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Abstract

This paper deals with the kinematic analysis of a wheeled mobile robot (WMR)
moving on uneven terrain. It is known in literature that o wheeled mobile robot,
with a fixed length axle and wheels modeled as thin disk, will undergo slip when it
negotiates an uneven terrain. In this paper, we model the wheels as a torus and
propose the use of a passive joint allowing a lateral degree of freedom. Further-
more, we model the mobile robot, instantaneously, as a hybrid-parallel mech-
anism with the wheel-ground contact described by differential equations which
take into account the geometry of the wheel, the ground and the non-holonomic
constraints of no slip. We present an algorithm to solve the direct and inverse
kinematics problem of the hybrid-parallel mechanism. Simulation results show
that the three-wheeled WMR with torus shaped wheels and passive joints can
negotiate uneven terrain without slipping. Our proposed approach presents an
alternative to variable length axle approach.

1 INTRODUCTION

In this paper we address the problem of motion of wheeled mobile robots on uneven
terrain without kinematic slip. The motion of wheeled mobile robots (WMR) on flat
terrain has been well studied in [1, 8]. Waldron [11] has argued that two wheels inde-
pendently joined to a common axle cannot roll on uneven terrain without slip. The
use of Ackerman steering and differential wheel actuation which works for conven-
tional vehicles on flat terrain does not work because there is no instantaneous center
compatible with both wheels. The lateral slip in WMR'’s is undesirable because it
leads to localization errors thus increasing the burden on sensor based navigation
algorithms. In addition, for planetary explorations, power is at a premium and such
slipping leads to large wastage of power.

The problem of two wheels joined independently to an axle, moving on uneven



terrain without slip, has been studied by Sreenivasan et. al. [2, 3, 4, 9, 10]. They
have modeled the vehicles as hybrid series-parallel chains and using instantaneous
rate kinematics showed that for prevention of slip, a) the line joining the wheel
terrain contact points must be coplanar with the axle axis, or b) the wheels must
be driven at identical speeds relative to the axle. For prevention of slip they have
suggested the use of a variable length axle (VLA), wherein an unactuated prismatic
joint is used in the axle to vary axle length. There are a few limitations of using a
VLA - a) at high inclinations there is slipping due to gravity loading, and b) the
dynamic slip due to inertial loading becomes large at higher speeds. To overcome
the limitations in VLA, the use of an actuated VLA has been proposed. An actuated
VLA, however, requires accurate measurement of slip to obtain the desired actuator
output.

It may be noted that all the above mentioned work model the wheel as a thin
disk. On a flat ground this is reasonable since the contact point always lies in a
vertical plane passing through the center of the wheel. However on uneven terrain
this is not the case in general and the contact point will vary along the lateral surface
of a general wheel due to terrain geometry variations.

In this paper we have proposed an alternative to VLA for slip-free motion ca-
pability in wheeled mobile robots. Our alternative design is based on the following
concepts:

e Each wheel is assumed to be a torus. The wheels and the ground are considered
as rigid bodies and single point contact is assumed between the wheel and the
ground. The equations describing the geometry of the wheel and the ground
are assumed to be sufficiently smooth and continuous such that derivatives up
to second-order exists and geometric properties such as curvature and torsion
can be computed.

e The equations of contact between two arbitrary surfaces in single point contact,
derived by Montana[6], are used to model the contact of a torus shaped wheel
on an uneven terrain.

e The lateral rotational motion of the wheel is accommodated by a passive rotary
joint. This allows the distance between the wheel-ground contact points to
change without changing the axle length. Since this joint is passive, sensing
or control is not required.

e Instantaneously, the wheeled mobile robot can be modeled as hybrid-parallel
mechanism with a three-degree-of-freedom joint at the wheel-ground contact.
Unlike a typical kinematic joint, the no-slip non-holonomic constraint leads to
non-linear ordinary differential equations. The non-linear ODE’s are derived
for the torus and smooth ground pair by following Montana[6].



e The direct and inverse kinematics of the mobile robot is solved by integrating
the ordinary differential equations and the holonomic constraints arising out
of the hybrid-parallel mechanism.

We demonstrate our approach with a 3-wheeled vehicle and show by simulation
that slip free motion can be achieved without a passive or actuated VLA. This
is the main contribution of this paper. The paper is organized as follows: in the
next section, we obtain the contact equations for a single wheel moving on uneven
terrain by following Montana [6]. Then, we present our approach of modeling of the
vehicle as a hybrid-parallel manipulator instantaneously and derive the kinematic
equations. This is followed by simulation results, illustrating the capability of the
vehicle to negotiate uneven terrain without slip. In the last section we present the
conclusions and scope of future research.

2 KINEMATIC MODELING OF SINGLE WHEEL

From differential geometry of a surface given in the parametric form (z,y, 2)7 = X(u,v),
the metric, curvature and torsion for such a surface is defined by

[M] = l |)EU| 0 ] (K] = l —Xyu -0/ Xy =Xyy - n/|X,|

|Xu| —Xuv - l'l/|Xu| _va . n/|XU|
Xy X X,
[T] = [Xy - Xyu/ | Xl X+ Xuo /| Xo|] where n = Xy x X,

where X ) and X)) denote first and second partial derivatives. We assume that
we have a digital elevation model (DEM) of the ground i.e. n available measured
data points given in the form (z,y,2);, = 1,2,...,n. For our analysis, we require
a surface representation which is at least C? continuous. Without loss of generality
we represent the uneven surface using a bi-cubic patch given by

3 3
X(u,v) = Z Z aijutv! (u,v)el0,1]

i=0 j=0

The coefficients a;; are determined if 16 data points are known (for details, see [7]).
For our simulation purposes we have assumed synthetic ground data and have used
in-built functions in Matlab[5] (Spline Tool Box) to generate a bi-cubic patch from
the n given data points.

Figure 1 shows a torus wheel on an uneven ground. The frames {0} and {w}
are fixed to the ground and wheel respectively. The frames {1} and {2} are the
Gaussian frames at the point of contact on the ground and wheel, respectively, fixed



with respect to the body frames. The four parameters (u1,v1), (ug,v4) (point of
contact on surfaces 1 and 2 in {w} and {0} respectively) and the angle 1) between
the X-axis of {1} and {2} are the five degrees of freedom between the two contacting
surfaces. The angle 9 is chosen such that a rotation by angle —1 aligns the two
X-axes. The equation of the torus shaped wheel in {w} in terms of (u1,v;) can be
written as

(z,y,2) = (ricosuy,cosvi(ry+rysinu;),sinv(re + rsinuy)) (1)

and the equation of the uneven ground is given by (z,y, 2) = (ug, vy, f(ug,vy)). We
can arrive at frame {w} form {0} by using standard 4 x 4 homogeneous transfor-
mation matrices which are not given here due to lack of space. Using the contact
equations of Montana[6] we have,

(41,91)" = [M]TH((KL] + [K*]) H(—wy, we) T — [K*](vg,vy) 7]

(ﬂga@g):’j = [My] ' [Ry)([K:1] + [K*]) (—wy, wa)™ + [Ki1](v, vy)7]
P = W + [T1][M1] (1, 91)T + [Ty][Mg) (g, D)™ (2)
0= Uy

where ] = RUIRT, (= (B0 T,
Wz, wy and w, are the angular velocity and v,, vy and v, are the linear velocity
components of {2} relative to {1}, expressed in {2}. For rolling without slip v,,
vy should be zero. In equation 2, [Mi],[K1], [T1] are the metric, curvature and the
torsion of the wheel respectively and [M,], [K,], [T,] are the corresponding properties
of the ground.

3 KINEMATIC MODELING OF WMR

We now consider the modeling of a 3-wheeled vehicle moving on uneven terrain
without slip. For this, we assume that the rear wheels have a degree-of-freedom at
the wheel axle joint allowing lateral tilt. The front wheel can be steered and it has no
lateral tilt capability. In this configuration, we can model the vehicle instantaneously
as an equivalent hybrid-parallel mechanism as shown in figure 2. As mentioned in
equation (2), at the wheel-ground contact point, we have one holonomic constraint,
v, = 0, which ensures wheel-ground contact is always maintained. Moreover, at each
instant, we have 2 non-holonomic constraints which prevents instantaneous sliding,
and these are v; = 0 and v, = 0. Intuitively, this suggests us to model the wheel
ground contact point, instantaneously, as a three-degree-of-freedom (DOF) joint.
It may be noted that this joint is different from a three-DOF spherical joint since
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Figure 1: TORUS WHEEL ON UN-
EVEN TERRAIN.

the two non-holonomic constraints restrict the motion at any instant only in terms
of achievable velocities'. In addition, the wheel-axle joints allowing rotation of the
wheel, lateral tilt and steering respectively are modeled as 1 DOF rotary joints.
Using Gruebler’s formula we obtain the degrees of freedom of the top platform as
3, and we choose rotation at the two rear wheels, 81 and 8-, and the steering at the
front wheel, ¢3, as the actuated variables. The two lateral tilts at the rear wheels,
61 and d9, and the rotation of the front wheel #3 are taken to be the passive variables
which are to be computed.

As the vehicle is subjected to non-holonomic no-slip constraints, the kinematics
problem is formulated in terms of the first derivatives of the kinematic variables.
The kinematic variables are obtained by integration since the no-slip constraints are
non-integrable. The direct and inverse kinematics problem for the 3-DOF vehicle
can be stated as follows:

Direct Kinematics Problem: Given the actuated variables, 61, 65, ¢3, and
the geometrical properties of the ground and wheel, find the orientation of the top
platform in terms of a rotation matrix J[R] (or a suitable parametrization of it) and

! As known in literature, non-holonomic constraints restrict only the space of achievable velocities
and not the positions. A wheel or a thin disk undergoing rolling without slip, with v, = v, = 0, can
reach any position in a plane and the only constraint is that of not leaving the plane and loosing
contact



the position of the center of the platform (or any other point of interest).

Inverse Kinematics Problem: Given any three of the velocities of the top
platform V,, Vy, V,, 4, Qy, Q, ( Vi, V,,V, are the components of the linear velocity
vector of the center of the platform or any other point of interest and €,,Q,,Q, are
the components of the angular velocity vector of the platform) and the geometric
properties of the ground and wheel, find the two drive inputs to the rear wheels (91,
05) and the steering input to the front wheel (¢3). 2

To solve the above problems we proceed as follows:

Generate surface: As described in section 2, we use 2-D cubic splines to reconstruct
the surface from elevation data. From the interpolated surface we find expressions
for the metric, curvature and torsion form for the ground. We also obtain expres-
sions for the metric, curvature and torsion form for the torus shaped wheel.

Form contact equations: For each wheel we write the 5 differential equations (see
equation (2)) in the 15 contact variables u;, v;, ug;, vy,, and ;, where i =1,2,3.
Since the wheels undergo no-slip motion, we set v, = v, = 0 for each of the wheels.
It may be noted that w;,wy, and w, in the contact equations for each wheel are the
three components of angular velocities of frame {2} with respect to frame {1} and
are unknown. These are related to the angular velocity of the platform €2, {2, (2,
and the input and passive joint rates. In the fixed coordinate system, {0}, we can
write

O(W:va Wy, wz)T =0 (Q:L‘a an Qz)T =0 Winput (3)

where *wingut = O[R]in[Rlin” with °[Rlin given by O, [R][R(ez, )][R(e1,6;)] for i =
1,2 and by % [R][R(es, ¢;)][R(e1, ;)] for i = 3, and e; = (1,0,0)T, e2 = (0,1,0)T,
e3 = (0,0,1)T. The above equation (3) couples all 5 sets of ODE’s and we get
a set of 15 coupled ODE’s in 21 variables. These are the 15 contact variables
Ui, Vi, Ug;, Vg;, Pi (1 = 1,2,3), the 3 wheel rotations 61, 6, 05, the 2 lateral tilts 61, 6o,
and the front wheel steering ¢s.

Relate angular velocity of wheels and platform: The angular velocity and the
linear velocity of the center of the platform are expressed in terms of the 15 wheel
variables u;, v;, ug;, vg;, ¥ (i =1,2,3). If v, 8, a be a 3-2-1 Euler angle parametriza-

%Instead of the angular velocities Q, Q,,Q., we may use the Euler angle rates &, B,"y, where
v, B, a is a 3-2-1 Euler angle parametrization of orientation.



tion representing the orientation of the platform we have
0, = ércos(B) cos(y) — Bsin(y) = fi(ui, vi, g, vy, i) (4)
OQy = O.[COS(/B) Sln(’Y) + /BCOS(’Y) = .f2(ui7 Vi, Ug,, Vg, ¢Z)
00, =4 — asin(B) = f3(ui, vi, ug;, vg;, i)

If z., Y, 2. denotes the coordinates of the center of the platform in {0}. The linear
velocity of the center of the platform is given by

O(Vw, Vya ‘/Z)T = (33.(:7?/-(152.0)T = Vw¢ +0 (Qw,an Qz)T XO Rq (5)

where i stands for any one of the 3 wheels 1,2 or 3 and ORci is the point of attachment
of the wheel to the platform from the center of the platform expressed in frame {0}.

Form holonomic constraint equations: In addition to the contact equations, for
the 3 wheels to form a vehicle the distance between the 3 points Cy, Co, C3 (refer
to figure 2) must remain constant. These holonomic constraint equations can be
written as

(0—01) — 0—05)2 = l19% (0—01) — O_C?,))2 = l13%; (O—C'?,> - 0—02))2 = I39%; (6)

where OC’{, OC’;, OC’;)}, are the position vectors of the center of the three wheels,
C1, Cy, (3, respectively from the origin O of the fixed frame and /;; is the distance
between center of wheels ¢ and j respectively.

Solution of the Direct Kinematics problem

From steps 1, 2, 4 we have 15 first order ODE’s and 3 algebraic constraint equations
for the 18 unknown variables (61,6, ¢5 are given). This system of differential alge-
braic equations (DAE’s) can be converted to 18 ODE’s in 18 variables by differenti-
ating the constraint equations. It is to be noted that the 18 ODE’s have been derived
symbolically using the symbolic manipulation package Mathematica [12]. Using an
ODE solver, we solve the set of 18 ODE’s numerically, with the initial conditions
obtained as outlined below. Once we have obtained u;, v;, ug,;,vg;,%;,1 = 1,2,3 and
d1, 02, 63 we can obtain the rotation matrix of the platform 2[R]. The position vector
of the center of the platform OP with respect to the fixed frame, {0}, denoted by
(¢, Ye, 2c) 18 given by (see figure 2)

(TeyYes 20) T = (ﬁ -I-g [R]Cﬁg for any 7 = 1,2 or 3. (7)

Solution of the Inverse Kinematics problem
From steps 1,2,3,4 we have 21 first order ODE’s and 3 algebraic constraints for 24



unknowns (in this case we assume Z., 9.,y are given). This set of DAE’s is also
converted to ODE’s and integrated using initial conditions determined as discussed
below. Numerical solution gives the 15 contact variables u;, v;, ug;, vg;, ¥s,% = 1,2, 3,
the 3 actuated variables 01,05, ¢3 and the 3 passive variables §1,d9,03. The other 3
platform variables z., a, 8 are also obtained.

Initial conditions

To solve the set of ODE’s in direct or inverse kinematics problem, we have to choose
the initial conditions such that it satisfies the holonomic constraint equations. For
the direct kinematics among the 18 variables we can choose §; = 0,09 = 0,603 = 0,
v1,v2,v3 to be 3w/2 and the position of point of contact of any one wheel in {0}.
The other two wheels must also be in contact with the ground. Hence, for each
wheel, we have

O?i + g,[R]CZGZ = O—G;; 1=1,2,3 (8)

Converting them to unit vectors we have two independent equations for each wheel.
In addition, for each of the three wheels, cos(y;) = é1,.€], i = 1,2,3, where
{é1,€é2,¢é3} and {é], &5, é5} are the coordinate axes of reference frames {2} and {1}
respectively in {0} (refer to figure 1). In addition there are 3 holonomic constraint
equations given by equation (6). This gives us 10 nonlinear equations in 10 variables
and we can solve them numerically.

For inverse kinematics problem, in addition, we have to obtain the initial values
of 01, 02, ¢3, o, B, z.. We can choose 01 = 0, 03 = 0, ¢3 = 0 (or any other initial
desired heading). As we know u;, v;, ug;, vg;, ¥s,% = 1,2, 3, we can obtain the position
vector of the center of the 3 wheels and we can get the rotation matrix 2[R] of the
platform. Once g[R] is known, we obtain the 3-2-1 Euler angle sequence, v, 3, a.
The position of the center of the platform is given by equation 7 and we have z., y.
and z. at the initial instant.

4 NUMERICAL SIMULATION AND RESULTS

We have tested our algorithm on various synthetically generated surfaces and for
various types of inputs. We present on representative result due to the constraints
of space. The uneven ground (surface) used in the simulations is shown in figure
3. The geometrical parameters of the vehicle used are a) Length of the rear axle
= 2l, = 2m, b) Distance of center of front wheel from middle of axle = Iy = 1.5m,
and ¢) Two radii of the torus shaped wheel are r; = 0.05m, 7, = 0.25m. The center
of the vehicle is (1/3)l5 from the center of the axle.

For the direct kinematics problem the inputs are chosen as 6, =0.5 rad/sec,
5 = 0.4 rad/sec, ¢3 = 0 rad/sec. The variation of lateral tilts of the rear wheels



26 : : The initial conditions for direct kine-

25 ’ matics are: §; = 0 rad, §o = 0 rad, 03 =
0 rad, w; = 1.586967 m,v; = 37/2 rad,

‘\\\\\3‘\3‘ « ug, = 0.983772 m, vy, = —0.037978 m,

AW W1 = —3.140963 rad, up = 1.547598 rad,

ve = 3m/2 rad, ug, = —la, vy, = 0 m,

Wby = —3.144127 rad, uz = 1.578296 rad,

vy = 37/2 rad, ug, = 0.001578 m,

vgy = 1.549151 m, 93 = —3.143452 rad.
For inverse kinematics, in addition, we
have #; = 0 rad, 8, = 0 rad, ¢3 = 0 rad,
a =0rad, 8 =0.009 rad, z. = 2.3131 m.

Figure 3: UNEVEN TERRAIN USED
FOR SIMULATIONS.

when the 3-wheeled WMR is moving on the uneven terrain is shown in figure 4, and
the locus of the wheel center’s, wheel-ground contact points and the center of the
platform is shown in figure 5. For the inverse kinematics problem, the inputs are
Z. = 0.01255 m/s, 9. = 0.12865 m/s, ¥ = 0.0159 rad/s. Figures 6, 7 show variation
of lateral tilt, and the locus of the wheel-ground contact points and the center of the
platform respectively, when the 3-wheeled WMR moves on the same uneven terrain
shown in figure 3. In all the above cases, the no-slip conditions at the wheel ground
contacts and the holonomic constraints are satisfied.

5 CONCLUSION

In this paper, we have studied kinematics of a three-wheeled mobile robot with
torus shaped wheels and passive joints allowing lateral tilt of the wheels. Numerical
simulation results clearly show that the WMR can negotiate uneven terrain without
kinematic slip. Our analysis is valid for any (uneven) surface representation which
provides up to second derivatives efficiently and accurately. Future work is being
carried out on improved terrain modeling and representation. We are also investi-
gating the ability of the vehicle to traverse uneven surfaces when joint limits are
imposed on the lateral degrees of freedom. Finally, the dynamics of the vehicle on
uneven surface is also being investigated.
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