2(θ) = 0

To solve the above three equations, eliminate the Lagrange multipliers λ1 and λ2 by rewriting the
first equation as 

∂f
∂θ1

∂g1
∂θ1

∂g2
∂θ1

∂f
∂θ2

∂g1
∂θ2

∂g2
∂θ2

∂f
∂θ3

∂g1
∂θ3

∂g2
∂θ3


 1

−λ1

−λ2

 = 0

For non-trivial λ1 and λ2 the determinant of the 3× 3 matrix must be zero and one can get, after
simplification,

l1l2θ3s2 + l2l3(θ1 − θ2)s3 + l3l1(θ3 − θ2)s23 = 0 (41)

The inverse kinematics of the redundant planar 3R manipulator can now be solved from the
three equations in (40) and (41). Figure 9 shows the plot of θ1, θ2, θ3, and f(θ) (l1, l2, and l3 are
chosen to be 5, 3, and 1, respectively) when the end-effector of the planar 3R manipulator traces
a straight line parallel to the Y axis as shown in the bottom of figure 9. One can also solve the
optimization problem subject to joint limits. Figure 10 shows the plots of θ1, θ2, θ3, and f(θ) when
θ2 is constrained to lie between ±120◦. One can observe the difference in all joint variables when
θ2 is constrained.

The inverse kinematics of redundant serial manipulators is an active topic of research and finds
application in elephant trunk manipulators, snake robots, actuated endoscopes and various other
multi-degree-of-freedom devices. The reader is refered to the references [21, 22] for the well-known
pseudo-inverse based approaches, reference [23] for the modal approach and references [24, 25] for
the tractrix curve based approach. The reference cited above are by no means comprehensive and
there exists a vast amount of literature on redundant manipulators.

6 Conclusion

Serial manipulators are extensively used in industry for a variety of applications. A serial manipu-
lator consists of series of links and joints connected one after another, with one end fixed and one
free end carrying the tool or the end-effector. Most serial manipulators have heavy and “rigid” links
and the well-known four Denavit-Hartenberg parameters can be used to mathematically represent
the links and joints of a serial manipulator.

There are two important problems in serial manipulator kinematics, namely the direct and
inverse kinematics problem. The direct kinematics problem involves obtaining the position and
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Figure 9: Plot of joint and task space variables for redundant planar 3R robot

orientation of the tool or the end-effector for given values of the joint variables. This is probably the
simplest problem in robotics and can be always solved uniquely by simply multiplying appropriate
matrices. The inverse kinematics problem involves obtaining joint variables for given values of the
position and orientation of the tool or the end-effector and is much harder to solve. Closed-form
analytic solutions can be obtained only for special geometries of the serial manipulator such as when
the last three joint axis intersect at a wrist point. For such special geometries, the inverse kinematics
involves solution of a fourth degree polynomial and the manipulator can reach a point in the 3D
workspace in four possible ways. At each such location there can be two possible orientations. For
a general six degree-of-freedom serial manipulator with arbitrary geometry, the inverse kinematics
problem involves numerical solution of a 16th degree polynomial and the manipulator can reach
a desired position and orientation in at most 16 possible ways. When the degree of freedom is
less than 6 for spatial motion and less than 3 for planar motion, the end-effector cannot achieve
arbitrary positions and orientations and there exists one or more constraints relating the position
and orientation variables of the end-effector. When the number of actuated joints are more than the
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Figure 10: Plot of joint task space variables for redundant planar 3R robot with joint limit

dimension of the ambient space in which the manipulator operate, there exists an infinite number
of solutions and the manipulator can reach desired position and orientation in infinite number of
ways. For such redundant manipulators, optimization of a useful objective function is performed
to make use of the redundancy.

The workspace of a serial manipulator is the region in 3D space which the manipulator can
reach. For serial manipulators with a wrist, the workspace is a torus which is restricted when
joint limits are present. The workspace of a general 6R serial manipulator cannot be described
analytically. However, whether a desired position and orientation of the end-effector is achievable
or not can be determined by solving the inverse kinematics problem.
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