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Abstract

For one-dimensional flexible objects such as ropes, chains, hair, the assumption of constant
length is realistic for large-scale 3D motion. Moreover, when the motion or disturbance at one
end gradually dies down along the curve defining the one-dimensional flexible objects, the motion
appears “natural”. This paper presents a purely geometric and kinematic approach for deriving
more natural and length-preserving transformations of planar and spatial curves. Techniques
from variational calculus are used to determine analytical conditions and it is shown that the
velocity at any point on the curve must be along the tangent at that point for preserving
the length and to yield the feature of diminishing motion. It is shown that for the special
case of a straight line, the analytical conditions lead to the classical tractrix curve solution.
Since analytical solutions exists for a tractrix curve, the motion of a piece-wise linear curve can
be solved in closed-form and thus can be applied for the resolution of redundancy in hyper-
redundant robots. Simulation results for several planar and spatial curves and various input
motions of one end is used to illustrate the features of motion damping and eventual alignment
with the perturbation vector.

Keyword: Flexible body simulation, Length-preserving natural motion, Optimization, Tractrix,
Hyper-redundant robots.

1 Introduction

Simulation of motion of one-dimensional flexible objects and their realistic and natural visual display
is an active area of research. Such a problem is encountered in the simulation and visualization of
motion of objects such as a rope or human hair. In such situations, for a given pre-defined motion of
the leading end, the motion of the trailing parts need to computed and displayed as realistically as
possible. Since there exist infinite number of ways in which the trailing parts can move, practically
feasible strategies, resulting in visually and otherwise realistic motions, are required to obtain a
trajectory of the trailing parts. This problem has received much attention in the last few decades
and there exists a large amount of literature on this topic [1]. More recent interest in surgery
training, where flexible suturing thread is modeled as spring-mass-damper systems [2, 3], is related
to this problem. In these works, the equations of motion are solved to predict the motion of parts
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of the rope. A major difficulty in this approach is that there is no systematic way of choosing the
spring, damping and other parameters. In another approach [4], Cosserat theory of elastic rods is
applied to solve the problem. In yet another attempt [5], key-framing techniques are used without
considering the kinematics or dynamics that govern the motion. However, most of these methods
lack uniqueness in formulation and realism in the simulated motion produced.

The problem of simulation of one-dimensional objects has its parallel in hyper-redundant ma-
nipulators and robots where the inverse kinematics problem does not have a unique solution – for a
given motion of the end-effector, there exist infinitely many solutions for the joint variables. Choos-
ing a useful/meaningful solution from the feasible space is known as resolution of redundancy and
there exist several approaches to solve this problem. The most well-known methods involve mini-
mization of an objective function of the joint velocities (using the pseudo-inverse of the manipulator
Jacobian matrix) (see, the review paper by Klein and Huang [6], textbook by Nakamura [7] and
works by Liegeois [8], Baillieul et al. [9] and Yoshikawa [10]), modeling and obtaining the motion
of a backbone/spine curve [11, 12], and the use of the classical tractrix curve1, originally by Reznik
and Lumelsky [14, 15, 16] and more recently by Sreenivasan et al. [17] and by Ravi et al. [18].
In the conventional tractrix curve-based approach, the entire flexible object is discretized into a
finite number of rigid (straight) segments connected with imaginary revolute/spherical joints. For
a prescribed motion of the head of the leading segment, the motion of the trailing end of the same
segment is computed by employing the analytical solution of the differential equation of a tractrix.
One key property of a tractrix, making it a very promising candidate for realistic motion simula-
tion of one-dimensional flexible objects, is that for a given motion of the leader, the motions of the
trailing parts die down or attenuates as one moves away from the perturbed end. An additional
well-known property of the tractrix is that the velocity of the trailing end is along the line joining
the trailing and the leading end. More importantly, this velocity is the least among all possible
velocities of the trailing end of the object for a given motion of the leading end. This suggests that
the tractrix-based solution can be obtained from a general minimization problem.

In this paper, we revisit and extend the notion of length preservation and velocity minimization
to arbitrary planar and spatial curves modeling one-dimensional flexible objects. Using formal tools
from calculus of variations, we minimize the L2 norm between two configurations of a curve subject
to the length preservation constraint. We show that, for any planar or spatial curve subject to
preservation of the length, the L2 norm gets minimized when the velocity of any point on the curve
is along the tangent at that point. For the special case of a straight line, we show that the results
are identical to the classical tractrix solution. Subsequently, by means of a limiting argument, we
prove that for a arbitrary curve, the motion dies out as one moves away from the perturbed end
and the effect of the motion or disturbance is localized. We also show that when the perturbation is
along a straight line the entire curve, independent of its initial shape, deforms and eventually aligns
with the perturbation and becomes a straight line. Both these features results in a more “natural”
looking motion of the curve and the flexible one-dimensional object modeled by the curve. Finally,
we also demonstrate that other metrics such as the angular motion (i.e., the bending of the flexible
object) and stiffness can also be minimized and each of these minimization lead to different unique
solutions.

The paper is organized into six sections. For the sake of completeness, we present the motion
of a single straight rigid body, the associated concept of a tractrix and present its key properties
in Section 2. In Section 3, we use calculus of variation to derive analytical results dealing with
the motion of an arbitrary curve. It is shown that the general results yield the tractrix solution
when the curve is a straight line. Subsequently, an algorithm to simulate the motion of a flexible
object modeled as a curve or as a piece-wise linear segments is presented. In Section 4, other

1According to Steinhaus [13], the tractrix is the path traced by an object starting off with a vertical offset when it
is dragged along by a string of constant length being pulled along a straight horizontal line. The tractrix curve was
studied by the great mathematician Leibniz, who obtained the differential equation and analytical solution of the
curve.

2



metric functions which could also be used for minimization are presented. The simulation results
are described and discussed in Section 5. The concluding remarks are in Section 6.

2 The tractrix formulation

Consider a rigid rod AP of length L initially lying along the Y axis as shown in figure 1. Let the
end P , the leading end, be pulled along the X axis. Let A1P1 denote an arbitrary configuration of
the rigid rod. Without any constraint on the motion of end A, i.e., the trailing end, it can trace
an arbitrary curve in the X − Y plane. For example, A can move parallel to the X axis and this

dp

dx

dy
dr

A

P P1

A1

Tractrix

L

X(Pull Direction)−→
T

Y↑

Figure 1: Motion of link AP when leading end P is pulled along PT(X-Axis)

corresponds to a pure translation of the rod. Now consider a constraint that the velocity is along
the rod at every instant. Under such a constraint, the motion of point A can be described by the
ordinary differential equation

dy

dx
=

−y√
L2 − y2

(1)

where (x, y) are the coordinates of point A and the denominator
√

L2 − y2 arises from using the
length preservation constraint x2 + y2 = L2.

Equation (1) has a closed-form solution [13] given by

x = L log
y

L−
√
L2 − y2

−
√
L2 − y2 (2)

which in terms of a parameter p can be written as

x(p) = p− L tanh(
p

L
), y(p) = L sech(

p

L
) (3)

The curve described by equations (2) or (3), traced by the end A, is called the tractrix and this
curve is known to have several interesting properties. We list some of the main ones.

• The magnitude of the instantaneous velocity of A is the minimum of all possible velocities
when A traces the tractrix. This follows from the following reasoning:

From elementary mechanics, the velocity of A can be written as

VA = VP + ω ×−→
PA (4)
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where ω is the angular velocity and
−→
PA denotes the vector from P to A with magnitude L.

From equation (4) it follows that |VA| ≤ |VP |+ |ω×
−→
PA| and 0 < |VA| ≤ |VP |. The equality

holds if ω is zero, i.e., when the rigid body is lying on the X axis and VA is parallel to VP .

Denoting the infinitesimal motion of A by dr and the motion of P by dp (shown in figure 1),
we can write dr ≤ dp (refer [17] for an alternate algebraic proof).

• The position of A or the trailing end can be obtained in closed-form in terms of hyperbolic
functions as shown in equation (3).

• The motion of P need not be along the X axis or in the plane. The formulation can be
extended to motion along any direction and in 3D (for details see [17, 18]).

The above properties were first used by Reznik and Lumelsky [14, 15, 16] for resolution of
redundancy in hyper-redundant serial robots. In their work, for a desired motion of the end-effector
or leading end, the motion of the trailing end was computed. The computed trailing end motion
was used as the desired motion of the previous link and thus recursively, the motion of all links,
down to the first link, was computed. In comparison to the pseudo-inverse and modal approaches
mentioned earlier, the strategy led to a more natural motion since due to dr ≤ dp, the motion of the
links of the hyper-redundant robot tends to die out as one moves from the end-effector to the fixed
base. In addition, the redundancy resolution is in task space variables and is of linear complexity.
More recently Sreenivasan et al. [17] used the tractrix based approach to simulate and visualize
more natural motion of snakes and ropes, and Ravi et al. [18] experimentally demonstrated the
more natural motion on a planar eight-link hyper-redundant robot.

In the next section, we present an extension of the minimization of motion of a (rigid) straight
line segment to arbitrary continuous (flexible) curves in a plane and 3D by using tools from calculus
of variation.

3 Optimizing motion of a continuous curve

Consider a planar curve of length L, parametrized by its arc length s, and one of its end is given
a prescribed motion. As shown in figure 2, the arbitrary motion of one end is assumed to be given
by two independent continuous functions (Tx(t), Ty(t)). The curve at any instant t can be written
in terms of a spatio-temporal parametrization as

C : (Tx(t) + x(s, t), Ty(t) + y(s, t)) (5)

The terms (x(s, t), y(s, t)) define the curve configuration relative to the perturbed tip, i.e., the curve
configuration when viewed from a moving coordinate system attached to the perturbed tip. Note
that, in this proposed parametrization, the functions x(0, t) = 0 and y(0, t) = 0 at any instant
t. This is due to the fact that at s = 0 (leading end), the absolute displacements are completely
specified by the predefined functions (Tx(t), Ty(t)).

For the infinitesimal displacement shown in figure 2 from time t to t + ∆t, the “distance”2

between the two curves can be defined as

L2 :

∫ L

0

√(
dTx

dt
+

∂x(s, t)

∂t

)2

+

(
dTy

dt
+

∂y(s, t)

∂t

)2

ds (6)

2The defined metric is not a measure of distance between two rigid body configurations – such a metric does not
exist as has been shown by Angeles [19]. The quantity is a pseudo metric to indicate the closeness of two curves of
the same length. For a straight line, we show in Section 3.1 that this metric is related to the minimization of velocity
of the points on the straight line.
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(Tx(t), Ty(t))

(Tx(t) + x(s, t), Ty(t) + y(s, t))

(Tx(t +∆t) + x(s, t +∆t),

Ty(t +∆t) + y(s, t +∆t))

Figure 2: Infinitesimally displaced configurations along with perturbation function

The metric defined above is called the L2 metric due to its similarity with the Euclidean distance.
We also wish to impose the constraint that the length of the curve is preserved during the

motion, and this can be written as∫ L

0

√(
∂x(s, t)

∂s

)2

+

(
∂y(s, t)

∂s

)2

− 1

 ds = 0 (7)

The variational problem now reduces to one of minimization of the L2 metric till a specified
time T and can be stated as follows:

Min I
x(s,t),y(s,t)

:

∫ L

0

∫ T

0

√(
dTx

dt
+

∂x(s, t)

∂t

)2

+

(
dTy

dt
+

∂y(s, t)

∂t

)2

dtds

Subject to

Λ(t) : A =

∫ L

0

√(
∂x(s, t)

∂s

)2

+

(
∂y(s, t)

∂s

)2

− 1

 ds = 0

Data : x(s, 0), y(s, 0), Tx(t), Ty(t), x(0, t) = 0, y(0, t) = 0

(8)

where Λ(t) is the Lagrangian multiplier corresponding to the length-preserving constraint. The
Lagrangian for the above optimization, is written as

L = I + Λ(t)A (9)

and the corresponding Euler-Lagrange equations [20, 21] are as follows:

∂L
∂x

− ∂

∂s

(
∂L
∂x′

)
− ∂

∂t

(
∂L
∂ẋ

)
= 0 (10a)

∂L
∂y

− ∂

∂s

(
∂L
∂y′

)
− ∂

∂t

(
∂L
∂ẏ

)
= 0 (10b)
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Note that x′ = ∂
∂sx(s, t) and ẋ = ∂

∂tx(s, t) and similar notations are used for the variable y(s, t).
By using equations (10a) and (10b), and eliminating the Lagrange multiplier Λ(t) by division, we
obtain the following:

∂
∂sy (s, t)
∂
∂sx (s, t)

=
d
dtTy (t) +

∂
∂ty (s, t)

d
dtTx (t) +

∂
∂tx (s, t)

=
∂
∂t (Ty (t) + y (s, t))
∂
∂t (Tx (t) + x (s, t))

(11)

Though quantitative results are specific to the equation of the assumed curve, i.e, choice of
(x(s, t), y(s, t)), qualitatively, we can make the following general and key observations.

• The Lagrange multiplier has the units of velocity and this can be shown as follows:

The Euler-Lagrange equations (10a) and (10b) can be written as

Λ(t)y′κs = −(ẏ + Ṫy(t))κt (12)

−Λ(t)x′κs = (ẋ+ Ṫx(t))κt (13)

where κs and κt are given by

κs =
x′y′′ − y′x′′

(x′2 + y′2)
3
2

κt =
(ẋ+ Ṫx(t))(ÿ + T̈y(t))− (ẏ + Ṫy(t))(ẍ+ T̈x(t))

((ẋ+ Ṫx(t))2 + (ẏ + Ṫy(t))2)
3
2

(14)

Squaring and adding equations (12) and (13), and simplifying, we get

Λ(t)κs = κtV (15)

where V =
√

(Ṫx + ẋ)2 + (Ṫy + ẏ)2 is the velocity at any point on the curve. Hence, it is

clear that the Lagrange multiplier has units of velocity.

• The extreme left-hand side of (11) is the spatial derivative or the slope at a given s and t
and the far right-hand side is the temporal derivative or the velocity vector for a given s
and t. This implies for the curve, the L2 metric as defined in equation (6) is minimized if
the velocity vector at any (s, t) is along the tangent at that point. In addition, during this
minimizing motion, the arc length of the curve is preserved.

3.1 The special case of a straight line

For the special case when the curve is a straight rigid link and the input perturbation is along the
X axis with the perturbed end on the X axis initially, the perturbation functions in equation (11)
take the form:

d

dt
Tx(t) = 1, Ty(t) = 0 (16)

Since the curve (x(s, t), y(s, t)) is a straight line, we have

x(s, t) = a(t)s, y(s, t) = b(t)s (17)

and since the length of the curve L is preserved, we get√
(aL− 0)2 + (bL− 0)2 = L ⇒ a2 + b2 = 1 (18)
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Furthermore, by assuming that the straight rigid link is vertical at t = 0, we get a(0) = 0 &
b(0) = 1. Under the aforementioned conditions, the straight line equations transform as

x(s, t) = a(t)s+ t, y(s, t) = b(t)s (19)

and we also have

a2 + b2 = 1 ⇒ 2a
da

dt
+ 2b

db

dt
= 0 ⇒ db

dt
= −a

b

da

dt
(20)

Finally, substituting the above in the (11), and simplifying, we get

b

a
=

db/dt s

1 + da/dt s
=

−a
b
da
dt s

1 + da
dt s

⇒ s
da(t)

dt
+ (1− a(t)2) = 0

=⇒ a (t) = − tanh

(
t+K

s

)
(K = integration constant)

(21)

Using the initial conditions, we get K = 0, and

x(s, t) =s(
t

s
− tanh

(
t

s

)
)

y(s, t) =s sech

(
t

s

) (22)

The path (curve) traced by the tip of the link is obtained by substituting s = L in the above
equation. Denoting the perturbation in time t with p, we get

x(L, p) =p− L tanh
( p

L

)
)

y(L, p) =L sech
( p

L

) (23)

It can be seen that equation (23) is the same as that of a tractrix given in equation (3). The above
derivation shows analytically that for a straight single link perturbed along a straight line, the L2

metric (as defined in equation (6)) is equivalent to minimizing the velocity of the trailing end.
As p → ∞ (or t → ∞), we know from elementary calculus that tanh(p/L) → 1 and sech(p/L) →

0 which gives

x(L,∞) = p− L, y(L,∞) = 0 (24)

From the above, it is clear that as time increases, the straight line or the rigid link aligns with the
perturbation direction, in this case the X-axis.

3.2 Curve discretised by straight lines

It has not been possible to obtain analytical solution for equation (11) except for a simple straight
line as shown in the preceding section. One way to solve the problem for an arbitrary curve
is to discretise the curve into finite number of straight line segments. The difference between
the continuous (variational) formulation and the discretised formulation is schematically shown in
figure 3.

In Section 3.1, we demonstrated that for a straight line the motion of the trailing end with L2

metric or velocity minimization is given by the tractrix equations (23). As shown in the right-hand
side of figure 3, a known perturbation is given to the 1st point (the leading end) of the initial
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(Tx(t), Ty(t))

(x(s, t), y(s, t))

(x(s, t+∆t), y(s, t+∆t))

Pull Vector1

2

3

j

(n− 1)

n

Leading

Trailing

Sequentially

Propagated

Perturbations

End

End

Figure 3: Difference between variational and discretized formulations

curve. The L2 metric minimizing the motion of trailing end of the 1st segment is computed in
closed-form with equation (23) and this is the perturbation for the leading end of the 2nd segment.
Sequential iteration along the linear segments up to the other end, generates the motion of the entire
discretised curve or the nth point. This approach is termed as sequential optimization and is the
same as the strategy used for resolution of redundancy in hyper-redundant robots (see [14, 15, 16]
and [17, 18]). Since for every iteration dr ≤ dp, the perturbations die down as one moves down
the segments and this gives a more ‘natural motion’ of the curve. In addition, to this ‘dying down’
or attenuation property, as shown in equation (24), as time progresses, the motion of each segment
and hence the curve aligns with the motion of the perturbed end.

In giving the motion of the leading end in time domain, we have two options – either a single
step in time from zero to T or a series of steps in time. The series of steps is to be used if the
given perturbation is large or along a curve. For realistic simulations, the full step needs to be
broken into several smaller steps. The first method is called the single-step optimization and the
second is called the multi-step optimization. The multi-step optimization is more accurate when
compared to the single step because, in the latter, we neglect the intermediate path points and
consider only the initial and final states, which induces error. In the former case, we simply need
to use the single step (tractrix approach) several time between t and (t+∆t) with ∆t determined
by the requirements of the simulation.
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3.3 Spatial motion

For motion in 3D space, we can define the L2 metric (as a direct extension of the 2D L2 metric
from equation 6) minimization as follows:

Min I
x(s),y(s),z(s)

:

∫ L

0

∫ T

0

√(
dTx

dt
+

∂x(s, t)

∂t

)2

+

(
dTy

dt
+

∂y(s, t)

∂t

)2

+

(
dTz

dt
+

∂z(s, t)

∂t

)2

dtds

Subject to

Λ(t) : A =

∫ L

0

√(
∂x(s, t)

∂s

)2

+

(
∂y(s, t)

∂s

)2

+

(
∂z(s, t)

∂s

)2

ds = L

Data : x(s, 0), y(s, 0), z(s, 0), Tx(t), Ty(t), Tz(t), x(0, t) = 0, y(0, t) = 0, z(0, t) = 0

(25)

One can solve the optimization problem numerically3 by discretizing the curve into piecewise
straight lines. In Section 5, we present several numerical simulation results for the motion of
curves in 2D and 3D. The interesting features of preservation of the length, dying-out of motion
and eventual aligning of the curve along the perturbation is discernible in the simulations and
accompanying animation files.

4 Use of other metrics for minimization

In the previous section, we presented a metric that expresses minimization of velocities of the
trailing end for a given input velocity of a leading end. In this section, we present two additional
possible metrics. In Section 5, we compare these metrics.

4.1 Minimization of body rotation

Consider a straight rigid segment AP and the leading end P is moved to point Q. We wish to
obtain the motion of the trailing end A such that the straight rigid segment rotates the least. In
figure 4, point A is schematically shown to move to B and hence the rotation angle is given by
∠BQR where line QR is parallel to AP .

We now pose a minimization problem:

Minimize :
xB ,yB

|(∠BQR)|

Subject to : |BQ| = L

Data : L, Step Length PQ

It may be noted that minimization of the rotation is in the same spirit as the L2 velocity
minimization discussed in the previous section. Since a general rigid body motion can be considered
to be a combination of translation and rotation, a solution of the above problem in combination with
the tractrix approach may result in more natural rigid-body motions. It may be also noted that a
curve can be discretised into straight rigid segments and the technique of sequential optimization
can then be applied for the discretised body.

3In this work, numerical solution of optimization problems is done using the fmincon routine in MATLAB R⃝[22].
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L
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R

Figure 4: Incremental rotation minimization

4.2 Minimization of body deformation

Consider a rigid body comprising of two rigid line segments MA and AP . The end P is again given
a perturbation to Q. We wish to determine the motion of A and M , schematically shown going to
B and N respectively in figure 5, such that the (∠MAP − ∠NBQ) is minimized. This can again
be expressed as a minimization problem as follows:

Minimize :
xB ,yB

|(∠MAP − ∠NBQ)|

Subject to : |BQ| = L, |NB| = L

Data : L, Step Length PQ

The above minimization indirectly determines the torsional stiffness between segments MA and
AP .

5 Results and Discussion

In this section, we present numerical simulations to illustrate the theoretical results presented in
the previous sections. All symbolic computations required for the results were obtained using
MAPLE R⃝ [23] and for numerical simulations using the fmincon routine of MATLABR⃝ [22].

5.1 Performance comparison of different optimization strategies

The first simulation result deals with a comparison of optimizing the motion of a continuous curve
(discretised into piecewise linear segments) with the sequential, single and multi-step, optimization
discussed earlier. As noted in Section 3, we can solve the continuous optimization for simple
curves. Figure 6 shows the motion of an initial parabola using different optimization strategies.
The chosen initial parabola has the form y = x2 and it is discretized into 20 segments, each of
length 0.25 thereby creating a total curve length of 5. Further, for single-step perturbation, we
have a pull vector of 0.7 length equally inclined to X and Y axes (45◦ with each axis) whereas for
the multi-step perturbation, we pull the curve in the same direction but in 5 steps of 0.14 each.
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Figure 5: Incremental joint rotation minimization

Figure 6: Different optimization techniques applied on an initial parabolic curve
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To compare the four minimizations, we choose the multi-step sequential optimization as the
reference. For single-step sequential optimization, the L2 norm is 0.6347 and for multi-step overall
optimization the value is 1.6007 whereas for single-step overall optimization, it turns out to be
1.6982. This implies that better results are obtained if the discretization in time and along the
curve is finer.

5.2 Solution characteristics of other candidate metrics and their significance

The second set of numerical results deals with the comparison of the tractrix, the minimization of
body rotation and body deformation for a straight line. As explained earlier, selecting appropriate
metrics depends greatly on the problem-specific task. In this section, the solution properties for
the three metrics used in this paper are discussed.

1. The L2 norm minimization yields a tractrix-based solution as already mentioned earlier and
shown in figure 7. It may be noted that the initial configuration of the straight line is parallel
to the Y axis, the motion is from right to left, and the final configuration of the straight
line is parallel to the X axis. The figure clearly demonstrates that the final configuration is
aligned along the pull direction.

Figure 7: L2 norm minimization for a straight line

2. Rotation norm minimization introduces the notion of pure translation mode, which can be
seen in the figure 8. In this case also, the motion is from right to left.

3. The third candidate norm introduced, namely the one to minimize joint rotation, introduces
the rigid body behavior into the mathematical framework as can be noted from figure 9.

In the figure 9, we can notice that for the first link there is no joint rotation as there is no
previous link with respect to which this can be defined. The motion of first link, in this case,
has been derived using L2 norm minimization. Clearly, from the figure, we see that the whole
body shows a rigid body behavior for minimal body deformation or maximum stiffness.

The distinct behavior of solutions displayed in figures 7-9 indicate the effect of objective chosen
on the solution. Depending upon the nature of the problem in hand, proper objective needs to
be chosen. For example, if the application is for a flexible robotic manipulator chain, the main
objective will be to minimize the joint rotations so as to minimize motor actuation and power
consumption, in which case metric defined in Section 4.2 for minimizing joint rotations may be
more appropriate. However, if the problem is concerned with trajectory planning of a locomotive
pulling coaches, then the minimizing the motion or L2 norm over time is more appropriate.
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Figure 8: Rotation minimization for a straight line

Figure 9: Joint rotation minimization for a straight line

13



5.3 Planar & spatial simulation of a generic curve subjected to generic pertur-
bation

In this section, we present simulation and visualization of the motion of an arbitrarily chosen
curve, pulled along an arbitrary path in 2D and 3D space. Three cases, namely that of an arbitrary
planar curve, a parabola and a curve in 3D space are used to illustrate the features of the L2 norm
minimization based schemes. In this set of simulations, we use multi-step sequential optimization.

In the planar sequential case, the input curve is discretized into 80 links of 0.05 length each and
is perturbed in 250 steps of 0.075 each over a length of 8.75 units along a generic path. For overall
optimization in 2D, the curve is again a parabola of the form y = x2 discretized into 20 links, each
of length 0.25, and is pulled in 6 steps with average pull length 0.4 units. In the case of 3D, an
arbitrary curve of length 30 is discretized into 20 links and perturbed in 2650 steps of 0.1, thus
making a total pull length of 265 units.

Figure 10 shows the snapshots of the planar motion from multi-step sequential optimization
and figure 11 shows planar motion of a parabola in generic direction using multi-step overall op-
timization. Finally, figure 12 show the snapshots of spatial motion and the accompanying videos
shows the entire motion for the last two cases. It may be mentioned the length of curve, 4 and
30 units for 2D and 3D curve, remain constant during the motion. It can be clearly seen that the
dying-out property is present and this clearly leads to a more natural looking motion of the curve.
One can also observe that the eventual motion of the curve aligns with the direction of the motion
of the input end. It may be noted that one can see a similar “dying-out” and “aligning” motion in
a ribbon being moved by a gymnast during floor exercises.

6 Conclusion and Future Work

This paper presents a new approach for the simulation and visualization of the motion of one-
dimensional flexible objects using calculus of variations and constrained optimization. It is ana-
lytically proved that classical tractrix based solutions are direct consequence of an L2 norm min-
imization and minimization of the tip-velocity. Subsequently, using sequential optimization to a
curve discretised by piece-wise linear segments, a much simpler and computationally more robust
algorithm has been developed for the simulation of arbitrary flexible one-dimensional objects whose
length is preserved during motion. It has been shown that the minimization results in a natural
‘dying out’ and aligning motion of the flexible object. An important feature of the proposed algo-
rithm is that it is a purely kinematics-based solution and it does not require assuming values for
mass, stiffness or damping of the flexible objects as in dynamics-based approaches. The approach
can be applied to simulation and visualization of the motion of generic flexible objects such as
snakes, chains, ropes etc. The proposed approach can be also used for redundancy resolution in
hyper-redundant robotic manipulators.

Further, it is shown that the tractrix-based approach is one of the many possible length-
preserving transformations for a smooth, arc length parametrizable curve. Through two additional
candidate norms, the fact has been demonstrated that objective function chosen affects the solution
drastically. Therefore, the proposed approach can give the optimized and appropriate solutions for
any given functional, which in turn will be decided by the given problem.

Lack of analytical expressions for arbitrary curves and the norms have forced us to employ
numerical methods. This brings along with it inherent issues, namely ones related to convergence,
stability and sensitivity to initial guess in the numerical optimization procedure. Although a
rigorous mathematical proof of convergence, stability and sensitivity to initial guess is not available
for the theoretical approach presented in this paper, the situation is not hopeless. This is based
on following specific observation and reasoning – (a) we did not face any of these issues during the
numerous numerical simulations we performed on a large number of arbitrarily chosen curves pulled
along arbitrary directions in 2D and 3D space, and (b) for a straight line there exists analytical
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Figure 10: Multi-step sequential optimization of an arbitrary curve pulled in generic direction

Figure 11: Multi-step overall optimization of a parabola moved along a generic direction in 2D
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Figure 12: Multi-step sequential optimization of an arbitrary curve in generic direction in 3D
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solutions without any of the above mentioned issues and an arbitrary curve can be considered to be
the limiting case of a large number of linear segments. However, closed-form analytical expressions
(as in the case of a straight line) for planar and spatial curves are expected to give more useful,
qualitative insights and this is a topic of further research.
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