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Abstract

Flexible objects such as a rope or snake move in a way such that their axial length remains
almost constant. To simulate the motion of such an object, one strategy is to discretize the object
into large number of small rigid links connected by joints. However, the resulting discretised
system is highly redundant and the joint rotations for a desired Cartesian motion of any point
on the object cannot be solved uniquely. In this paper, we revisit an algorithm, based on
the classical tractrix curve, to resolve the redundancy in such hyper-redundant systems. For
a desired motion of the ‘head’ of a link, the ‘tail’ is moved along a tractrix, and recursively
all links of the discretised objects are moved along different tractrix curves. The algorithm
is illustrated by simulations of a moving snake, tying of knots with a rope and a solution of
the inverse kinematics of a planar hyper-redundant manipulator. The simulations show that
the tractrix based algorithm leads to a more ‘natural’ motion since the motion is distributed
uniformly along the entire object with the displacements diminishing from the ‘head’ to the
‘tail’.

1 Introduction

In realistic computer animation of deformable objects such as snakes, ropes, trees, grass or human
hair, the azial length of the object is preserved. To achieve this, one approach is to discretize the
deformable object into a large number of rigid links connected by rotary or spherical joints and then
apply motion at the joints to obtain a realistic animation. A deformable object discretised in such
a way can be thought of as a hyper-redundant serial manipulator with a large number of links and
joints. The main and well-known difficulty in the analysis of hyper-redundant manipulators is that

given a desired motion of the end-effector or a point on the manipulator, there exists an infinite
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number of solutions for the motion of the joints (or the motion of links). The problem of obtaining
or choosing a unique solution from this infinite set is called as the resolution of redundancy, and
there exists a vast amount of literature on resolution of redundancy. In the following we briefly
review the main approaches.

The first approach to be tried involved the use of least-squares technique or its variant. In
this approach, the velocity of the end-effector is first related to the joint rates by the well-known
manipulator Jacobian matrix. In the case of a redundant system, with more joint variables than
Cartesian or task space variables, the manipulator Jacobian matrix is non-square. In the second
step the joint rates are obtained, for a given Cartesian or task space velocity, by inverting the
manipulator Jacobian using a pseudo-inverse[l]. In the final step, the joint values are updated
from the computed joint rates. In its basic form, the pseudo-inverse based method is at the level of
velocity or infinitesimal motions and has the interesting property of minimising joint rates in the
least-square sense. In other variants, the pseudo-inverse method has been applied with a weighting
matrix, at the joint acceleration level and by including the null-space term to optimise additional
desired quantities such as singularity [2], joint limits [3] and obstacle avoidance [4], minimisation
of joint torques [5] or maximizing a manipulability index [6] (for details of various pseudo-inverse
based schemes, see the review paper by Klein and Huang [7] and the textbook by Nakamura [8]
and the references contained therein). The pseudo-inverse approach is a purely numerical and local
approach. Moreover, since it involves inverting a matrix, it has a complexity of O(n*), where n is
the number of joint variables. This makes it computationally expensive for flexible objects such as
a rope or a snake where one would need a large number of links and joints (in our simulations we
have used up to 40 links) for realistic animations.

In another different approach, appropriate continuous curves were used to approrimate the
‘backbone’ of a rigid link hyper-redundant manipulator. Motion planning is done with the contin-
uous curve and then the rigid link robot is fitted to the updated curve. The backbone curves were

chosen as splines [9] and linear combination of modes [10]. The main drawback in this approach is



that the motion planning is done on the curve and hence the axial length of the hyper-redundant
manipulator can only be approzimately preserved and it is not clear how efficient the method is for
simulating motion and animation of flexible objects such as ropes, snakes and human hair.

In a set of papers in early 1990’s, Reznik and Lumelsky [11, 12, 13] present a sensor based
motion planning algorithm for highly redundant manipulator based on a classical curve called the
tractriz [14]. They show that the tractrix curve has the attractive property of uniformly distributed
motion with the motion ’dying’ out from one end (head’) to the other end (’tail’). They pointed
out that for n links, the algorithm has a complexity of O(n), i.e., it is linear in the number of
links. For the case of a manipulator with one end fixed, they proposed an iterative algorithm to
obtain the joint motions for a given end-effector motion. Additionally, they proposed strategies
to avoid collision with obstacles based on sensing data. More recently, there is renewed interest
in simulation and realistic animation of flexible objects such as ropes and strings due to the need
for developing real-time simulation of suturing and knot-tying in microsurgery simulations (see, for
example, [15, 16, 17]). In reference [18], the authors have developed a ‘follow the leader’ approach
to simulate tying of knots in microsurgery where the suture or string is discretised into large number
of rigid links. One end of the string is held fixed and the other end is moved in a manner to tie
a desired knot. The ’follow the leader’ approach is similar to the tractrix based approach — in the
tractrix based approach the motion of an intermediate link is such that the motion of the "head’ is
along the link ahead of it whereas in the follow the leader approach’ the motion of the intermediate
links ‘follows’ the link ahead of it. In this paper, we revisit the tractrix based algorithm. We extend
the tractrix equations to the case when the ’head’ moves along an arbitrary direction in the plane
or in 3D space and present a general algorithm for simulating motion of large hyper-redundant
systems. We clearly show that the computation of the motion of the links can be done in real
time since it involves evaluation of simple algebraic, trigonometric and hyperbolic functions. We
present a slightly different algorithm, in comparison to the work reported in [12], for the case of a

serial robot in which one end has to be fixed. The simulations of the motion of a snake, tying of



knots with a rope and a solution of the inverse kinematics of a planar hyper-redundant manipulator
clearly show that the tractrix based strategy yields a more ’natural looking’ motion.

The paper is organised as follows: in section 2 we present an overview of the tractrix curve
and its attractive properties. In section 3, we first extend the notion of the tractrix when the
head moves along an arbitrary direction in a plane and then to spatial 3D motion. We present
an algorithm to obtain the points on the tractrix when the end of a link moves in 3D space. In
section 4, we present an algorithm based on the tractrix, to resolve redundancy in hyper-redundant
systems. In section 5, we present numerical simulation results for a snake, tying of knots with one
and two hands, and resolution of redundancy of a hyper-redundant manipulator. We briefly discuss
the advantages of the tractrix based approach in comparison to a ’physics’ based approach. Finally,

we present the conclusions in section 6.

2 An overview of the tractrix curve

Historically, the tractrix arose in the following problem posed to famous German mathematician
Leibniz: What is the path of an object starting of with a vertical offset when a string of constant
length drags it along a straight horizontal line? By associating the object with a dog, the string
with a leash, and the pull along a horizontal line with the dog’s master, the curve has the descriptive
name hund curve (hound curve) in German. Leibniz found the curve using the fact that the axis is
an asymptote to the tractrix [14]. The above concept of the curve traced by the dog is also valid
for a a single link moving in the plane and was first recognized by Reznik and Lumelsky [11]. If
the ’head’ of the link, denoted by j1, is made to move along a straight line parallel to the X-axis,
the path traced by the ’tail’, denoted by jo, when the velocity of jo is along the link, is a tractrix

shown by the dotted curve in figure 1 (b).

2.1 Properties of the tractrix curve

We lists some of the important properties of a tractrix curve which are the basis of the attractive

features of the resolution scheme based on the tractrix curve (see also [11]).
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Figure 1: Motion of a link when one end is pulled along a line parallel to X-axis

e Given an infinitesimal displacement dp of j; parallel to the X-axis, the infinitesimal displace-
ment of jy, denoted by a vector dr, presents a local minimum of all possible paths for jo when

dr is along the link. This follows from the following reasoning:

Let the j; move to a point (p,0) along the X-axis. The point jy can lie anywhere on a circle
centered at (p,0) with radius L where L is the length of the link. Figure 1 (a) shows three
possible (exaggerated) infinitesimal displacements dr, dr; and dry of the tail originally at
point O with coordinates (0, L). Clearly the infinitesimal displacement W or dr is shortest
when it is normal to the tangent to the circle centered at (p,0). Since the normal to the
tangent to the circle is along the link, the vector dr is least when dr is along the link jo — j;.
Alternately dr is smallest when the velocity vector at jy is along the link. It maybe noted

that we are dealing with infinitesimal displacements dr and not finite displacements.

e Using the fact that the velocity vector at jp is always aligned with the link, i.e., with the

tangent to the tractrix, the tractrix equation can be derived from the differential equation of
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where L is length of the link. The above differential equation can be solved in closed form,

v y (1)

and we can write
Y
z=Llog———— — /L% —y? 2
Yy VI?—y (2)
The solution of the differential equation can also be written in a parametric form, with p as

the parameter, as

2(p) =p — L tanh(7), y(p) = L sech(}) 3)

The ratio between dr and dp obeys an inequality dr < dp. The inequality follows from the

following reasoning;:

Let (z,y) be the coordinates of point jy, and (p,0) be the coordinates of j;. Since the link
length L is constant, jo must lie on the circle (z — p)? + y? = L? (see figure 1 (a)). From the

equation of the circle, we get

p=a+y/I2—y? (@

and we can write
dp Yy dy
XL (X
- ) (5)

The displacement dr can be written as dr = \/dz? + dy?, and using elementary calculus, we

get
dr dr/dz 1+ (dy/dz)?

A~ dpfds ~ 1= T (dy ) )

and using the equation of the tractrix (1), we get dr/dp as
dr /L% — 2

=—-X<1
i 7 < (7)

where we get an equality if the link is lying on the X-axis and moves along it with y = 0.

The location of the tail jo for a given motion of the head ji, parallel to the X-axis, can be

computed in terms of hyperbolic functions as shown in equation (3).



3 Extension of the tractrix to spatial motion

We first consider the case of the head j; moving along an arbitrary straight line, not necessarily the
X axis, given by y, = mz, where m = y,/x), is the slope of the line connecting the initial position
of the head and the destination point of the head (z,,yp). The differential equation for the tangent

can now be written as

dy Y —Ye
dz = — . (8)

From the length constraint, L2 = (z — z¢)% + (y — y.)?, we can solve for z, and we get,

_ —B++VBZ-4AC )
- 24

Te

where A = 14+ m? B = 2my + 2z,C = z? + y> — L?. From the above expression for z,, we can
see that there are two possible values of z,. for every z and y. The positive sign is used when the
slope of the link (m;), with respect to a new coordinate system with the path of the head as the
X-axis is negative and vice versa. Substituting the expressions obtained for z,. from equation (9)
and y. = mz, in equation (8), and integrating it we get the tractrix shown in figure 2.

The equations describing a tractrix can be extended to 3D space. In 3D space we will have two

differential equations of the form

d_y _ YUY
dr T — X,
dz Z— Ze
halad— 10
dr T — X (10)
The equations of the path followed by head are
Ye = M1Te, Ze = MaTe (11)

where, m1 = yp/p, mo = zp/xp, and (zp,Yp, 2p) is the destination point of the head. It may be
noted that the above equations assumes that the link is initially lying along Y -axis; however, similar
equations can be obtained if the link is along the Z or the X axis. We also have the constraint of
length preservation

I? = (z — xe)Z + (y — ye)2 + (2 - Ze)2 (12)
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Figure 2: Motion of a link when one end is pulled along the line y, = mx,

One obvious way to obtain the tractrix in 3D space would be to numerically integrate the
differential equations (10) and obtain the path taken by the tail in 3D space. This would be
computationally intensive especially if we have to numerically integrate large number of equations
resulting from discretising a flexible object into many rigid links. Instead of the numerical solution of
the differential equations, we present an improved algorithm for obtaining the point on the tractrix
in 3D space. For this purpose a reference plane is constructed using the three points, namely the
initial positions of head, tail and the destination point of the head denoted by X, = (zp, Y, 2,)7 -
The X-axis of the reference plane is aligned with the path of head. In this reference plane, we can
solve the 2D parametric equations (3) of the tractrix and obtain the position of the tail (z,,y,) in
the reference plane. To obtain the position of the tail in global co-ordinates, the points (z,,y,) are
transformed from the reference (local) to the global co-ordinate system. These steps are presented

below as an algorithm.



3.1 Algorithm TRACTRIXS3D

1 Define the vector S = X, — X, where X, is the current location of the head and X, is the

destination point of the head.

N

Define the vector T = X — X}, where X = (z,, z)? is the tail of the link lying on the tractrix.

w

Define the new reference coordinate system {r} with the X-axis along S. Hence X, = |§—‘

Define the Z-axis as Z, = \Si%'

Iy

5 Define rotation matrix [ R ] [X, Zr x X, Z,«]

T

6 The Y-coordinate of the tail (lying on the tractrix) is given by y = Y, - T and the parameter p

can be obtained as p = L sech (¥) + [S].

7 From p, we can obtain the X and Y coordinate of the point on the tractrix in the reference

coordinate system as

zy = i\S|—Ltanh(%)

Yp = Lsech(%) (13)

8 Once z, and y, are known, the point on the tractrix (z,y,z)7 in the global fixed coordinate
system {0} is given by

(#,9,2)" = Xn+7 [ R (27, ,,0)" (14)
The above steps are illustrated in figure 3.
4 Algorithm for resolution of redundancy

The algorithm TRACTRIX3D can be used for resolution of redundancy for any serially discretised
deformable object. Consider a deformable object such as a snake or a rope discretised into n rigid

links Iy, 1o, ..., 1, with joints ji, jo, ..., jn—1 Where j; is the joint connecting link ¢ and link 7 + 1. For



Figure 3: Tractrix in global and local coordinates

spatial motion, we assume that the links are connected by spherical joints and for planar motion,
the joints are rotary.

Consider the last two links [, and [,,_1. The head of the link /,, denoted by the point j, is
required to be moved to a new position® j,,.. given by (z,,¥p,2,)T. From the steps given in the
algorithm TRACTRIX3D we can obtain the new displaced location of the tail point j,_1 denoted
by (z,y,2) as it follows a tractrix (see equation (14)). The link /,,_; is attached to the link /,, and
hence the tail of the link /,, can be considered to be the head of the link /,,_1. The head of the link
I,—1 should now be moved from its existing location to (x,y,2)T. The location of the tail of link
ln—1, following a tractrix, can again be obtained from the steps given in algorithm TRACTRIX3D.
It maybe noted that the reference plane and the rotation matrix obtained in the steps described in
TRACTRIX3D are not the same for the two links. Following similar steps, we recursively obtain
the motion of the head and tail of all links down to the first link ;. We present this resolution

scheme as an algorithm.

"We can discretise a ’large’ step into ’smaller’ steps for animation.
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4.1 Algorithm RESOLUTION-TRACTRIX

1 Input desired location of head of link [, i.e., the point (z,,yp, zp)T.

2 jnnew = ("Ep’yp’zp)T
3fori:n — 1
3.1 Call TRACTRIXS3D and obtain location of the tail of link 4, i.e., obtain (z,y, 2)] ;

3.2 Set new location of head of link i — 1, i.e., j; 1,., < (z,9,2)] ;

We can make the following remarks about the above algorithm.

1 The algorithm for resolution of redundancy has a complexity of O(n) where n is the number of
rigid links. This follows from the observation that the computation of the tractrix, for a link
in 3D space (see algorithm TRACTRIXS3D) is determined by a constant number of vector
cross and dot products, computation of two hyperbolic functions, and a constant number of
3 X 3 matrix multiplication and additions. The number of computations is not dependent on
n and hence the complexity is O(n). This fact makes the algorithm amenable for real time

computations.

2 Instead of a flexible object, such as a rope, being moved from the end, if it is moved from
any point on the body, then we can divide the object into two parts and apply the steps
listed in algorithm TRACTRIX3D to the two parts individually. This can be done in parallel

computations.

3 In case of a hyper-redundant robot, the joint angles can be easily obtained since the initial and
final position of all the links are known. In case of planar hyper-redundant robots, the joint
angle 6; is given by

01' = COSil(ji_lji(k + 1) ' ]z—l]z(k)) (15)
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where m(k) is the unit vector from the tail to the head of the link at k-th instant. In
the case of spatial motion with spherical joints connecting the links, the rotation angles
at the spherical joint can be obtained from rotation matrices at k£ 4+ 1 and k-th positions.
In comparison to a pseudo-inverse based method, the resolution of redundancy is done in

Cartesian space and then the joint angles are computed.

4 Under a tractrix motion, when the head of the link [, moves by dr, the displacements of all the
links obey the inequality drg < dr; < ... < dr,_1 < dry,, with the equality dr; = dr;_1 reached
only when the line of motion of joint j; coincides with link /;. This observation follows from
equation (7). A consequence of this observation is that the motion of the links away from the

head gets progressively smaller and appears to ‘die’ out.

5 The property given in equation (7) also imply that for a tractrix motion, the sum of the motion
of all links except the head, Y'=¢"" |dr;|, is minimised. The sum of all joint motions is also
minimised. This is in contrast to pseudo-inverse based resolution of redundancy where the
infinitesimal motion of the joints are minimised in the least square sense. The results obtained

from the tractrix based resolution of redundancy are thus different from pseudo-inverse based

methods.

4.2 QObstacle avoidance

While moving the links of the deformable object such as in tying a knot, we must ensure that the
discretised links do not intersect or collide with each other. To effectively simulate the motion of
the discretised links, we need to detect collisions between the links and then develop a strategy to
manage the collisions. There exists a wide variety of algorithms in literature for collision detection
(see, for example, the review paper [19] and the references contained there in). In our implemen-
tation, we have used a simple conservative strategy of bounding each link by a sphere and then
checking for the distance between the centre of the spheres. If the distance is such that there is

collision, we move the centre of one of the links along the common normal by a distance slightly
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greater that (I; +1;11)/2 where [; is the length of the i link. Unfortunately this motion can result
in a collision at some other link. Hence, we must recursively follow a strategy of detection and
collision management for all links. If the number of iterations exceeds a given value the object is
considered to be locked at that configuration. This collision detection and management scheme
makes the tractrix based resolution scheme loose its desired O(n) characteristics when applied to

simulations where collisions and self-intersections can occur.
5 Simulation results and discussion

The tractrix based redundancy resolution has been applied to visualize the motion of a snake, tying
a knot in a rope, and for solving the inverse kinematics of hyper-redundant planar manipulator.
We present snap shots of animation results for each of these objects. Three accompanying movie
files shows the animation of a snake and tying of knots with one and two hands.

Motion of a snake in 3D: We model a snake with 40 links. The head of the snake is moved
along an arbitrary curve in 3D space and the motion of each of the subsequent links are obtained
according to the tractrix strategy presented in section 4. From the motion of the links, an animation
is created using the commercial software Matlab [20]. Figure 4 shows the configuration of the snake
at few instances.

A single-handed knot: We model a rope with 40 rigid links each one unit long. One end of the
rope is moved in a fashion so that a knot is tied near the centre of the rope. Several configurations
of the rope while tying the knot are shown in figure 5. An animation of the knot tying process was
created in Matlab from the computed configurations and since the computations are fairly simple,
this could be done in real time.

Two-handed knot: In case the knot is to be tied by moving both the ends of the rope (by moving
both hands) then the two ends are moved alternatively. Again, the motion of all the links are
obtained in real-time by using the tractrix based approach. Various configurations of the rope

while two-handed knot tying are shown in figure 6. It was observed that the collision avoidance
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takes most of the time in the simulation of single-handed and two-handed knots.

Planar hyper-redundant manipulator: In the case of inverse kinematics of a hyper-redundant
manipulator, the desired (z,,yp) of the end-effector (same as the head), inside the workspace of
the manipulator, is specified. We obtain the motion of all the links by the tractrix approach. In a
tractrix the tail of the first link also moves although by a small amount. However, for a manipulator
the position jy (or the tail of the first link) should be fixed. To overcome this problem, we can

adopt one of two strategies:

e We use the algorithm RESOLUTION-TRACTRIX till the tail of the third (or fourth) link
and use the well known inverse kinematics equations of planar 2R (3R) manipulator to solve

for the joint angles of the first two (three) links.

e We compute the motion of all links using the the algorithm RESOLUTION-TRACTRIX and
find the location of the fixed base point jo. Next we move jy to (0,0) and all other links are
translated ‘rigidly’ with no rotations at the joints. This results in the end-effector moving
away from the desired (zp,y,). We repeat the RESOLUTION-TRACTRIX till the head
reaches (z,,Yyp) and the point jj is within a prescribed error bound of (0,0). It may be noted
that convergence of this iterative process is guaranteed? since the motion of the links dies
down as we progress from the head to the tail (see observation listed in the previous section)

and the rigid translation of the entire manipulator will tend to zero with iteration.

In practice the second approach works better and not more than 3 iterations were required in
the several simulations we tried. This is because in many simulations, the first two (three) links
are ‘stretched out’ in a singular configuration, and the closed-form inverse kinematics solutions of a
planar 2R (or 3R) manipulator do not work very well when the links are fully stretched out. Figure 7
gives intermediate configurations of a 10 link hyper-redundant planar manipulator where each link

length is 0.2 units. The initial configuration and the final (desired) end-effector (z,y) coordinates

2The convergence is guaranteed if the desired point (x,,%,) can be reached by the hyper-redundant manipulator.
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are as marked in figure 7. The intermediate configuration with blue markers are obtained from
the tractrix based approach and the configuration with black markers are from a pseudo-inverse
formulation. The plot of joint rotations from the tractrix and pseudo-inverse based approaches are

shown in figure 8.

5.1 Discussion

The theoretical development of the tractrix based resolution scheme (see observations 4 and 5 in
section 4) and the animations of motion of snakes and tying of knots clearly show that in the
tractrix based resolution of redundancy, the motion tends to ‘die out’ from the head to the tail.
For simulation of flexible objects such as ropes, snakes and human hair, this feature gives a more
'natural’ and ’realistic’ visualization of the motion of the flexible object. However, the 'natural’
motion is not from a 'physics’ based approach. There exists a fair amount of literature where
authors have proposed models of flexible objects such as human hair and ropes with discretised
rigid links and associated springs and dampers (see, for example, the work by Rosenblum et. al [21],
Phillips et. al [22] and the references contained in them). The equations of motion of the rigid
multi-body system are then solved using one of the many available O(n) algorithms for the forward
dynamics, and it is conceivable that a proper choice of spring stiffness and damping can lead to
a motion which ’dies out’ from the head to the tail. In all these 'physics’ based approaches, it is,
however, not clear how to select appropriate values of spring stiffness or damping coefficients. In
contrast, in the tractrix based approach no choices have to be made and no dynamic equations
need to be solved. In addition, since it involves only simple matrix operations and evaluation of
hyperbolic and trigonometric functions, it is expected to be fast and efficient and amenable for real
time simulation and visualization of the motion of flexible objects.

The tractrix based approach appears to be purely kinematic in nature — for a given motion of
the head dp, the motion of the tail dr is less than or equal to dp for each link. This central idea,
however, can be given a 'physics flavour’ and one can argue that the tractrix based approach is not

completely an ad-hoc or a 'non-physics’ based approach. Consider the situation where all the mass
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Figure 5: Simulation of the single-handed knot tying

17



20

20

20

-10

-10

-10

xaxis

xaxis

xaxis

20

20

20

zaxis

zaxis

zaxis

20

-20
40

-10

xaxis

20

-20.l
40

-10

xaxis

20

-20.l
40

-10

yaxis xaxis

Figure 6: Simulation of a two-handed knot tying

18



150 1 15
1t 1 1
05t 1 05
of 1 0
—0.5F 1 -0.5
= 1 -1
~1.5 — -15
2 1 0 1 2 2 1 0 1 2
2 2
15l 1 15 Xo
\
T il ! Tractrix
05t 1 05
of 1 0
-05} 1 -05
1k 4 -1
-1.5¢ 1 -1.5
= = 0 1 2 = = 0 1 2

Figure 7: Intermediate configurations of the planar hyper-redundant manipulator

19



0.8

0.6

0.4

0.2

-0.3

-0.4

-0.5
0

1.4

1.2

0.8

0.6

0.4
0

Figure 8: Joint rotations in the planar hyper-re(glgndant manipulator: dotted blue tractrix, contin-

..............

,,,,,
ty
P

uous black pseudo-inverse

0.75

0.7

0.65

0.6

0.55

0.5
0

4444444444444

ls

I

lllll
‘y

0.65
0.6
0.55
0.5
0.45
0.4
0.35

-0.2

-0.25

25

1.5

0.5
0

I3

,,,,,
,,,,,,,

ls

ly




of the discretised links are lumped at the head of the link. Since dp/dt and dr/dt are the velocities
of the head and the tail of a link, observations 4 and 5 of section 4 can be related to the decrease
of the kinetic energy as one traverses the (discretised) flexible object from the head to the tail. In
this sense, the tractrix based approach can be related to the minimisation of kinetic energy.

In the case of hyper-redundant manipulators, observations 4 and 5 of section 4 is a very desirable
feature. In all hyper-redundant serial manipulators, the joints and actuators toward the fixed base
’see’ larger inertia and the first joint and actuator sees the largest inertia — the first actuator must
be capable of moving all the links. It is very desirable strategy to move the joints and actuators
nearer the base the least. The simulations shown in figures 7 and 8 clearly show that the joints

towards the fixed base rotate the least.

6 Conclusion

In this paper, we have used a classical planar curve, namely the tractrix, and its extension to 3D
space for resolution of redundancy in serial multi-body systems. The resolution scheme can be
used for for hyper-redundant manipulators and simulation and visualisation of motion of flexible
objects such as snakes and ropes where the axial length of the flexible object is preserved. In case
of flexible objects such as snakes and ropes, the object is discretised into a sufficiently large number
of rigid links and for an arbitrary chosen motion of the head of one link, the motion of all other
links are computed by using the equations of a tractrix. In case of hyper-redundant manipulators,
once the motion of the links are known in Cartesian space, the joint angles can be computed using
simple dot products or from a rotation matrix and, in this sense, the resolution of redundancy is
at the Cartesian position level.

One of the key property of a tractrix is that the motions of links decreases as one goes away
from the head and this makes the visualization of tying knots and motion of a snake 'natural’ and
more realistic. In addition, since the computations involve simple vector algebra and evaluation of

hyperbolic functions, the simulation and visualization can be done in real-time.
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The tractrix based approach has been implemented for simulating and visualization of the
motion of a snake, tying of knots with one or two hands and resolution of redundancy for a 10
link, planar, hyper-redundant manipulator. The simulations and visualizations clearly show the

advantages of a tractrix based approach.
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