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Abstract

This paper presents a study of kinematic and force singularities in parallel manipu-
lators and closed-loop mechanisms and their relationship to the controllability of such
manipulators and closed-loop mechanisms. Parallel manipulators and closed-loop mech-
anisms are classified according to their degrees of freedom, number of output Cartesian
variables used to describe their motion and the number of actuated joint inputs. The
singularities in the workspace are obtained by considering the force transformation ma-
trix which maps the forces and torques in joint space to output forces and torques in
Cartesian space. The uncontrollable regions in the workspace are obtained by deriving
the equations of motion in terms of Cartesian variables and by using techniques from Lie
algebra. We show that when the number of actuated joint inputs is equal to the number
of output Cartesian variables, and the force transformation matrix loses rank, the parallel
manipulator is uncontrollable. For the case where the number of joint inputs is less than
the number of output Cartesian variables, if the constraint forces and torques(represented
by the Lagrange multipliers) become infinite, the force transformation matrix loses rank.
Finally, we show that the singular and uncontrollable regions in the workspace of a par-
allel manipulator and closed-loop mechanism can be reduced by adding redundant joint
actuators and links. The results are illustrated with the help of numerical examples where
we plot the singular and uncontrollable regions of parallel manipulators and closed-loop
mechanisms belonging to the above mentioned classes.

1 Introduction

Singularity, workspace and controllability of serial manipulators have been extensively studied
and are very well understood(see for example [Sugimoto et. al., 1982, Wang and Waldron, 1987,
Hunt, 1986, Lipkin and Pohl, 1991, Karger, 1996, Shamir, 1990]). In general, singularities of
serial manipulators are characterized by the loss of one or more degrees of freedom and it
has been shown that a serial manipulator will be uncontrollable at kinematic singularities

where the velocity Jacobian loses rank. Several researchers have suggested control strategies to
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avoid or pass through such singular configurations(see for example [Chang and Khatib, 1995,
Tchnon and Matuszok, 1995, Chevallereau, 1996, Lloyd, 1996]). In the case of parallel ma-
nipulators and closed-loop mechanisms, singularity analysis is much more difficult since such
mechanisms contain unactuated joints and joints with more than one degree of freedom. Sin-
gularities in parallel manipulators have been associated with either loss or gain of one or more
degrees of freedom [Gosselin and Angeles, 1990]. In general, closed-form solutions for singular
curves/surfaces for parallel manipulators of arbitrary architecture requires elimination of un-
wanted variables from several nonlinear transcendental equations, and this is quite difficult.
Although some results are available for the singularities of planar and spatial parallel manipu-
lators and closed-loop mechanisms(see for example the works of [Gosselin and Angeles, 1990,
Sefrioui and Gosselin, 1995, Danielli et. al, 1995, Merlet, 1989, Hunt, 1978, Collins and Long, 1995,
Basu and Ghosal, 1997, Zlatanov et. al., 1995, Fichter, 1986]), controllability of parallel manip-
ulators has not been addressed adequately.

There exists general theories on controllability of non-linear systems(see for example the
works of [Herman and Krenner, 1977, Isidori, 1995, Nijmeijer, 1990, Sussman and Jurdjevic, 1972])
and these results have been applied to systems with non-holonomic constraints and described
by a set of differential-algebraic equations [Bloch and McClamroch, 1990, Sarkar et. al., 1994,
Krishnan and McClamroch, 1994]. The equations of motion of parallel manipulators can be
described by a set of differential-algebraic equations with holonomic constraint equations, and
these have not been addressed adequately in literature. As far as the authors are aware, there
exists no work, regarding the relationship between the singular and uncontrollable configura-
tions in the workspace of parallel or hybrid manipulators and closed-loop mechanisms.

In this paper, we present theoretical and numerical results dealing with the relationship
between the singular and uncontrollable regions in the workspace of parallel manipulators and
closed-loop mechanisms when they gain one or more degrees of freedom. The parallel manip-
ulators and closed-loop mechanisms are classified according to their degrees of freedom, the
number of output Cartesian variables used to describe their motion and the number of actu-
ated joint inputs. The singularities in the workspace of a parallel manipulator are studied by
considering the force transformation matrix which maps the forces and torques in joint space
to output forces and torques in Cartesian space. The uncontrollable regions in the workspace
of the parallel manipulator are obtained by deriving the equations of motion in terms of Carte-
sian variables and by using techniques from Lie algebra. We show that when the number of
joint inputs is equal to the number of output Cartesian variables, and the force transformation
matrix loses rank, the parallel manipulator is uncontrollable. For the case of manipulators
where the number of joint inputs is less than the number of output Cartesian variables, if the
constraint forces and torques(represented by the Lagrange multipliers) become infinite the force

transformation matrix loses rank. Finally, we show that the singular and uncontrollable regions



in the workspace of a parallel manipulator can be reduced by adding redundant joint actuators
and links. The results are illustrated with the help of numerical examples where we plot the
singular and uncontrollable regions of the above mentioned classes of parallel manipulators.
The paper is organized as follows: In section 2, we describe in brief the notion of a force trans-
formation matrix and its relationship to the singularities of parallel manipulators. In section
3, we present the Lie algebra based method for controllability analysis of parallel manipulators
and closed-loop mechanisms. In section 4, we present illustrative examples for various types of

parallel manipulators and closed-loop mechanisms and in section 5, we present the conclusions.

2 Force Transformation Matrix and Singularity

The equations of motion of a parallel manipulator or a closed-loop mechanism, in terms of

Cartesian variables X2, can be written as
M(X)X 4 (X, X) = H,(X)7, + HyA (1)

where M is the mass matrix, ) is the vector containing the non-linear terms, 7, is the col-
umn vector of the actuator forces/torques and A’s are the constraint forces or the Lagrange

multipliers. The matrix H given by
H=|H, H|

is called the force transformation matrix [Fichter, 1986]. The force transformation matrix, H,
maps the joint forces/torques, 7, to the output forces/torques on the end-effector in Cartesian

space, F', according to the relation

F=Hr.

In certain cases, the constraint equations can be eliminated and we can write the equations

of motion as

M(X)X +7(X,X) = H,(X)7, (2)
From equation 2, we see that the input forces/moments can be written as
o = B, (X)M(X)X + n(X, X)] (3)

From the above equation, we observe that the actuator torques/forces will attain infinitely large
values if the H matrix(same as Hj in this case) is rank deficient or the columns of the Hy matrix

are linearly dependent. Hence, the rank deficiency of the H, matrix leads to the condition of

?The Cartesian variables denote the position and orientation of an output link or the end-effector.



force singularities in the manipulators. At such singularities, the manipulator gains one or more
degrees of freedom(see also [Hunt, 1978, Merlet, 1989]).

In case the constraint equations cannot be eliminated, in addition to the actuator forces/torques
becoming infinite, the constraint forces given by the Lagrange multipliers can also go to infinity
and we need to consider the rank deficiency of the matrix Hy.

The columns of the force transformation matrix for manipulators with prismatic actuators
are the Pliicker coordinates [Hunt, 1978] of the joints of the mechanism, and are of the form

RN

q; X S;

where S; is a vector along the joint axis and q; x S; is the moment of S; with respect to a
coordinate system. For manipulators with revolute actuators, the force transformation matrix
can also be written in terms of the Pliicker vectors, however, one has to choose the joint axis of
the actuated joints and the moment term has to carefully evaluated with respect to the chosen
coordinate system.

For a planar mechanism, the dimension of H; is 3 x 1 and for a spatial mechanism the
dimension is 6 x 1. In general for those manipulators and closed-loop mechanisms where the
constraints can be totally eliminated, the force transformation matrix H has dimension m x n
where n is the number of actuated joints and m is the number of task space coordinates(3 for

planar mechanisms and 6 for spatial mechanisms).

3 Controllability Analysis

For the purpose of controllability studies of an n degree of freedom mechanical system, the
nonlinear equations of motion are typically written as a set of 2n first order ordinary differential

equations in terms of state variables. The state-space equations can, in general, be written as
X = f(x)+ ) gi(x)u ()
=1

where x is the vector of the state-variables, f and g represent the dynamics of the plant and
the controller respectively, and wu;’s are the m control inputs. We list a few definitions for the

purpose of controllability analysis of systems modeled under the framework of equation (5).

e A control Lie algebra is the smallest sub-algebra, C, containing the vector fields f, g,
g2,..., 8m wWhere f and g determine the dynamics of the plant and the controller (see
equation (5)).

o A distribution A, is the span I' : T'eC, where I' = f 4+ 3"

.—1 &u; and ' always remains

in A,.



A sufficient condition for a control system of the form given in equation (5) to be small time
locally controllable(STLC) [Nijmeijer, 1990]at a point (xo, Xo) is that dimA.(xg,%X¢) = n or
rank[C] = n. It may be noted that checking the rank of the distribution A. is the same
as checking the rank of the controllability matrix C because the matrix C is the smallest
sub-algebra such that I' spans the distribution A..

In non-redundant serial manipulators with n degrees of freedom, the 2n state variables are
the n joint variables and the n joint velocities, and the number of actuated joints m is usually the
same as n. In case of parallel manipulator and closed-loop mechanisms, there exists unactuated
joints, and we can have the number of output variables, n, greater than, equal to or less than
the number of actuated inputs, m. In addition, we can also have under-actuated systems where
m is less than the degree of freedom(DOF) of the mechanism. We next evaluate the control
algebra C for different forms of parallel manipulators and closed-loop mechanisms classified
according to the the number of output variables(n), the number of input actuations(m) and

the degree of freedom(DOF).

3.1 Manipulators with m =n

In parallel manipulators where the number of output Cartesian variables are the same as the
number of actuated joint inputs, such as the well known Stewart Platform, by a suitable choice
of Cartesian variables, the loop-closure (holonomic) constraint can be eliminated. In such cases,

we can write the state equations as

() () ()

where x; and x, denote the generalized co-ordinates (position/orientation variables) and their

derivatives. Comparing with equation (5), we observe that

and

For such manipulators, the control algebra is given by
C= [gh[fvgz]]; Vi = 1,n (7)

where g, represents the i-th column of the g matrix, and [f, g;] is the Lie Bracket( [Isidori, 1995])
of the vector fields f and g;.

For this class of parallel manipulators, the STLC requirement is not satisfied if



1. The matrix H is rank deficient. This can be easily seen from the fact that

o= ()

and the columns of g are linearly dependent if H loses rank.

2. If the vector fields f and g;’s are involutive, i.e., if any of the vectors [f,g;], 7= 1,....m

Y Y

can be expressed as a linear combination of vector fields f and g;’s.

3. If any of the columns of [f, g;] are linearly dependent on other columns of [f, g;].

For most parallel manipulators, it is extremely difficult to obtain closed form expressions
for the above conditions, and in this paper, we have calculated the controllability conditions
numerically(see section 4). However, from condition 1 in the above discussion we can conclude
that force singularity is always a subset of the regions where the STLC condition is violated
for parallel manipulators and closed-loop mechanisms with m = n.

In section 4, we present numerical results showing the singular configuration and regions

where the STLC criteria is not satisfied.

3.2 Redundant Manipulators with m > n

To the basic structure of the Stewart Platform with six legs and six actuators if we add another
leg with an actuated joint, then the number of degrees of freedom for the Stewart Platform
still remains 6. However, in such a case, the number of actuated joints are more than n(n
is 6 in this case). For manipulators with m > n, the controllability matrix is of the form
C =g [f,g]]; Ve=1,...m. The controllability matrix in this case is rectangular of dimension
(2n x 2m) and the manipulator will be uncontrollable if the rank of C becomes less than 2n.
The force transformation matrix, H, is of dimension (m x n).

The rank of a matrix is given by the maximum number of linearly independent columns.
Hence, to check the rank deficiency condition of H(i.e. rank(H) < n), we need to check the rank
deficiency of m—n+1 square matrices of dimension (n xn). The matrix H is rank deficient when
each of the individual square sub-matrices are rank deficient, since otherwise there will be n
independent columns in the H matrix. This reasoning implies that the singularity manifold will
be the intersection of the manifolds obtained by considering the rank deficiency of each of the
m—n+1 square matrices([Dasgupta and Mruthyunjaya, 1998]). If the rank deficiency condition
of each of the square matrices give surfaces, then the intersection will be along curves or points.

Hence, it is expected that the complete singularity manifold will be smaller for a redundant



3. The region where the manipulator does not satisfy the STLC condition, by a

manipulator
similar reasoning, is expected to be smaller for a redundant parallel manipulator.
In section 4, we present numerical results for a redundant planar manipulator which illus-

trates the above reasoning.

3.3 Manipulators with m < n

In many parallel manipulators, it is not possible to eliminate the constraints and the equations
of motion contain Lagrange multipliers®. In such cases, we adopt a normalization strategy used
by Krishnan and McClamroch [Krishnan and McClamroch, 1994]. Using the transformations

used by Krishnan and McClamroch, we can obtain a new set of state space equations given as

%5 = P(q)d - PM-(q)n(q, &) |
IT 5 (IM Y (q)IT) ™ x [IM Y (g)n(q, &) — I(q)q]
+PM~!(q)[E, — IT(IM~ (q)I7) x IM~!(q)]u

(8)

where P is given by
(0h1/9q)q = P(q)q

and h; are the output variables which have been chosen to be controlled and are equal in
number to the degree of freedom of the system. The matrix J denotes the Jacobian of the
constraints inherent to the system.

It may be noted that the input u in equation (8) when expressed in joint space is 7 and will
be H,7 when the equations of motion are expressed in task space. It can also be seen that the
choice of output variables X7 depends on the variables which are to be controlled, and hence
the controllability characteristics will depend on the choice of the output co-ordinates.

The singularity matrix H will be rank deficient when either of the sub-matrices H; or Hy,
will be rank deficient. The H; matrix will be rank deficient if the matrix H; of size 6 x 3 has
rank less than 3.

From the expression of g it is clear that the rank deficiency of H; will lead to linear depen-
dency of the column vectors g; and in turn the matrix C will be rank deficient. Hence, if H;
is rank deficient, the system will not be STLC.

3This reasoning has been used to show that in a Stewart Platform with an extra actuated leg, the singularities
lie at most on a 16—th order geometric entity which may be solid, surface or curve(for a fixed orientation of the
output platform) instead of on a quartic hyper-surface for the regular Stewart Platform.

4The 3-DOF spatial manipulator(see figure 3) falls under this category. In this case three Cartesian coordi-
nates and three orientation variables are required to describe the motion of the top platform. However, since
the mechanism has three degrees of freedom, the six coordinates are related to each other by three complex
non-linear equations(see also section 4).



To see the effect of rank deficiency of Hy, we rewrite equation(1) as
A = A (X)MX)X + (X, X) — H(X)7} + (T - B Hyw )

where H," is the pseudo-inverse of the matrix Hj given by H;CT(H;CH;CT)_1 and v is any
generalized vector such that (I — Hk+Hk)l/ lies in the null space of Hy. From this equation we
can see that if Hy loses rank, then it’s pseudo-inverse H;t doesn’t exist or in other words the
Lagrange multipliers A becomes infinite. Hence, if matrix Hy, of dimension 6 x 3, has rank less
than 3, the constraint forces become infinite.

Other than the loss of rank of H; and Hy, the matrix H can also become singular if the
individual columns of Hy and Hj are linearly dependent amongst themselves. This signifies
that the manipulator will be unable to withstand external load under certain combination of
constraint and input forces.

In section 4, we present numerical results showing the singular configuration and regions
where the STLC criteria is not satisfied for a spatial three-degree-of-freedom parallel manipu-

lator.

3.4 Under-actuated manipulators with m < DOF

For a manipulator where the number of control inputs(m) is less than the degree of free-
dom(DOF), the control Lie algebra becomes more complicated. In such cases, we have to
evaluate the Lie brackets of higher order. In equation (1) if zeR® and we have 2 control in-

puts(i.e. m = 2), then the controllability matrix C will contain the following columns:

C= [gla 82, [fv gl]v [fv g2]7 [gl [f> g2]]7 [f[gl[fv gQ]]]] (10)

In the above case the force transformation matrix, H, will contain just 2 columns and the
system will be under singular configuration when the H matrix of size 3 x 2 becomes rank
deficient(i.e. rank(H) < 2).

In section 4, we present numerical results for a planar closed-loop mechanism, showing the

singular configurations and regions where the STLC criteria is not satisfied.

4 Results with Illustrative Examples

In this section we illustrate our theory through examples of parallel manipulators belonging to
the four different cases discussed in the previous section. Since the expressions for det(H) =
0 and det(C) = 0 are very complicated in many cases, it is difficult to obtain any closed-
form analytical results. In this section, we present plots of singular and uncontrollable regions

obtained numerically based on the rank deficiency of H and C matrices. The numerical values



used for obtaining the plots are given in Appendix 1. The closed-form dynamic equations
of motion for the respective manipulators have been obtained with the help of Newton-Euler
formulation([Choudhury, 1997]). All the numerical results were obtained by using the software
package Matlab.

4.1 Parallel Manipulator with m =n

The three-degree-of-freedom planar parallel manipulator, shown in figure 1, has three pris-
matic actuated joints and six passive revolute joints. The equations of motion of this planar

manipulator are given by .
M[Z]Jrn:Hf (11)

where the block elements of the mass matrix M are
3
My = ME;+ Z Q;

3
M, = M21T = _(MpRJ_ + ZQiqu_)

=1
3
M, = I, + M,(R°E; —RR") +> q,1Qiq;,
=1
and
B M{—-w'R-g}+37,U;
"= | -MRxg+Yl,qxU;

51 S2 53
H =
qi1 X S1 (2 X 82 (s X 83

f = [fl f2 f3]T

In the above equation, i is the column vector containing the centripetal, Coriolis and other
non-linear terms, H is the force transformation matrix and vector f denote the input actuations.

The terms a;, Q and U are given as

ay = mgrq ? +myr, 2 + (L, + 1g)
Q = myss’ + z—gsLsLT + M(SSLT +s,sT)
U=[ms-g+mW?s-r,—mW?s-L+2m,WLs r,|s
+[m,r, X g+ mgry X g — 2my LWry X Ty, — m W?3L(r, x s)+2(1, + ]d)WL.]sL
where W is the angular velocity of the leg, | denotes a positive rotation by a right-angle, s is
the unit vector along the leg direction, L is the velocity of the leg with prismatic actuation, R

denotes the centre of gravity of the platform in a reference frame about a base point and parallel

9



to the global frame, w is the angular velocity of the platform, q = R p(p denotes the platform
point in local frame and R is the rotation matrix which gives the orientation of the output
platform), ry and r, denote the centre of gravity of upper and lower parts of the leg(in global
frame), my and m, denote the mass of lower and upper part of each leg, M, denotes the mass
of the platform, I, and I, are the inertia matrices of the upper and lower parts respectively I,
is the inertia matrix of the platform(in global frame) and E; is a 2 x 2 identity matrix.

From the H matrix we can say that the mechanism does not have any kinematic singu-
larity, though the manipulator is constrained due to the joint limits. Numerical simulations
for the above manipulator were done with the parameters given in Appendix 1. The simu-
lations were done for several constant orientations of the output platform and the workspace
boundary was calculated based on the joint limits of all the prismatic joints. Sefroui and Gos-
selin [Sefrioui and Gosselin, 1995] have shown that the singularity curves will be quadratic in
nature for a constant orientation of the output platform and similar conclusions can be inferred
from the numerical results(see figure 5). From a geometric viewpoint the matrix H will be
singular when the joint axes are either parallel or concurrent. The singular curves along with
the workspace boundary for this manipulator are shown in the left column of figure 5.

The controllability matrix for this manipulator has dimension 6 x 6. The regions where
the STLC condition is violated are shown on the right hand side of figure 5 along with the
workspace boundary. It can be seen that the nature of the singular and uncontrollable regions

are the same i.e. uncontrollability occurs around a singularity curve.

4.2 Hybrid manipulators

The 6-dof 3-PRPS hybrid manipulator shown in figure 4 has two prismatic actuations in each
leg [Behi, 1988]. The equations of motion are given by:

Mlt]—l—n:HF (12)
o
where
M- | MEs+TLQ ~(M,R +YL, Q) ]
| MR + i1 diQi I + My(R’E; — RRT) + 77, aiQiq;
o My{w x (w x R) ~ g} + T2, U,
| wx (Lw)+ MR x {(w-R)w—g}+ ¥, q x U,
H — [ kl kg k3 S1 So S3
a1 xki g2 xky gzxks qixs; qzxsy gz Xxss

T
F = [fkl sz fk3 f51 f52 fSS]

10



As described earlier, M is the mass matrix, n contains all the centripetal and Coriolis terms,
matrix H is the force transformation matrix, F denote the vector of input actuations. The

expressions for Q and U are given by
Q = myssT + %{s Sk xr)Hs(k x8)" + (k x 8)sT} + (my + mn + ma)kk? 4+ ay(k x s)(k x s)”
U = [mu(s-g) —mus W x (W x 1) — myus — %{s (k% ry) bugs

+ [(my + My +mg)(k-g) — {m,W x (W xr,)+m, W x (W xr,)

+mgW x (W xrg)} -k — 9m, Lk - (W x8) — (my + mp)u; — my(k - s)uslk

+ [muk - (ry X g) + mpk - (r, xg) =k - {W x (L, + L,)W} — ayuy — m,k - (ry, x s)us](k x s)

where
a; = mpy(k x rm)2 + my(k x ru)2 +k-(L,+1,)k (13)
and
k W |L
U = wx(wxq); uy = k-uy; uz = s-u;+ L|W||% Uy = “® —2” |

L L
In the above expressions, r,, denote the centre of gravity of middle leg(in global frame) and
M, and I, are the mass and the inertia matrix(in global frame) of the middle leg respectively.
The directions of the prismatic joints at the base is given by the vector k. All other notations
are similar to the ones discussed earlier.

From the H matrix it is evident that the mechanism does not contain any kinematic sin-
gularity, though it is constrained to move in one direction(when the prismatic joint reaches it’s
limit). Numerical simulations of the above manipulator were done based on the parameters
given in Appendix 1. It may be noted that the simulations are done for constant orientation of
the the output platform.

The force transformation matrix, H, can be written as:

ky k, ks 51 S2 S3

H b1><k1 b2><k2 b3><k3 b1><Sl bQXSQ b3 X 83

The above can be further simplified to yield®:
t—|—%p1—b1 %(pg—pl)—(bg—bl) %(pg—pl)—(bg—bl)

b1 X (t—|—%p1) (b2_b1) Xt+b2 X%pg (bg—bl) thg X%pg
—b1 X §Rp1 _bl X %Pl

k, k, ks

b1><k1 b2><k2 b3><k3

°In this case, the leg vector s ist +Rp — b

11



Denoting the terms of the matrix which are linear functions of X (output position coordinates)
as o' and all other constant terms as ¢ for a fixed output orientation of the platform (i.e. R is
constant), the final matrix can be written in the form

SR -
c ¢
c ¢

1 1

O 0O 6 o 0

— e = = e
—
—

QO 0O O o6 o O
O 0O O 6 o O

T T
T T
T T C

On expanding the expression det H = 0, we can see that maximum power of X appearing in the
expression will be 3 and hence, for constant orientation of the output platform, the singularity
manifold will be a hyper-surface of degree 3. The singularity curves along with the workspace
boundaries(at different sections along Z-axis) are shown in the left column of figure 7. The
workspace boundary has been evaluated based on the joint limits of all the 6 prismatic joints.

The controllability matrix for this manipulator has dimension 12 x 12. The regions where
the STLC condition is violated along with the workspace boundary are shown on the right hand

side of figure 7. It can be seen that the non-STLC regions are surrounding the singular zones.

4.3 Parallel manipulator with redundancy

If an additional actuated leg is added to the three-degree-of-freedom planar manipulator shown
in figure 1, then we have the case of a redundant parallel manipulator with m > n.

The equations of motion for the planar redundant manipulator shown in figure 2 are
t
«

M[ ]—|—n:HF (14)

where the block elements of the mass matrix M are

4
My = ME; + Z Qi
=1

4
M, = M21T = _(MpRL + ZQiqu_)

=1
4
My, = I, + M,(R’E; —RR")+> g/ Qiq;,
=1
and

_ Mp{_‘”QR - g} + Z?:l U;
T~ | _MRxg+YL, qxU;

H - S1 Sg S3 S4
g1 X 81 g2 X832 (3 X S3 (g X 84

T
f = [fl f2 f3 f4]

12



In the above equation, i is the column vector containing the centripetal, Coriolis and other non-
linear terms, H is the force transformation matrix and vector f denotes the input actuations.
The quantities, Q, U and a; have the same meaning as in the previous manipulator.

In this case, the force transformation matrix is rectangular and of size (3 x 4) . To check
the rank deficiency condition, 2 independent conditions are obtained by considering 2 separate
combinations of 3 columns of the H matrix. It has been shown earlier that for a constant
orientation of the output platform, the singularity curves will be quadratic in nature. Hence,
the singularities of this redundant manipulator will be the points of intersection of these set
of curves and with the help of Bezout’s theorem we can conclude that there can be at most 4
singular points. Numerical simulation for this mechanism were done for the parameters listed
in Appendix 1 and results obtained for constant orientation of the output platform.

Figure 6 shows the points (marked by *) where the redundant manipulator is singular.
Comparing with figure 5, it is clear that the singular regions are greatly reduced by addition of
an actuated leg. The uncontrollable regions for this manipulator are shown on the right-hand
side of figure 6. It can be observed that, similar to the singular region, the non-STLC region is
also greatly reduced by addition of an actuated leg.

For the case of the 3-PRPS hybrid manipulator, if we consider the redundant version with
2 extra actuators in an additional leg, we can observe that the singular and non-STLC regions
are greatly reduced. This can be seen by comparing figures 7 and 8. In this case the force
transformation matrix will be of size (6 x 8) and the singular regions will be the intersections
of 2 hyper-surfaces of order 3. Numerical simulation for this mechanism were done for the
parameters listed in Appendix 1 and results obtained for constant orientation of the output

platform and at particular sections in Z-direction are shown in figure 8.

4.4 Manipulator with m <n

The 3-RPS spatial manipulator shown in figure 3 has six output variables (3 position co-
ordinates and 3 orientation co-ordinates for the moving platform) and it has three degrees of
freedom with three actuated prismatic joints. All the other revolute and spherical joints are
passive. In this manipulator, the six output variables are not independent.

The equations of motion for the 3-RPS manipulator are six second-order differential equa-

tions and three algebraic constraints. These are given as
M[i]Jrn:HSFJFHkA (15)

S;'k;=0 for: =1to3 (16)

13



where the block elements of the mass matrix M are

3
My = MEs+ Z Q;

~ 3

My, = —My=-MR - Z Q:q;

=1

3
M, = I,+ M,(R’E; - RR") +> q:Qiq;

=1
and
] My{w x (wx R) — g} + 52, U,
T 7 e x@w) + MR x {(w-R)w g} + 5%, a4 x U,
H. = [ 51 52 53
’ | Q1 X81 Q2 XSz Q3 XSz
H [k k, k;
T | a1 x ki g2 x ks g3 xks
T T
F = F1 F2 F3 and A= [ )\1 )\2 )\3

The constraint equations S; -k; =0, ¢ =1,2,3, express the condition that the direction of the
i-th leg (s) is always orthogonal to that of the revolute axis k. As before,  contains all the
centripetal and Coriolis terms, the rectangular matrices Hy and Hj, form the force transforma-
tion matrix H, F denote the input actuations, A correspond to the Lagrange multipliers, k;
signifies the direction of the revolute joint axes at the base, s; is the unit vector along the :—th
leg and ( 7 ) denotes the skew-symmetric matrix.

The terms ay, Q and U are given as

a; = my(k x rd)2 + my(k % ru)2 + (I, + Iy)
Q = muss’ + Z2(s - (k xr,))(s(k xs)" + (k x s)s” +ar(k x s)(k xs)"
U=[mu(s-g)—mys - (W -(W xr,)) —m,s-us
— mafs (k¢ r) H(k xs) - uals
+muk - (ry xg)+mgk - (rg xg) —k-{W x (I, + I;) W} — ajuy

—myk - (r, X s)us](k x s)

The force transformation matrix is obtained by considering the effect of both the actuated
and constraint forces. The matrix, Hy, corresponding to actuations are obtained from the
Pliicker coordinates of the legs and the matrix, Hy, due to the constraint forces are the Plicker
coordinates of the revolute axes. The manipulator reaches singular configurations when either

the matrix H, or H;, or the entire matrix H loses rank and these result in the actuation
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or constraint forces becoming infinite or the manipulator is being unable to resist a certain
combination of external forces and moments with actuator and constraint forces. When the
rank of Hy is less than 3, the mechanism is unable to withstand 4 out of the 6 externally
applied forces. At these configurations, the legs are either parallel or concurrent. When legs
are parallel, the manipulator will not be able to resist external forces and when the legs are
concurrent, the manipulator will not be able to resist external moments.

Numerical simulation results based on the mechanism parameters given in Appendix 1 are
shown in figure 9 where we plot the singular and uncontrollable regions on the left and right-
hand side respectively. The workspace boundary is calculated based on the leg-length limits
satisfying the constraint equations. The non-STLC regions along with the positions at which
the Lagrange multipliers become infinite(marked by *) are shown in the right hand column. It
can be observed that the Lagrange multipliers become infinite at some of the regions where the

system does not meet the STLC requirement.

4.5 Manipulator with m < DOF

If we use 2 actuators for the 3-DOF manipulator as shown in figure 1, then the manipulator is
under-actuated. For this specific case the H matrix will be rectangular of dimension 3 x 2. The
manipulator will encounter force singularities when the rank of H matrix becomes less than 2.
The numerical simulation for case is shown in figure 10. The singular and non-STLC regions
are shown side by side. The numerical results were obtained by not actuating one of the legs

in the 3-DOF manipulator shown in figure 1.

5 Conclusion

In this paper, we have analyzed the singularities and uncontrollable regions in parallel ma-
nipulators and closed-loop mechanisms. The singularities associated with a gain of degree of
freedom were obtained by considering the rank deficiency of the force transformation matrix.
The uncontrollable regions of a parallel manipulator or a closed loop mechanism were obtained
by considering the rank deficiency of the controllability matrix after deriving the equations of
motion in terms of Cartesian space variables. The parallel manipulators and closed-loop mech-
anisms are classified according to their degrees of freedom, the number of output Cartesian
variables used to describe their motion and the number of actuated joint inputs. In all the
cases, we have showed that the singular regions are a subset of the uncontrollable regions. In
some cases, parallel manipulators and closed-loop mechanisms can also become uncontrollable
when the Lagrange multipliers representing constraint forces/torques at the passive joints be-

come infinite. Adding a redundant actuator is shown to reduce singular and uncontrollable
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regions in parallel manipulators and closed-loop mechanisms. The above results have been il-

lustrated with the help of several planar and spatial manipulators and closed-loop mechanisms.
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Appendix 1

All the numerical values given in this Appendix are in SI-units.

3-DOF Planar Manipulator with Prismatic Actuations

Leg length limits for each leg : 0.2 to 1.0

Co-ordinates of base and platform points(in local frame), centres of gravity of lower and upper

18



parts of each leg(in local frame) and centre of gravity of the platform(in local frame) are given
by
by | by | bs P1 P2 P3s | Tdo | Tuo Ro
0.0(021041-0.15]-0.1 0.15]0.1]-0.15| 0.04
0.0(00(01} 00 |-0.1| 0.0 {0.0] 0.0 |0.005

Mass and moments of inertia(about base joint) of lower and upper part of each leg and that of

the platform are
Mg | My Id Iu Mp ]p
0.6 | 0.2 1 0.01 | 0.008 | 2.0 | 0.075

3-DOF Redundant Manipulator

The co-ordinates of the base and platform points(in local frame) are listed below:
by | by | by | by P1 P2 P3 P4
0.0{02]04]0.2]-0.15|-0.1 | 0.15 | -0.1
0.0{00(01]02] 0.0 |-0.1| 0.0 |0.15

All other parameters are similar to the above section 6.

3-PRPS Hybrid Manipulator

Leg length limits for bottom leg with prismatic joint: 0.65 to 0.3
Leg length limits for upper leg with prismatic joint: 0.65 to 1.75
Co-ordinates of base and platform points(in local frame), centres of gravity of lower, middle
and upper parts of each leg(in local frame) and centre of gravity of the platform(in local frame)

are given by

b; | by bs P1 P2 P3 | Tdo | Tmo Tyug R,
04101(-03]02| 02 ]00|04]| 0.14 |-0.18 | 0.04
0.2102(0.15]0.0]0.15,0.2]0.6|-0.08] 0.08 | 0.03
0070101 (0.1 00 |00]0.0] 0.0 0.0 |-0.06

The direction of the fixed axis along the lower prismatic joint is given by:

ky ks ks
-0.6141 | 0.2308 | 0.5535
0.2714 | 0.4231 | 0.2860
0.0000 | 0.0077 | 0.0953

Mass of lower, middle and upper part of each leg and that of the platform are

Mg | My, | My | M,

3.0 20 ]1.0]6.0
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Moments of inertia of lower, middle and upper part of the leg (in local frame) are given by:

0.004 0.001 0.002 0.010 0.005 0.007 0.005 0.002 0.002
Ii; = 0.001 0.002 0.001 and L,o,= | 0.005 0.002 0.003 | L,,= | 0.002 0.002 0.001
0.001 0.001 0.002 0.007 0.003 0.001 0.002 0.001 0.002

The moment of inertia of platform (in local frame) is given as

0.02 0.001 0.003
I, = 0.001 0.020 0.002
0.002 0.002 0.050

3-PRPS Redundant Manipulator

The co-ordinates of the base and platform points(in local frame) are listed below:

b; | by b3 by P1 P2 P3 P4
041(011]-0310.05]02] 0.2 ]00] 0.1
02]021(0.15]0.25,0.0]0.1510.20.25
0.0(0.1| 0.1 {0.05]0.1] 0.0 |0.0]0.05

All other parameters are similar to the above section 6.

3-RPS Manipulator

The leg lengths are taken to vary between 0.2 to 0.65. Co-ordinates of base and platform
points(in local frame), direction of the revolute axes and centres of gravity of lower and upper

parts and platform(in local frame) are:

by | by | bs | p1|p2| P3| ki k, ks
d1 4 1-41.11.3 -2 4 -7 3
2015 1-3|.1].2-1].1 -1 .2
0 [.00].01]0 0 0 0 |.0007 | .0003

The vectors ryg, Tug, and Ry are given as (0.2,0,0)7, (—0.15,0,0)%, and (0.003,0.003,0.003)%
respectively.
The masses of the lower, the upper part of each leg and the platform are 0.5, 0.2 and 0.4 Kg’s
respectively, and the moments of inertia of lower and upper parts of each leg (in the local
frames) are given as
{ 0.010 0.005 0.007 ] { 0.005 0.002 0.002 ]
I, = and Iy, =

0.005 0.002 0.003 0.002 0.002 0.001
0.007 0.003 0.001 0.002 0.001 0.003

The moment of inertia of platform (in local frame) is given as

0.010 0.000 0.000
I, = | 0.000 0.020 0.000
0.000 0.000 0.075
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Figure 1: 3-DOF Planar Parallel Manipulator
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Platform

by

Figure 2: 3-DOF Planar Redundant Manipulator
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Frame

Figure 3: 3-RPS Spatial Manipulator

Platform
Frame

Figure 4: 3-PRPS Spatial Manipulator
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Figure 5: Singular and Uncontrollable Regions of a 3-DOF Planar Manipulator
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Figure 8: Singular and Uncontrollable Regions of a 3-PRPS Redundant Manipulator
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Figure 9: Singular and Uncontrollable Regions of a 3-DOF Spatial Manipulator
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Figure 10: Singular and Uncontrollable Regions of an under-actuated Manipulator
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