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Abstract

This paper presents a study of the nature of the degrees-of-freedom of spa-
tial manipulators based on the concept of partition of degrees-of-freedom.
In particular, the partitioning of degrees-of-freedom is studied in five lower-
mobility spatial parallel manipulators possessing different combinations of
degrees-of-freedom. An extension of the existing theory is introduced so as
to analyse the nature of the gained degree(s)-of-freedom at a gain-type sin-
gularity. The gain of one- and two-degrees-of-freedom is analysed in several
well-studied, as well as newly developed manipulators. The formulations also
present a basis for the analysis of the velocity kinematics of manipulators of
any architecture.

Keywords: Parallel manipulators, instantaneous degrees-of-freedom,
singularity, lower-mobility manipulators.

1. Introduction

Spatial manipulators were originally designed to have all of the possible
six-degrees-of-freedom (DoF). The famous PUMA [1] or the Stewart plat-
form manipulators [2] represent this trend. While these manipulators have
proven to be versatile in terms of handling a large range of tasks by virtue
of their full-mobility, they turned out to be relatively expensive for the same
reason. Moreover, in a large number of applications where only a subset
of the six-DoF sufficed, the manipulators’ capabilities would appear to be
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practically redundant. It is for these reasons, that a large number of manip-
ulators with “lower-mobility”, i.e., less than six-DoF, have come up in the
past few decades: the SCARA [3], the DELTA [4], the 3-RPS [5], the cylin-
drical manipulator [6], the 3-UPU [7], the Agile Eye [8], the CaPaMan [9]
and the MaPaMan [10], to name a few. Most of these manipulators are
designed for a particular set of tasks. For example, the Agile Eye, as the
name suggests, provides a dexterous camera mount with spherical motion
capability; the DELTA, on the other hand, provides three translational mo-
tions, making it very successful in operations such as “pick-and-place” in the
industries. The motion analysis of these two manipulators, and others with
similar motions, is relatively easy, for their workspaces form not only proper
subsets of SE(3) (i.e., the special Euclidean group signifying the space of
general displacements of the rigid bodies), these are actually sub-groups of
the same – SO(3) in the case of Agile Eye,(i.e., the special orthogonal group
signifying the space of rigid body rotations) and R3 for DELTA (i.e., space of
pure translations). Understanding the motion of other manipulators, such as
the 3-RPS and MaPaMan, is more challenging, for these three-DoF manip-
ulators do not belong to either spherical, or Cartesian categories. Instead,
their platforms can show motions which are combinations of rotation(s), as
well as translation(s). For instance, the 3-RPS manipulator, even though
originally designated as a parallel wrist, actually possesses two rotational,
and one translational DoF [11].

The study of the DoF or mobility of linkages and manipulators has a long
history. In [12], Gogu has presented a summary of the important develop-
ments up to the year 2005. His analysis of a significant number of existing
mobility criteria showed that simple calculations based on the topology of
the mechanisms alone were not always reliable in predicting even the actual
DoF itself. Thus, the problem of determination of the nature and distri-
bution of the DoF in a comprehensive manner is not addressed by these
classical methods. Towards this goal, researchers have employed methods
based on instantaneous kinematics. A popular approach in this category is
the application of screw theory. For a three-DoF parallel manipulator, the
three-system of screws to which the resultant twist of the moving platform
belongs, can be formulated. Then, the principal screws of this system can be
computed, leading to the identification of the distinct screw-system to which
the motion belongs, as per the classification given in [13, 14]. This is the
approach used in [15] for the analysis of the 3-RPS manipulator.

An inherent drawback of such analyses is that the results are not global,
i.e., all the conclusions relate only to the configuration under consideration,
which can change with the motion of the manipulator. In addition, some
practical as well as conceptual difficulties present themselves in this type
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of analyses. Firstly, unlike in the case of serial manipulators, the twists of
the end-effectors of parallel manipulators are difficult to find. In fact, there
is no standard or uniform formulation followed by the researchers, leading
to a significant degree of diversity at this preparatory step itself. In order
to circumvent this problem, one approach takes advantage of the fact that
the computation of the input wrenches is generally easier than the input
twists, and that these systems are reciprocal, to analyse the wrench system
for determining the nature of the twists [16, 17]. Even with all these steps,
when the end-result is obtained, i.e., the screw-system is identified, it does
not specify, in an explicit manner, how the total DoF of the platform is
partitioned in rotational and translational DoF.

In the recent years, another approach has come up to address some of
these issues. In this approach, a slightly different point of view is adopted,
and the space of the twists is analysed directly, as opposed to the underlying
space of screws. One formulation involves composing a Jacobian matrix and
finding the dimension of its nullspace [18]. Another leads to the eigenproblem
of a symmetric positive-semidefinite matrix of dimension n× n, n being the
DoF of the motion under consideration [11, 19]. The rank of this matrix
indicates the number of rotational DoF. Since this number can be three
at the most, the eigenproblem leads to a characteristic polynomial whose
non-trivial factor is at the most a cubic. The coefficients of this cubic, and
therefore its roots can be computed analytically in closed-form, in principle4.
Thus, the rotational DoF can be identified accurately. Using the eigenvectors
corresponding to the vanishing eigenvalues, one can obtain the number of
translational DoF as well. Following this analysis, a new classification of
generic motion of a rigid-body has been presented, based solely on the DoF
characteristic [19, 20]. In this paper, this method of analysis and classification
is followed to understand the motion characteristics of a number of three-
DoF spatial parallel manipulators. Such manipulators can have either 3, 2, 1
or 0 linearly independent rotational DoF, and 0, 1, 2 or 3 translational DoF,
respectively – leading to four distinct classes within this type of manipulators.

It is well-known that the DoF of a parallel manipulator is subject to
change at a singularity. The manipulator gains one or more DoF at a gain-
type singularity, and similarly, loses one or more DoF at a loss-type singu-
larity. While the lost DoF is easy to identify (from the generic analysis of
the DoF at such a singularity), the analysis of the gained motion requires
a more involved treatment. Various methods to identify and interpret the

4In most practical problems, however, the symbolic expressions involved are too large
to be amenable to analysis, and thus one is forced to introduce numbers into them.
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gained motion already exist in literature (see, e.g., [21, 22] and the references
therein). However, a systematic study of the same, for the class of manip-
ulators described here, is not available to the best of the knowledge of the
authors. This paper attempts to present such an analysis. It describes a
generic method to derive the required mathematical elements (i.e., the Ja-
cobian matrices) for a generic platform-type manipulator, and uses these for
the analysis of the DoF of a number of three-DoF spatial parallel manipula-
tors, at generic as well as singular configurations. It establishes, perhaps for
the first time, a method of analysis of the nature of the gained DoF, when a
manipulator gains more than one DoF at a singularity.

The rest of the paper is organised as follows: in Section 2, the formula-
tion for the analysis of DoF in the non-singular configurations is presented,
followed by a similar analysis of the gained-DoF in the singular configura-
tions in Section 3. In Sections 4 and 5, the formulations are applied to
several three-DoF spatial parallel manipulators, in the non-singular and sin-
gular configurations, respectively. Finally, the conclusions are presented in
Section 6.

2. Formulation for the non-singular cases

The methodology for computing the partitioning of the DoF of a rigid-
body in motion has been described in [11, 19, 20]. Some relevant parts of it,
in particular, elements specific to parallel manipulators, are described in the
following.

2.1. Definition of the different Jacobian matrices

As the method analyses instantaneous properties of the motion of a rigid
body, a number of Jacobian matrices come into play. Furthermore, the body
in question is the end-effector of a parallel manipulator, and as such its
motion is constrained by the loop-closure conditions in a parallel manipulator.
These constraints are also incorporated in the motion of the end-effector5

by means of the corresponding Jacobian matrices. The derivation of these
matrices are described in the following.

2.1.1. Equivalent linear velocity Jacobian, J eq
v

The linear velocity Jacobian is computed based on the position of a point
of interest on the moving platform. In general, the position vector of this

5In parallel manipulators, the choice of the output link (or the end-effector) is not so
obvious always. In this paper, only platform-type manipulators are studied, leading to the
obvious choice of the platform as the end-effector in all the cases.
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Figure 1: Schematic representation of three-DoF parallel manipulator with three legs

point may be obtained as a linear combination of the vertices of the moving
platform:

0p =
s∑

i=1

a0ipi, ai ∈ R, (1)

where 0pi (i = 1, . . . , s), denote the position vectors of the vertices of the
mobile platform in the global frame of reference and s is the number of ver-
tices (see Fig. 1). The velocity of the point 0p is written in terms of the
corresponding Jacobian as:

0vp =
d0p

dt
=
∂0p

∂q
q̇, (2)

where q represents the vector of configuration variables, defining the config-
uration of the manipulator uniquely. For a parallel manipulator, it is always
possible to partition q as q = (θT ,φT )T , where θ ∈ Rn represents the vector
of the actuated or active joint variables, and φ ∈ Rm the non-actuated or
passive ones (see, e.g., [21]). Thus, Eq. (2) may be rewritten as:

0vp =
d0p

dt
= Jpθθ̇ + Jpφφ̇, where Jpθ =

∂0p

∂θ
, and Jpφ =

∂0p

∂φ
. (3)
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In order to transfer the effects of the motions of the passive links to those
of the active ones, the passive joint rate, φ̇, needs to be computed. This is
done by differentiating the loop-closure equations, η(θ,φ) = 0 [22] to obtain
the following:

Jηθθ̇ + Jηφφ̇ = 0, where (4)

Jηθ =
∂η

∂θ
, Jηφ =

∂η

∂φ
. (5)

⇒φ̇ = Jφθθ̇, where (6)

Jφθ = −JηφJηθ, and det (Jηφ) 6= 0. (7)

Using Eq. (6) in Eq. (3), one obtains, finally,

0vp = J eq
v θ̇, where (8)

J eq
v = Jpθ + JpφJφθ. (9)

This completes the derivation of the equivalent linear velocity Jacobian for
any parallel or hybrid manipulator.

2.1.2. Equivalent angular velocity Jacobian, J eq
ω

Several approaches exist for the computation of the angular velocity of
the moving platform of a platform-type manipulator. The one presented here
is applicable to any platform-type parallel or hybrid manipulator, such as the
one shown in Fig. 1. The approach depends on first obtaining the rotation
matrix, 0

1R, of the platform frame {1} with respect to the fixed frame {0}.
The space-fixed angular velocity, in its matrix form, is given by the for-

mula (see, e.g., [23], pp. 139):

0Ωs = ˙0
1R(01R)T ∈ so(3), (10)

where so(3) is the space of angular velocity matrices [24]. Extracting the
vector 0ωs from the skew-symmetric matrix 0Ωs, one gets:

0ωs = (0Ωs)
∨ ∈ R3, (11)

where (·)∨ : so(3)→ R3 is an operator such that Ωa = ω×a ∀a ∈ R3, where
ω = Ω∨ (see, e.g., [24]). Separating the coefficients of θ̇ and φ̇, one gets an
expression for the angular velocity similar to that of the linear velocity in
Eq. (3):

0ωs = Jωθθ̇ + Jωφφ̇. (12)
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Once again, replacing φ̇ by Jφθθ̇, the final expression for the equivalent
Jacobian matrix for the angular velocity is obtained as:

0ωs = J eq
ω θ̇, where J eq

ω = Jωθ + JωφJφθ. (13)

2.2. Analysis of the nature of DoF

Once the Jacobian matrices are formed, the analysis of the DoF can be
done by means of the solution of an eigenvalue problem, as shown in [11].
Though the results therein have been derived through the use of dual-number
algebra, it is possible to perform the computations within the framework of
real algebra alone. The computational steps are summarised below:

1. Form the matrix g = (J eq
ω )TJ eq

ω ∈ Rn×n.

2. Solve the eigenproblem of g, so as to obtain the eigenvalues λi, and the
corresponding eigenvectors θ̇i∀ i = 1, . . . , n.

3. Count the independent rotational DoF from the number of non-zero
eigenvalues. This number can be at the most 3 for any positive inte-
ger n, since rank(J eq

ω ) ≤ 3.

4. Find the eigenvectors (denoted by θ̇
N

i ) corresponding to the zero-valued
eigenvalues, from the solution of the following equation:

gθ̇
N

i = 0, i = 1, . . . , ng, where ng = nullity(g). (14)

5. Form the matrix JV , such that the ith column of it is given by the

vector J eq
v θ̇

N

i , i.e.,

JV =

[
J eq
v θ̇

N

1 J eq
v θ̇

N

2 · · · J eq
v θ̇

N

ng

]
.

The rank of JV represents the number of independent translational mo-
tions, while the difference between rank(J eq

v ) and rank(JV ) represents
the number of dependent (or parasitic) translational motions.

6. Form the matrix gV = JT
V JV .

7. Find the rank(gV ) by solving its eigenproblem or otherwise.

8. Finally, the total instantaneous DoF is obtained from the formula:

DoF = rank(g) + rank(gV ). (15)

In the above formula, the first term in the RHS indicates the rotational
DoF and the second term gives the purely translational DoF. This pro-
cess is followed in the analysis of the DoF of a number of 3-DoF spatial
parallel manipulators in Section 4.

7



3. Analysis of the gained-DoF at singularities

It is well-known in literature that all manipulators lose one or more DoF
at a loss-type singularity, while a parallel or hybrid manipulator can also gain
DoF at a gain-type singularity [21]. The number of gained or lost DoF can
be easily computed based on the rank of certain Jacobian matrices [21, 22].
Identification of the nature of the lost or gained DoF needs further analysis.
In the case of a loss of DoF, the steps mentioned in Section 2.2 need to be
followed to analyse the remaining DoF. The procedure for the gained DoF is
more involved. It is explained in the following.

It is clear that the above formulation of the Jacobian matrices hold under
the condition:

det(Jηφ) 6= 0. (16)

When this is violated, the manipulator is said to be at a constraint- or gain-
type singularity. It is customary to investigate the motion arising out of the
gained DoF alone (see, e.g., [11, 21]). In order to do so, the gained passive
velocity is found out first, while the actuators are held fixed, i.e., θ̇ = 0. In
such a case, Eq. (3) reduces to:

Jηφφ̇
N

i = 0, i = 1, . . . , ns, where ns = nullity(Jηφ). (17)

The gained angular and linear velocities can be obtained as:

0ωN
i = Jωφφ̇

N

i (18)

0vNi = Jvφφ̇
N

i , i = 1, . . . , ns. (19)

Eqs. (18,19) imply that even with the actuators locked the end-effector of the
parallel manipulator can instantaneously have non-zero linear and/or angular
velocity(ies) – owing to the gained DoF.

If there is the gain of only one DoF, i.e., ns = 1, then there are only two
possibilities: the gained motion can be rotational in nature, i.e., the motion
belongs to the class χ10, when ‖ωN

1 ‖ 6= 0; otherwise, the motion is purely
translational in nature, i.e., it belongs to the class χ01 [20] (see Appendix A).

When ns ≥ 2, the analysis can be carried out in a manner analogous to
the study of g. The steps involved are described below:

1. Construct the matrix JN
ω such that the ith column of it is given by the

vector ωN
i as defined in Eq. (18):

JN
ω =

[
Jωφφ̇

N

1 Jωφφ̇
N

2 · · · Jωφφ̇
N

ns

]
.

This matrix is analogous to J eq
ω , except that it relates to the angular

velocities arising out of the gained DoF alone.
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2. Compute gN = (JN
ω )TJN

ω . This matrix is analogous to g in the same
way as JN

ω relates to J eq
ω .

3. Solve the eigenproblem of gN . The number of non-zero eigenvalues
indicate the number of gained rotational DoF.

4. Construct the matrix JN
V such that the ith column of it is given by the

vector vNi as defined in Eq. (19). This matrix is analogous to J eq
v in

the non-singular case.

5. Map the nullspace of gN by the matrix JN
v to get the matrix JN

V .

6. Compute the matrix gNV = (JN
V )TJN

V .

7. Find the rank(gNV ) by solving its eigenproblem or otherwise. This num-
ber defines the number of gained translational DoF.

8. Finally, find the actual gained DoF as:

Gained DoF = rank(gN) + rank(gNV ). (20)

Note that the last step may appear as redundant, as one could expect the
gained DoF to equal ns in all the cases. However, this is not necessarily true.
It may so happen that at a singular configuration the columns of JN

ω are
linearly dependent and/or so are those of JN

V , in such a manner that the sum
in Eq. (20) falls below its maximum possible value, given by ns.

4. DoF partitioning for three-DoF parallel manipulators

The theory developed in Sections 2, 3 is illustrated with the help of five
examples of three-DoF spatial parallel manipulators in this section. The
manipulators chosen are: a) 3-RPS parallel manipulator [5], b) Agile Eye
parallel manipulator [8], c) “cylindrical” manipulator [6], d) MaPaMan-I [10],
and e) MaPaMan-II [10]. The first three manipulators are well known in
literature, but detailed analysis regarding the partitioning of their DoF, and
more specifically, the partitioning in singular cases are not entirely known.
The last two have been introduced recently, and their partitioning in non-
singular and singular configurations are only partially known.

4.1. The 3-RPS manipulator

The 3-RPS parallel manipulator was introduced in 1988 by Lee and
Shah [5] and has since been studied extensively by several researchers. The
manipulator, as shown in Fig. 2, consists of a fixed and a moving platform.
The platforms are connected by means of three legs, each of which has a
rotary, a prismatic, and a spherical joint. The prismatic joints are actuated,
and all the other joints are passive. This gives rise to three-DoF for the
moving platform. For the sake of convenience, the fixed base and moving top

9



1

3

2

Zp(x,y,z) Moving Platform

Base Platform

O

X

Y

φ

φ

φ

l p

p
2p

l
2

l l

3

l
3

a

a a

b b

b

Figure 2: The 3-RPS manipulator

platforms are chosen as equilateral triangles circumscribed by circles of radii
b and a respectively. The coordinates of the end-effector are obtained as:

0p1 = (b− l1 cosφ1, 0, l1 sinφ1)
T ,

0p2 = RZ (2π/3) (b− l1 cosφ2, 0, l1 sinφ2)
T ,

0p3 = RZ (4π/3) (b− l1 cosφ3, 0, l1 sinφ3)
T ,

where RA(α) denotes the rotation matrix for CCW rotation about axis A
through an angle α. As the moving platform is equilateral in shape, the
obvious choice of the point of interest 0p is the centroid of the triangle:

0p =
1

3

(
0p1 + 0p2 + 0p3

)
.

Given the input variables θ=(l1, l2, l3)
T , there are three passive variables

φ = (φ1, φ2, φ3)
T , which need to be solved for. The three constraint equations

are given by η = 0, where η = (η1, η2, η3)
T , and:

η1 = (0p2 − 0p1) · (0p2 − 0p1)− 3a2,

η2 = (0p3 − 0p2) · (0p3 − 0p2)− 3a2,

η3 = (0p1 − 0p3) · (0p1 − 0p3)− 3a2. (21)
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Following [23], the solution of the forward kinematics problem is reduced
to that of solving an 8-degree univariate polynomial equation. The length
dimensions are all scaled with respect to b. For the parameter value6 a = 1/2,
two typical non-singular configurations are studied, leading to the following
results:

• For active variables θ=(1/2, 1, 2)T , the passive variables are given by
φ=(0.4, 0.753, 0.240)T . The matrix Jω is computed to be:

Jω =

 0.271 0.427 −1.671
1.322 0.564 −3.787
−1.013 0.473 0.298

 .
Subsequently, g is found as:

g =

 2.849 0.382 −5.764
0.382 0.724 −2.707
−5.764 −2.707 17.222

 .
The eigenvalues of g are7 calculated as: 0, 1.167 and 19.627, respec-
tively. Thus, the number of independent rotational DoF in this config-
uration is found to be rank(g) = 2.

In order to compute the independent translational DoF, one may be
tempted to compute the number of independent vectors in the linear
velocity Jacobian, J eq

v . In this configuration,

J eq
v =

−0.508 0.119 0.490
0.181 −0.227 0.355
0.145 0.619 2.183

 .
Eigenvalues of this matrix are: −0.539,−0.317, and 2.305 respectively.
Thus, one may be lead to believe, that the manipulator has three inde-
pendent translational velocities in this configuration. Such a conclusion
would obviously be incorrect, as it would mean that the manipulator
has a total of 2 + 3 = 5 DoF at this configuration, whereas the DoF is
known to be 3 in this case. In order to resolve this issue, the method

6All angles are in radians and all lengths are dimensionless unless mentioned otherwise
explicitly.

7Any number with an absolute value less than 10−15 is approximated by zero through-
out the paper, unless mentioned otherwise explicitly.
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proposed in this paper is applied to the problem. Following step 4 in
Section 2.2, the 1-dimensional nullspace of g is computed as:

θ̇
N

1 = (0.473, 0.832, 0.289)T .

Using this vector in step 5, the matrix JV is computed as:

JV = (0, 0, 1.215)T .

Since there is a single non-zero vector in JV , there is no need for the
computation of the matrix gV and solving its eigenproblem in this case,
as it is obvious that the number of independent translational DoF is
rank(gV ) = rank(JV ) = 1. Thus, the application of Eq. (15) to this
problem presents the correct resolution in this example, that the sum of
the independent translational DoF and the independent rotational DoF
equals the total DoF of the manipulator at the configuration considered.

• For θ=(2, 5/2, 3/2)T and the corresponding passive variables
φ=(1.283, 0.691, 1.075)T , the eigenvalues of g are: 0, 2.9, 8.409. The
vector JV = (0, 0, 0.690)T . The matrix

J eq
v =

−1.864 −0.412 0.549
0.182 −0.719 0.323
0.314 0.639 0.330

 ,
whose eigenvalues are: −0.723,−0.565, 0.669, i.e., once again, J eq

v is of

full rank. However, the vector θ̇
N

1 = (0.662, 0.439, 0.607)T , and JV =
(0, 0, 0.690)T . Therefore, there is no qualitative difference in the nature
of the DoF in between the two configurations.

It is seen that in both the configurations the moving platform has instan-
taneously two rotational DoF and one pure translational DoF along the Z
axis, i.e., it belongs to the class χ21 in these configurations. These conclusions
are consistent with similar results reported in [11, 20]. As explained in [20],
the platform cannot have an angular velocity about the Z axis since pi are
confined to distinct vertical planes. The third DoF of the 3-RPS is thus
constrained to be purely translational in nature, and such a translation can
only take place along the Z axis.

This example demonstrates clearly a common issue with the kinematics
of lower mobility manipulators, which is sometimes referred to as “parasitic
motion” [25, 26]. The term is motivated by the fact that these motions do
not contribute directly to the actual DoF of the manipulator; rather, they are
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associated with these principal motions in a dependent manner. For instance,
these could be linear motions arising out of the fact that the input twists as-
sociated with the rotational motions do not intersect at a point [26]. These
motions can hamper the understanding of the DoF from the standpoint of
velocity analysis. Depending upon the architecture of the manipulator, its
configuration, and the choice of the point of reference for the analysis of the
linear velocities (i.e., the choice of the point 0p in the present paper), one
may get varying ranks for the linear velocity Jacobian, J eq

v . In the present
example, this rank was three, while the independent or pure translational
DoF was just one. This discrepancy stems out of the fact that J eq

v is com-
puted based on a single chosen point, and unlike Jω, it does not represent a
generic property of the motion of the entire end-effector. On the other hand,
the properties of JV are generic to the entire end-effector, and they clearly
agree with the known results as well as physical intuition. While only one of
the translational velocities of 0p can be designated as a “principal DoF” or an
element of the “principal basis of se(3)” as defined in [11], the other two can
be considered as parasitic. While further analysis of these parasitic motions
can be done within the framework of screw theory, it is beyond the scope of
the present paper. As far as the present paper is concerned, the above exam-
ple serves the purpose of demonstrating the ability of the proposed method
to correctly identify the independent or principal motions, even in the pres-
ence of parasitic motions that could hamper the proper understanding of the
DoF otherwise.

4.2. The Agile Eye

The Agile Eye was introduced by Gosselin and Hamel [8] in 1994. It
consists of three legs, each leg containing two links, each having the form of
a quarter circle connected to others through revolute joints (see Fig. 3). Due
to the symmetry incorporated in the geometry, forward kinematic problem
becomes very simple, and is in fact solvable in closed form if the end-effector
is represented in terms of the orientation variables φ = (φ, γ, ψ)T , which are
respectively the rotations about the Z, Y and X fixed axes. The coordinates
of the end-effector are obtained as shown in [27] :

0p1 = RZ (φ)RY (γ)RX (ψ) r1, where r1 = (0,−r, 0)T ,
0p2 = RZ (φ)RY (γ)RX (ψ) r2, where r2 = (0, 0,−r)T ,
0p3 = RZ (φ)RY (γ)RX (ψ) r3, where r3 = (−r, 0, 0)T .

The centroid of the triangle formed by 0pi is taken to be the point of interest:

0p =
1

3

(
0p1 + 0p2 + 0p3

)
.
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Figure 3: The Agile Eye manipulator

The construction of the Agile Eye is such that the axes of the intermediate
joints are orthogonal to the corresponding axes at the end-effector in each
leg. These orthogonality conditions lead to the three constraint equations in
terms of the unknown variables, φ. The solution to the forward kinematic
problem is obtained in closed form and analytical expressions for the un-
known variables are obtained. Scaling all the lengths with respect to r, two
sample results are presented.

• For active variables θ = (π/4,−π/6, π/5)T , one set of the unknown
variables are given by: φ=(0.628, 0.088,−2.433)T , and the eigenvalues
of g are computed as: 0.008, 0.071 and 1.551.

• For θ = (π/4, π/12, π/8)T and corresponding φ=(0.393,−0.083,−2.409)T ,
the eigenvalues of g are 0.066, 0.222 and 0.727.

It can be seen that the end-effector of Agile Eye has three rotational DoF.
Therefore as expected, the manipulator belongs to the class χ30 in these
configurations.

4.3. The cylindrical manipulator

This parallel manipulator was proposed by Wang and Liu [6]. As shown
in Fig. 4, two of the three legs have identical geometry, each consisting of
a two-DoF universal joint and two rotary joints. The third leg consists of
a planar four-bar parallelogram mechanism and three rotary joints. In this
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example, the top moving platform and the fixed base are assumed to be in
the form of isosceles triangles. The axes of the revolute joints in legs 1,2,
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Figure 4: A three-DoF cylindrical manipulator

and the axes of the revolute joints in the four-bar mechanism of the third leg
are all parallel to each other, while the axes of the rest of the joints in leg 3
are perpendicular to the aforementioned. The revolute joints attached to the
base are actuated and all others are passive. As there are a number of passive
joints in this mechanism, an equal number of constraint equations would be
required. In order to simplify the task, the end-effector is represented in its
task space variables, φ=(y, z, φ)T . The coordinates of the end-effector are:

0p1 = (0, r + y, z)T

0p2 = (0,−r + y, z)T

0p3 = (r cosφ, y, z + r sinφ)T .

The centre of the side 0p01p2 is taken as the point of interest:

0p =
1

2

(
0p1 + 0p2

)
.

Using the geometric condition that 0p1 and 0p2 are confined to move in
the Y Z plane only and the length of the links adjoining the moving platform
remain constant, three constraint equations are framed as shown in [6]. The
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expressions for the unknown variables are obtained in the closed form. All
the lengths are scaled with respect to R. For r = 0.6 and all link lengths
equal to 1.2, two sample results are presented:

• For active variables θ=(−2.171,−1.670,−1.873)T and corresponding
unknown variables φ= (0.37,−2, 0)T , the eigenvalues of g are 0, 0 and
5.6372. The matrix

JV =

−1.864 2.230
0 0

−1.935 1.081

 .
The eigenvalues of gV are 0.408 and 12.954.

• For θ=(−2.609,−1.813, 0.019)T and φ= (1/2,−1, 2/5)T , the eigenval-
ues of g are 0, 0 and 15.639. The matrix

JV =

0.801 0.001
0 0

0.664 1.076

 .
The eigenvalues of gV are 0.404 and 1.837.

It can be seen that the moving platform of the cylindrical manipulator has
one rotational DoF, and the other two DoF being translational in these con-
figurations. Therefore, the manipulator belongs to the class χ12 in these
configurations, which is complementary to the class of the 3-RPS manipula-
tor.

4.4. MaPaMan-I

The MaPaMan was introduced by Srivatsan and Bandyopadhyay in 2012 [10].
Each of the three legs of MaPaMan consists of a four-bar mechanism at its
base, and a strut. The strut is connected to the coupler link by means of
a rotary joint, and the top platform by a spherical joint respectively, as
shown in Fig. 5. The crank of the four-bars are actuated and all other joints
are passive. MaPaMan has two different assembly configurations, named
MaPaMan-I and MaPaMan-II. In the MaPaMan-I, the strut is in the same
plane as the four-bar. The coordinates of the tip of each leg are obtained as:
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(a) Prototype of MaPaMan-I
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Figure 5: Physical prototype and leg architecture of MaPaMan-I

0p1 =

xa + lcr cos θ1 + nlcp cosψ1 + ls cos γ1
0

za + lcr sin θ1 + nlcp sinψ1 + ls sin γ1

 ,
0p2 = RZ (2π/3)

xa + lcr cos θ2 + nlcp cosψ2 + ls cos γ2
0

za + lcr sin θ2 + nlcp sinψ2 + ls sin γ2

 ,
0p3 = RZ (4π/3)

xa + lcr cos θ3 + nlcp cosψ3 + ls cos γ3
0

za + lcr sin θ3 + nlcp sinψ3 + ls sin γ3

 .
The point of interest 0p chosen as the centroid of the moving platform is:

0p =
1

3

(
0p1 + 0p2 + 0p3

)
. (22)

For a given set of inputs θ=(θ1, θ2, θ3)
T , the passive variablesψ = (ψ1, ψ2, ψ3)

T

are obtained from the forward kinematics of the four-bar. There are three
more passive variables to be computed: φ=(γ1, γ2, γ3)

T . The three constraint
equations η = 0, to solve for the passive variables are given by:

η1 = (0p2 − 0p1) · (0p2 − 0p1)− d2t ,
η2 = (0p3 − 0p2) · (0p3 − 0p2)− d2t ,
η3 = (0p1 − 0p3) · (0p1 − 0p3)− d2t ,

where 0pi, i = 1, 2, 3, are the position vectors of the three points on the
moving platform where the legs are connected, and dt is the distance between
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any two of them. The forward kinematics of this manipulator yields a 16-
degree univariate polynomial [10], which is then solved for the given values
of actuated variables and the eigenvalues of the matrix g are calculated. All

Table 1: Geometric parameters of the MaPaMan-I and MaPaMan-II

Parameter Symbol Value
Crank length lcr 1/2

Coupler length lcp 2/3
Rocker length lr 1/2
Strut length ls 7/10

Strut position n 1/2
Crank base position a (1, 0, 0)T

Rocker base position e (1/3, 0, 0)T

End-effector side dt 1.155

the lengths are scaled with respect to the distance of the crank base from the
origin of the base platform. At two typical non-singular configurations and
for the link lengths given in Table 1, the following results are obtained:

• For active variables θ=(0.8, 1.4, 1.1)T and corresponding
φ=(2.122, 1.705, 1.892)T , the eigenvalues of g are: 0, 0.528 and 2.778.
The vector JV = (0, 0, 0.066)T .

• For θ=(1, 2, 1.5)T , φ= (1.973, 1.266, 1.628)T the eigenvalues of g are:
0,0.079 and 0.269. The vector JV = (0, 0,−0.015)T .

It is seen that two eigenvalues of g are non-zeros and one eigenvalue is zero.
This implies that the moving platform has two rotational DoF and one pure
translational DoF. Hence this configuration of the manipulator belongs to
the class χ21, the same as the 3-RPS. Also, the vector JV indicates that the
pure translation is along the Z-axis, for the same reason as in 3-RPS.

4.5. MaPaMan-II

The architecture of the MaPaMan-II is almost the same as that of MaPaMan-I,
except that the axis of the revolute joint between the coupler of the four-bar
and the strut lies in the plane of the four-bar in the case of the MaPaMan-II
(see Fig. 6). The points at the tip of each leg are obtained as:
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(a) Prototype (b) CAD model

Figure 6: CAD model and physical prototype of MaPaMan-II

0p1 =

xa + lcr cos θ1 + nlcp cosψ1 + ls cos2 ψ1 cos γ1 + ls cosψ1 sinψ1 sin γ1
ls cos γ1 sinψ1 − ls sin γ1 cosψ1

za + lcr sin θ1 + nlcp sinψ1 + ls cosψ1 sinψ1 cos γ1 + ls sin2 ψ1 sin γ1

 ,
0p2 = RZ (2π/3)

xa + lcr cos θ2 + nlcp cosψ2 + ls cos2 ψ2 cos γ2 + ls cosψ2 sinψ2 sin γ2
ls cos γ2 sinψ2 − ls sin γ2 cosψ2

za + lcr sin θ2 + nlcp sinψ2 + ls cosψ2 sinψ2 cos γ2 + ls sin2 ψ2 sin γ2

 ,
0p3 = RZ (4π/3)

xa + lcr cos θ3 + nlcp cosψ3 + ls cos2 ψ3 cos γ3 + ls cosψ3 sinψ3 sin γ3
ls cos γ3 sinψ3 − ls sin γ3 cosψ3

za + lcr sin θ3 + nlcp sinψ3 + ls cosψ3 sinψ3 cos γ3 + ls sin2 ψ3 sin γ3

 .
After finding 0p1,

0p2 and0p3, the same procedure as that adopted for MaPaMan-I
(Section 4.4) is followed and all the passive variables are computed. At two
typical non-singular configurations and for the link lengths given in Table 1,
the following results are obtained:

• For active variables θ= (0.8, 1.4, 1.1)T and passive variables
φ=(2.534, 2.238, 2.147)T , the eigenvalues of g are: 0.018, 0.075 and
0.151.

• For θ= (1, 2, 1.5)T , φ=(2.543, 1.966, 1.879)T , the eigenvalues of g are:
0.010, 0.029 and 0.155.

As there are no vanishing eigenvalues of g, this manipulator has all three
rotational DoF and belongs to the class χ30, the same as Agile Eye.

4.6. Summary of observations

In the above analysis, for the configurations studied, the classification of
the manipulators emerges as follows: 3-RPS and MaPaMan-I belongs to the
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class χ21, Agile Eye and MaPaMan-II belong to χ30, while the cylindrical
manipulator alone belongs to the class χ12. However there are quantitative
differences within the same class – which, though not the primary focus of this
paper – is nevertheless mentioned here in brief for the sake of completeness.
In the Agile Eye, the platform is known to have a spherical motion, i.e.,
the platform can only rotate about the stationary point O where the axes
of the rotary joints R1, R2, R3 meet (see Fig. 3). However, in MaPaMan-II,
the motion is not spherical; in addition to rotating about the three spatial
axes, the platform also has some translational motions along these, which
are sometimes called the parasitic motions in such lower mobility platforms.

5. Gain singularity and the analysis of the gained degree(s)-of-
freedom

The results of the study of partitioning of DoF shown in Section 4 are for
the manipulators at non-singular configurations. The approach developed
in Section 3 is followed in this section to analyse the gained DoF, at the
gain-type singularities.

5.1. Gain of single DoF

In the following the gained DoF is characterised when the manipulator
gains a single DoF.

5.1.1. The 3-RPS manipulator

Figure 7: The 3-RPS manipulator in a gain-singular configuration resulting in the gain of
a single DoF
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The condition for gain-type singularities is adopted from [28], i.e., the
manipulator gains one DoF when one of the legs lie in the same plane as the
moving platform, as shown in Fig. 7. This configuration is given by: θ =
(0.770, 1, 1)T and φ = (0.606, 1.047, 1.047)T . The resulting eigenvalues of
JT
ηφJηφ are computed as: 0, 2.595, 5.967; hence nullity(Jηφ)=1. The gained

passive velocity is computed as φ̇
N

1 = (1, 0, 0)T . The gained velocities in
the task space are:

0ωN
1 = (0,−1.026, 0)T , and

0vN1 = (0.1462, 0, 0.211)T ,

implying that the gained DoF is rotational.

5.1.2. The Agile Eye

The condition for gain-type singularity for this manipulator is given in [27],
wherein one of the legs is fully extended or folded. At the configuration
given by θ = (π/2, 0, π/6)T and φ = (π/6,−π/2,−2π/3)T , the eigenval-
ues of JT

ηφJηφ are −1, −1, 0; i.e., the nullity(Jηφ)=1. The gained passive

velocity φ̇
N

1 = (0, 1, 0)T . The gained velocities in the task space are:

0ωN
1 = (−1/2,

√
3/2, 0)T , and

0vN1 = (−0.288,−0.166, 0.455)T .

The results imply that the gained DoF is rotational.

5.1.3. The Cylindrical manipulator

The condition for gain type singularity in this case is described in [6]. At
the configuration given by θ = (0.891, 0.278, 0.585)T and φ = (1.263, 1.570, 0)T ,
the eigenvalues of JT

ηφJηφ are: -2.054, 0 and 1.613; i.e., the nullity(Jηφ)=1.

The gained passive velocity is φ̇
N

1 = (0, 0, 1)T . The gained velocities in the
task space are:

0ωN
1 = (1/

√
2, 1/
√

2, 0)T , and
0vN1 = (0,−1/5, 0)T ,

implying that the gained DoF is rotational.

5.1.4. MaPaMan-I

The gain-type singularity condition for MaPaMan-I is adopted from [29];
i.e., the strut lies in the same plane as the moving platform. At the con-
figuration given by (see Fig. 8), θ = (1.17466, 1.17466, 0.6266)T and φ =
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Figure 8: The MaPaMan-I manipulator in a configuration with gain of a single DoF

(2.175, 2.175, 2.6135)T , the eigenvalues of JT
ηφJηφ are: 0, 1.327 and 2.174;

i.e., the nullity(Jηφ)=1. The gained passive velocities is computed as φ̇
N

1 = (0, 0, 1)T .
The gained velocities in the task-space are:

0ωN
1 = (0.606,−0.35, 0)T , and

0vN1 = (0.058, 0.102,−0.201)T .

This implies that the gained DoF is rotational.

5.2. Gain of two DoF
In this section, a gain of two-DoF is characterised with the example of

the 3-RPS manipulator. The configuration leading to the gain of two DoF
requires that ∆p1p2p3 be similar to ∆g1p2g3, and that these triangles lie in
the same plane, while the line g1g3 and point p2 lie on opposite sides of the
line p1p3 (see Fig. 9). This configuration can be obtained in closed form:

θ =

(
15−

√
15

2(−1 +
√

15)
, 3,

15−
√

15

2(−1 +
√

15)

)T

,

φ =
(

2 arctan(
√
c/7),m, 2 arctan(

√
c/7)

)T
, where

m = 2 arctan

(
2
√

7c3/2 − 14
√

7c+ 2
√
−1106 + 224

√
15 + 343c− 98c2 + 7c3

−14c

)
, and

c = 8−
√

15.
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Figure 9: The 3-RPS manipulator in a configuration with gain of two DoF

The resulting eigenvalues of JT
ηφJηφ are: 0, 0, and 15.75; i.e., nullity(Jηφ)=2.

The gained passive velocities are:

φ̇
N

1 = (−1/
√

2, 1/
√

2, 0)T , and

φ̇
N

2 = (0, 0, 1)T .

The gained velocities in the task space are:

0ωN
1 = (0.408248, 1/

√
2,−1.52797)T ,

0vN1 = (−0.661438, 0.381881, 0)T ,
0ωN

2 = (3.4643,−2.00012, 0)T ,
0vN2 = (−0.41574,−0.720082, 0.555556)T .

The eigenvalues of gN are 0.58333 and 1. As gN has no zero eigenvalues, the
manipulator gains two rotational DoF in this configuration.

6. Conclusions

This paper presents a formulation to analyse the nature of the DoF in
any manipulator in general. The same is applied to a class of lower-mobility
manipulators, namely, three-DoF spatial parallel manipulators. A general
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framework for the formulation of the Jacobian matrices required in the anal-
ysis is presented first. Later, it is shown how these matrices can be analysed
to determine the partitioning of the DoF in these manipulators. In the
same framework, the nature of the DoF gained at a gain-type singularity is
analysed. The mathematical formulations are illustrated by applications to
several well-known, as well as newly developed parallel manipulators.
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A. Degree-of-freedom-based classification of rigid-body motion

The classification of DoF following the concept of partitioning of DoF, as
presented in [20], is reproduced below for the sake of easy reference.

Table 2: Classification of spatial motion based on the partition of DoF

Total Class Rotational Translational
DoF DoF, rank (g) DoF, rank (gV )

1
χ10 1 0
χ01 0 1

2

χ20 2 0
χ11 1 1
χ02 0 2

3

χ30 3 0
χ21 2 1
χ12 1 2
χ03 0 3

4

χ31 3 1
χ22 2 2
χ13 1 3

5
χ32 3 2
χ23 2 3

6 χ33 3 3
n, n > 6 χn

33 3 3
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