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Abstract

A parallel manipulator or a closed-loop mechanism may gain or lose one or more
degree-of-freedom at a singular point, and in this paper, we study the singularity
associated with the gain of one or more degrees-of-freedom. We analyze the constraint
forces associated with the kinematic constraints inherent in a closed-loop mechanism
or a parallel manipulator, and characterize the gain singularities from the degeneracy
of these constraint forces. Several special phenomena associated with gain singularity,
such as locking of the actuators have been studied, and analytical criteria for these
have been derived. We also present the necessary condition for finite self motion and
finite dwell of the passive links by analyzing second-order properties of the constraint
equations. The results are illustrated with the help of several closed-loop mechanisms.

1 Introduction

Analysis and evaluation of singularities play an important role in several aspects of mech-
anisms and robotics including design, trajectory planning, and control. A great deal of
research has been done on the singularity analysis of both serial and parallel manipulators
and closed-loop mechanisms. The study of serial manipulator configurations resulting in
singularities have been done by several researchers (see, for example, [1, 2, 3, 4, 5]). A serial
manipulator is said to be in a singular configuration when the manipulator Jacobian matrix
loses rank, and in this configuration a serial manipulator loses one or more degree-of-freedom.
A parallel manipulator or a closed-loop mechanism, on the other hand, may either lose or
gain one or more degrees-of-freedom at a singular configuration, and this loss or gain has been
attributed to the degeneracy of two different Jacobian matrices originating from the time

derivative of the input-output equation of the manipulator or closed-loop mechanism|6, 7].
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Gosselin and Angeles[6] also describe another type of singularity, namely architectural singu-
larity, which occurs when both the matrices are degenerate for certain special geometries of
the closed-loop mechanisms. In such situations, the parallel manipulator or the closed-loop
mechanism can exhibit finite self-motion or dwell(see also [8]). In addition to the study of
singularities in terms of loss or gain of velocities, several researchers have also studied singu-
larities in terms of statics(see, for example, [9, 10, 11, 12]), and have made use of the force
transformation matrix. They have obtained conditions under which a parallel manipulator
or a closed-loop mechanism cannot withstand external forces or torques in certain directions.

In contrast to serial manipulators, obtaining the singular configurations in parallel ma-
nipulators and closed-loop mechanisms is difficult, and very few general results are avail-
able. Hunt et al.[13] have shown, through screw theory, that a fully in-parallel device can
only gain one or more degree-of-freedom, whereas a fully in-series device can only lose one
or more degree-of-freedom. A hybrid parallel manipulator may gain or lose one or more
degrees-of-freedom. General configurations for singularity in restricted classes of platform
type closed-loop mechanisms containing sphere-sphere link have been obtained by Basu and
Ghosal[14].

Most of the approaches towards singularity analysis, in the references mentioned above,
involve use of linear algebra based techniques, and link the singularities to the rank-deficiency
of certain matrices[6]. Merlet[9], has obtained singular configurations of parallel manipula-
tors using Grassman geometry. Researchers have also used techniques from differential geom-
etry to study the local properties of the configuration manifold of the closed-loop mechanisms
and parallel manipulators, and identified singularities with the degeneracy of the tangent-
space of the configuration manifold[8]. In[15], the authors have used the concept of a metric
in the tangent space of the point trajectory of the output link, and studied singularities in
the Cartesian space from the degeneracy of the velocity ellipsoid associated with the metric.

A key difference between serial and parallel manipulators(and closed-loop mechanisms)
is that in parallel manipulators, there exist holonomic constraints in the form of loop-closure
equations. A parallel manipulator described by n configuration variables with m loop-closure
constraint equations will have n — m degrees-of-freedom — only n — m of the configuration
variables can be actuated and m of them are passive. It is well known, that associated with
the holonomic constraints, there are constraint forces normal to the configuration manifold,
which do not do any work. In this paper, the focus is on the constraint forces associated with
the holonomic constraints and its analysis. This is different from the concept of analyzing the

loss and gain of velocities, in the tangent space of the configuration manifold, done by most



researchers. One of the main contributions of this paper, obtained as a result of analyzing
the constraint equations, is that we are able to derive the necessary analytical criteria for
finite self-motion and finite dwell of links associated with the passive joints of a closed-loop
mechanism or a parallel manipulator.

The paper is organized as follows: In section 2, we present the mathematical approach for
the analysis of constraint forces and configuration-space singularities of parallel manipulators
and closed-loop mechanisms. In section 3, we present the derivation of the necessary criteria
for finite self-motion, finite dwell of the passive links, and also discuss criteria of locking of the
actuators. In section 4, we illustrate our theoretical results with the help of a planar five-bar,
six-bar, a three-degree-of-freedom planar multi-loop mechanism and a six-degree-of-freedom

spatial parallel manipulator. Finally, in section 5, we present the conclusions.

2 Singularities in the Configuration Space

2.1 Configuration Space of a Closed Loop Mechanism

The configuration space of a parallel manipulator or closed loop mechanism is the space of
the joint variables of the manipulator. In a parallel manipulator having n joints, not all of
the joints are actuated and m (m < n) of them may be passive. The degree-of-freedom of
such a manipulator is n—m, and the joint variable, q = (g1, ¢o, .., ¢,)? satisfies the constraint

equations of the form

where 1(-) = 0 denotes the m independent constraint functions®, n;(-) = 0,7 = 1,2, .., m.
Such constraints arise from the loop-closure equations of the closed loop mechanism, and
they depend on the architecture and geometry of the mechanism. The configuration space
C, is therefore given by C = {q|n(q) = 0} where C is a n—m dimensional manifold embedded
in an ambient space P x SP) and p is the number of prismatic joints and n — p joints
are rotary?. Each point of C corresponds to a configuration of the mechanism, and the

set of equations, 1(q1,...,¢,) = 0, in general represent m constraint hyper-surfaces in C.

'In this paper, we restrict ourselves to non-redundant manipulators and closed-loop mechanisms, i.e.,
(n —m) < 3 when a point trajectory is of interest and (n —m) < 6 if the translation and orientation of a
rigid body are both of interest.

2We consider all joints to have single degree-of-freedom. A joint with more than one-degree-of-freedom,
such as a cylindrical joint may be thought of as a combination of a prismatic and a rotary joint.



Differentiating the m constraint equations (1) with respect to time, ¢, we get

on &on.
—+ > —¢ =0 2
In closed-loop mechanisms and parallel manipulators, the constraint equations, typically,

have no explicit dependence on time, and hence we can write

> =0 ©

i=1 qi

The above equation may be written in matrix form as
[N]g=0 (4)

where q denotes the time derivative of the configuration variable, and is given by the vector
(G1, G2, ---» ¢n). The matrix [N] is given by

N = 2] 6

8(]j

which can also be written as [N] = (N7, NT ..., NZ)T where N;, the i row vector of [N],
is the gradient vector to the i*" constraint hyper-surface in C. Equation(4) implies that
the motion of the system in the configuration space is orthogonal to the normals to all the

constraint surfaces, i.e., the configurational motion lies in the tangent space T,C Vq € C.

2.2 Geometric Description of the Constraint Forces and Singular-
ity
It is well known that associated with the m constraints, there are m constraint forces, denoted

by the m-vector F., which do not do any work. This leads to the observation that F,. is

orthogonal to T4C, which may be expressed as
Fig=0 (6)
By comparing equations (4) and (6), we get

F. = fj AN, = [NJFA (7)

where \;’s are the components of a non-null m-vector, X. Equation(7) shows that F, is

a linear combination of the gradients to the constraint surfaces, IN;, while the \;’s are the
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corresponding weights. At a generic point, the vectors N; form a linearly independent
set, and the matrix [N] is of full rank, i.e., rank([N]) = m. We consider a point, where
rank(|N]) < m. At such a point, the rows of the matrix [IN] become linearly dependent,
and one or more of the gradient vectors, N;, may be expressed as linear combination(s) of
the others. This implies that the contribution to F. from such constraint(s), given by ANy
for some k, gets algebraically added to the contribution from the others, and equivalently,
we can say that at that point, one or more kinematic constraints are no longer active. This
degeneracy of the constraint forces is reflected in the appearance of the null-space of the
matrix[N], which is orthogonal to F.. As a consequence, any velocity q in T4C, belonging
to the null-space of [N] will satisfy equation(4), even if it corresponds to zero motion in
the actuators. This leads to the possibility of non-zero velocity in the passive joints with
actuators locked, i.e., a gain in degree-of-freedom of the mechanism at such a singular point.
We note that the degeneracy of the constraints is only local at a point q € C, and hence
the gained passive velocity is instantaneous. We analyze the nature of the gained velocity in

detail in the following discussion.

2.3 Gained Velocity with Actuators Locked

To analyze the gained passive velocity, we consider all the actuators to be locked, i.e., 0= 0.

Equation (4) may be decomposed into active and passive parts as
(K16 + [K*]¢p =0 (8)

where we denote the (n — m) active variables by the vector @ and the m passive variables
by the vector ¢, such that q = (OT, q’JT)T, and 9, qb are the time-derivatives of @ and ¢
respectively. The columns of [K| and [K*] contain the partial derivatives of 7 with respect to
0 and ¢ respectively. With actuators locked(8 = 0), equation(8) reduces to [K*]¢ = 0, and
effectively, [K*] plays the role of [N] — this may be shown by reformulating the constraint
equations with the actuators locked. All the above observations made in terms of [N] are
equally valid for [K*], and indeed, the rows of [K*] may be visualized as the projections of N;
onto the passive subspace of T,C. Hence the gain of degree-of-freedom in the configuration
space requires the rows of [K*] to become linearly dependent, i.e., singularity criterion is
given by

det [K*] =0 9)

It may be noted that [K*] is always a m X m matrix, as there are always m constraint

equations and m passive variables ¢ in a n — m degree-of-freedom closed-loop mechanism or



parallel manipulator.

The singularity condition, det [K*] = 0, can also be arrived from linear algebra: from
equation(8), if @ = 0 and det [K*] # 0, then ¢ = 0. If det [K*] = 0 and 6 = 0, then there
exists ¢, € Null([K*]), where Null([K*]) = {x| [K*]x = 0, |x| # 0}. Hence the mechanism
is in a configuration corresponding to gain of degree(s)-of-freedom, and the gained passive
velocity lie(s) in the null-space of [K*].

The velocity in the configuration space, given by q = (07, ¢:)T is in the null-space of [N].
As the constraint forces are restricted to the row-space of [N], and the gained velocity is in
the null-space of [N], the orthogonality between the constraint force and gained velocity is

maintained 3.

2.4 Gain Singularity and Locking

In the above discussion, we have assumed the actuators to be locked in order to analyze the
gain of one or more degrees-of-freedom. We shall now study whether the converse is true,
i.e., if gain singularity implies locking of the actuators or actuator singularity, as termed by
some authors[8]. For the purpose of analysis, we decompose the constraint force, F,, into
two parts, as

F.=(Fep',Fey')" (10)
where F¢y is the active part(associated with the actuated joints 8), and F¢y4 is the passive
part(associated with the passive joints ¢). We can obtain explicit expressions for these

quantities from equation(6) as follows:
T
(72 )= () (1)
Pre-multiplying the equation(6) with [N], we get
[N]F. = [N][NJ"A (12)
Writing F,. and [N] explicitly in terms of their component matrices, we get
[K]Fep + [K']Fep = [gr]A (13)

where [g¢] = [N][N]7 is a symmetric square matrix. From the last equation, we can extract
F¢, as
Fep = [K'] 7 ([ge]A — [K]Fep) (14)

3We know from linear-algebra that the null-space of any matrix is the orthogonal complement of its
row-space[16].



The vector in the parenthesis cannot be a null-vector, as then equation(13) would require that
F¢, lie in the null space of [K*|, while we know from equation(11), that F¢4 belongs to the
row-space of [K*]. Hence equation(14) will yield finite F, iff det[K*] # 0. In other words,
at a gain-singularity, since det[K*] = 0, F¢, will be infinite. Since constraint forces arise
out of the internal forces, the mechanism will be able to withstand infinite internal forces
as an ordinary structure, which shows that it has all the actuators in a locked situation.
The above justifies our analysis of the gained passive velocity keeping the actuators fixed,
and establishes the new result that the actuator singularity is a manifestation of the gain

singularity.

3 Second-order Analysis of Constraint Equations

In the previous section, we have analyzed the matrices, [N], [K] and [K*] which arise from the
first derivative of the constraint equations, and related their degeneracy to the instantaneous
gain in degree-of-freedom at an isolated singular point of C. In this section, we analyze the
second-order properties related to the derivatives of det [K*] and elements of [N]. We show
that the second-order analysis leads to analytical criteria for finite self motion(FSM) and
finite dwell(FD).

3.1 Gain Singularity and Finite Self Motion

Finite self motion of a mechanism refers to finite movement of the passive parts of the
mechanism, with the actuators held fixed. Finite self motion clearly requires instantaneous
gain-singularity. However, in addition, the gain-singularity is maintained over a finite span
of motion of the corresponding passive parts. It is known that FSM imposes restrictions on
the architecture of the mechanism[6], and in the following discussion, we show how these
architectural requirements may be obtained from the analysis of the constraint equations
along with the singularity criteria.

As FSM requires existence of gain singularity, a necessary condition is that rank([K*]) < m.
The number of passive joints, that can have nonzero velocity independent of the input, is
given by the nullity of [K*|, denoted by N (K*). For the purpose of analysis, we partition
¢ in two parts, namely ¢’ of dimension NV ([K*]) and ¢” of dimension m — N ([K*]), which
denote the independent and dependent parts of ¢ respectively. We consider the case when

N(K*) =1 and present the results in the form of the following theorem:



Theorem 3.1 The necessary condition for FSM in a mechanism with gain of one degree-
of-freedom is # det[K*] = 0 over the span of ¢' where det[K*] = 0.

Proof: The mechanism will have a degree-of-freedom in the form of a motion of ¢’ iff the
constraint equations are at least locally independent of the variable ¢!. We equate the total

derivative of n to zero to obtain the equation

dn _ <~ On dox
LN LR 1
467 = 2= 9y i )
Note that % gives the k"™ column of [K*], and equation (15) may also be written as
Qo dds  ddiy L ddi ddw )’
<1 (G o s e ) - 15)

where ¢; has been chosen as ¢’ for simplicity. The above equation can have a non-trivial
solution iff det [K*] = 0, which is the same as the criteria for instantaneous gain of degree-of-
freedom. Further, FSM implies instantaneous gain of degree-of-freedom over a finite interval

of ¢!. This implies #(det[K*]) = 0 over the interval of ¢! where we have instantaneous
gain of one-degree-of-freedom. W

At a non-singular point, we have % = 0, (0,5 denotes the Kronecker delta), since the

passive variables do not have any explicit dependence on each other. At a singular point, ¢”

is dependent on ¢’, and 9% = (. Equation(16) gives m linear equations in m — 1 derivatives

¢!
of the form %. We also have the following second-order relationship:
d o

which is linear in %‘g%’s. Using this extra equation, we can deduce one architectural re-
quirement of the mechanism which yields FSM in a singular configuration. Note that these
equations involve one or more of the passive variables ¢!, and corresponding link-parameters,
hence the criteria for FSM involves these parameters directly. Substituting these relation-
ships and the singularity criteria in the original constraint equation(1), we obtain the config-
urational and architectural requirements on the other parts of the mechanism which allows

FSM, but are not involved in the motion.

3.2 Dwell of Passive Links : Instantaneous and Finite

Dwell of a passive link refers to a situation when the link is at rest for instantaneous or

finite motion of the actuators. While instantaneous dwell (ID) is the more frequent of the
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two and can occur for general architecture of the mechanism, finite dwell (FD) requires some
constraints on the architecture, as in the case of FSM. In the following discussion, we analyse
the criteria for both ID and FD in a mechanism. We start by proving two theorems:

Theorem 3.2 The link associated with the i™ joint of a mechanism dwells instantaneously
with arbitrary input 0, if the ™ row of the matriz [K*]7*(—[K]), denoted by R;, becomes

null.

Proof: Velocity of the i*! passive joint, q'ﬁi, will be zero, if it is not kinematically influenced

by any of the actuated joints. Mathematically, this implies that 2% = 0 j = 1,n — m.

96;
Assuming the passive variables ¢;’s as explicit functions of @, we can write
.0
; = —0; ) =1,..,n—m 18

Clearly, ID of the link associated with joint 7 will occur with arbitrary input 6, if we have
ggj =0, j = 1,n —m. From equation (8), ¢ = [K*]"!(—[K])#. Comparing with equation

(18), we note that the element (7, 7) of [K*]~!(—[K]) may be written as

99
00;

(K]~ (=[KD]y = (19)

ggj, for j = 1,n —m gives the i*! row of [K*] 1(—[K]), hence the link associated with joint

i will have ID if the i*" row of [K*|7*(—[K]) is null.ll

Theorem 3.3 The link associated with the i*® joint of a mechanism dwells finitely with

arbitrary input 0, if

1. R;=0
an _

2. % =0
dR; _

5. B—0

Proof: Clearly FD requires ID, hence we must have R; = 0. Further, the active joint has
finite motion while some passive link dwells, hence we must have the constraint equations
independent of the relevant active variable. Finally, the passive link dwell over a finite span
of the motion of the active link also implies that the ID criteria is independent of the motion

of the active variable in the FD span. B



We now investigate the structure of the above equations, and extract the architectural

requirements for FD from them. Expanding % by chain rule of derivatives, we get

dn on dor _
do; — 06, Z * Oy, db;

= i=1,n—m (20)

The above gives a set of m x (n—m) scalar equations in an equal number of total derivatives

of the form % Similarly, if we have ny numbers of passive links in finite dwell, we obtain

ng X (n — m)? scalar equations in %‘;—’?’s from % = 0. Combining them, we obtain a set of

4 d¢k7
’ dl;

eliminate all the partial derivatives from the above over-constrained equations, and obtain

(n—m) X (m+nyx (n—m)) equations in (m —ngy) X (n—m) unknowns s. Hence we can
nag X (n —m) X (n —m+ 1) homogeneous equations in the architectural and configurational
parameters of the mechanism. These equations yield ngy X (n — m) conditions giving the
ID criteria(see examples in the next section), and the rest N of them give an equal number
of relationships between the architectural parameters involved in the mobile part of the

mechanism, where N is given by
N =ng x (n —m)? (21)

Substituting relationships obtained above in the original constraint equation(1), we obtain

the configurational and architectural constraints on the dwelling part of the mechanism.

Note : The quantity N gives an upper bound on the number of architectural constraints that
can be extracted using the above procedure. The actual number, however, will depend on

the structure of the constraint equations, hence may be less than N (see examples in section
4).

3.3 Summary

In this section, we have presented the necessary conditions for FSM and FD. We note that
in literature, the criteria for FSM has been stated as the meeting of the branches of forward
kinematics as well as those of inverse kinematics[6]. We find that that the meeting of the
branches of forward kinematics occurs when the matrix [K*] is rank deficient, and meeting of
the branches of inverse kinematics requires that one or more row(s) of [K*]™'(—[K]) is(are)
null respectively. The rank deficiency of [K*] and one or more row(s) of [K*]~'(—[K]) being

“The number of unknown derivatives is reduced by ngq X (n — m), since these many derivatives will be
identically zero as ng4 passive links are dwelling.
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Figure 1: Planar Five-bar Mechanism with Revolute Joints

null are the criteria for gain singularity and ID respectively. The simultaneous degeneracy
of [K*], and [K*]7!(—[K]) is only a special case and is neither a necessary nor a sufficient
condition for FSM, as we will show with an example in the following section.

4 Illustrative Examples

In this section, we illustrate the theoretical results discussed above with the help of several

planar and spatial closed-loop mechanisms and parallel manipulators.

4.1 Planar Five-bar Mechanism

In this section, we study a 2-degree-of-freedom single-loop mechanism, namely the planar
Five-bar mechanism with revolute joints.

Geometry of the Five-bar Mechanism

Figure 1 shows the general geometry of a Five-bar mechanism. Link 1 and link 4 are the
actuated links, the active and passive variables are given by 6 = (01,0,)", ¢ = (¢, d3)"
respectively, and q = (01, ¢o, @3, 04)".
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Formulation of Instantaneous Kinematics

1. Loop-closure equations

We have the loop-closure equations in the form?®

m = licg+lecg+lzcs+lica —lp=0
m = 1181 + 5282 - 1383 - 1484 =0 (22)

The above equations may be solved in closed form, and we can find ¢ for any valid

input 6.

2. Formulation of the matrices
We compute the matrices [K| and [K*] by differentiating the above equation with

respect to appropriate variables.

K| — (—llsl 1484 ) (23)

l101 —Z4C4
* —lpso  —l383
K] = ( lacs  —lzcs
Condition for Gain Singularity

From equation (9), the condition for gain singularity is given by

l2l3 Sin(¢2 + ¢3) =0
= (g2 +¢3) = 0,7 (24)

A typical singular configuration is shown in figure 2.
Gained Passive Joint Motion
In this case, N ([K*]) = 1, and the null-space of [K*] is spanned by the non-null vector o,

where the components of ¢ satisfy the following equations

P2 L9 i gyt gy =0

by 13

0 % = 0if pp+¢3=m (25)
ly I3

This velocity is kinematically admissible, even when the actuators are locked.

5We denote cosf; and sin8; by c¢;, s; respectively in this paper.
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Figure 2: Singular Configuration of the Five-bar Mechanism

Locking Configuration

If ¢o + ¢3 = 0(27), the five-bar mechanism reduces to a 4-bar mechanism instantaneously,
where the coupler link is of length I + I3 (see figure 2). Only one of the actuators can be
moved independently in this configuration. In the figure 2, it is clearly seen that the input
links can not move in opposite directions.

Note : We have a certain subset of above singular configurations, in which the locking is
only instantaneous, i.e., the mechanism can move through the singular configuration. One
such example is g = (0,0,0,0)7. In this case the simultaneous degeneracy of the matrices

[K] and [K*] appears to be a necessary criterion.

Finite Self Motion of Five-bar Mechanism

We now investigate the gained degree-of-freedom for possible FSM. In this case, N ([K*]) = 1
hence there is only one independent passive variable, which we choose® as ¢,. In accor-
dance with the notation introduced in section 3, we have ¢! = ¢, ¥ = ¢3. Substituting

n = (1, m2)T from equation (22) into (15), we get the following equations:

] . do

6Note that there is no a priori justification for choosing ¢! as ¢». It may done based on intuition, or
purely as a trial.
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K21+ QQdfﬁz =0 (26)

where K}; denotes the element (i, j) of the matrix [K*]. Consistency of this set of equations
require that Kj; K5, — K5 K7, = 0, i.e., det([K*]) = 0, which is the singularity criteria.

Solving the above set of equations, we get

d¢3 * *
% = —-Ki/K},
d¢3 * *
dTSg = —K3 /K3 (27)
Differentiating the singularity criteria with respect to ¢,, we get
d¢s
1+—=0 28
do, (28)
Substituting for % from equation (28) into equation (27), we get K}, = K7,, K3 = KJ,,

and hence finally

—l282 = —l383

1202 = —l303 (29)

From the above set of equations, we can eliminate ¢9, ¢3 to obtain the architectural require-
ment on the passive part for FSM as Iy = I3, and ¢ = m — ¢3. Substituting these results

into the original constraint equations (22), we get

1181—l454 =0

l101 + l4C4 — l() = 0 (30)

Elimination of #; yields, after simplification and rearrangement,

B+

— 31
“ ol (31)

The last equation implies that the links 1,0 and 4 constitute a triangle, of which 6, is the
angle contained by the links 0 and 4. The corresponding configuration is shown in figure 3.

We note that the FSM of the five-bar mechanism does not require the coincidence of
the meetings of the branches of forward and inverse kinematics, the criterion of which are
sin(¢y+¢3) = 0 and sin(;—¢;) = 0, ¢ = 1, 2 respectively. In figure 3, we see that the forward

kinematics branches meet at all ¢ = m — ¢3, where as the inverse kinematics branches can

14



X

Figure 3: Configuration of the Five-bar Mechanism for FSM

meet only at two points, where that passive links come in line with either of the active
links, which implies the conditions presented in [6] are not necessary. In figure 4, we show a
configuration of the mechanism, where both forward and inverse kinematics branches meet,
but we have ly # [3, so that there is no configuration which can show FSM. This shows the

conditions in [6] are not sufficient.

4.2 Planar Three-degree-of-freedom Parallel Manipulator with Rev-
olute Joints

Geometry of the Planar three-degree-of-freedom Parallel Manipulator

Figure 5 shows the geometry of the planar three-degree-of-freedom manipulator. This
three-loop mechanism has been studied in [6], in which the architecture was assumed to be
symmetrical. We, however, allow for general linkage parameters, i.e., the individual fingers
can have corresponding links of different lengths. The gripped object is assumed to be an
equilateral triangle of side a. All the active links, /;’s are connected to the respective pivots,
where the motors are located. The active variable in this case are given by 6 = (64, 65, 05),
and the passive variable by ¢ = (é1, @2, ¢3, )T, where 6;, ¢;’s have been shown in the figure
5. Note that the orientation of the platform, denoted by «, has also been included in ¢, and

we require 4 independent equations to solve for these 4 quantities.
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Figure 4: Meeting of the Kinematics Branches in a Five-bar Mechanism

Formulation of Instantaneous Kinematics

1. Loop-closure equations
Loop closure equations are formed by considering the vector-loops between two pairs

of fixed pivots (in particular, the pairs (1,2), and (2,3))” and are given by

m = hiei+ricy, +ace —racy, —laco — 22 =0

N2 = 1151+ 718y, +aSq — T28p, — l252 =0

N3 = o+ lacy + ToCy, + aC(22 1 q) — T3Cgs — lscs —x3 =0

N = laSy 41254, + 52 o) ~ T359; — [3s3 —y3 =10 (32)

where (z;,y;) give the coordinates of the ' pivot.

2. Formulation of the matrices
The matrices [K] and [K*] are obtained from the differentiation of the above equations

with respect to 8 and ¢ respectively, and have the following expressions.

—5181 ZQSQ 0
1101 —lng 0
[K] 0 —1252 l383
0 lQCQ —l3(33

"Note that we can construct a third vector equation by considering the pivot pair (1,3), but it may be
shown to be linearly dependent on the two previously formed equations.
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Figure 5: Planar Three-degree-of-freedom Parallel Manipulator

—T18¢,  T2S¢, 0 —as,
_— T1Cp,  —T2Cqy 0 acy,
[K ] - 0 —7'28¢2 7'38¢3 _as(%r+a) (33)
0 ToCsy  —T3Cp  OC(2x 1)
Condition for Gain Singularity
From equation (9), the condition for gain-singularity is given by
. . . i 2
aryrer3(sin(¢; — ) sin(py — @3) + sin(d; — ¢o) sin(a + 3 ¢3)) =0 (34)

which shows that the singular configurations lie on a 1-dimensional sub-manifold of C. We

identify two special classes of singular configurations from the above expression:

1. All passive links are parallel.

2. All the passive links, or their hypothetical extensions, intersect at a point.

Gained Passive Joint Motion
In both the above cases, N([K*]) = 1, and the null-space of [K*| is spanned by a single

non-null vector é, which is different in the two cases.
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1. If all passive links are parallel, then the null-space is spanned by (%, %, %, 0)T.

2. If the passive links intersect at a point, the components of (]5 depend on the config-
uration. In particular, when all the passive links, or their hypothetical extensions

intersect at the center of the mobile platform, the gained passive velocity is given by
(L 1 1 _Q)T

r1?ra? r3? a

Note that for the first case, the angular velocity of the platform, given by ¢, is zero. However,
in the second case, the platform is allowed to have an angular velocity instantaneously at a
singular point. We now investigate the condition on the architecture of the mechanism for
this angular velocity to result in finite rotation.

Finite Self Motion

As noted above, we have N'([K*]) = 1, and the only independent passive variable is chosen
to be a. Hence we have ¢ = o, ¢” = (41, ¢2, ¢3)7. Equating the total derivative of the

constraint equations with respect to « to zero, we get the following equations

* d¢1 * d¢2 *
1 g0 + K12% +K =0
. do . do *
21d—041+ 22d—a2+K24 =0
. dog . dos .
32%“‘ 33%‘*‘[{34 =0
. do . do "
42d—a2+ 43d—a3+K44 =0
(35)
Solving the first two equations simultaneously, we get
% _ U,/ Sin(¢1 — ¢2)
do 1/ sin(¢e — @)
do ro/ sin(¢1 — )
Similarly, solving the last two equations simultaneously, we get
@ _ a/ sin(¢2 — ¢3)
do o/ sin(ds — a — 2?7’)
d¢3 . CL/ sin(¢2 - ¢3) (37)

da r3/ sin(¢s — o — &)

18



It may be verified that equating the two expressions of %, we can recover the singularity
criterion given by equation (34), i.e., the consistency of these equations requires det[K|* = 0.

Differentiating equation (34) with respect to «, we get

cos(1 — a)(S2 — 1)sin(; — 6) + sin(6, — @) cos(n — ) (22 — O
d d
+ cos(g1 — 62)( ¢1 dq;?) in(27 : T - )
2 d
Fsin(6y — ) cos( o7+ @~ gy) (1 - S =0 (38)
It may be seen that the last equation is satisfied by
do; . .
=1l i=123 (39)

and since equations(35, 38) are linear in %%", % = 1 is the only solution of the system. We

now interpret the solution from a geometric viewpoint. From equation(36), we get

a T _ T2
sin(¢; — ¢9) sm(¢2 —a) sin(¢, — «) (40)

The last equation indicates that the links of length 71, ry and a side of the mobile platform

form a triangle, where the angles opposite to the sides 1,7 and a are related to the angles
(p2 — @), (p1 — @) and (¢ — @) respectively (see figure 6). Similarly, from equation(37),
we find that the links ry, 73 form another triangle with another side of the mobile platform.
Geometrically, the above conditions require that the ends of the passive links r1, 79, 73 meet
at a point, and in this configuration, the passive links can rotate finitely with the platform
about this point at the same rate, even when the actuators are held fixed. This observation
verifies equation(39).

We observe that these requirements are more general than those presented in [6], and for
FSM, the meeting of the branches of inverse kinematics is not required. In fact, meeting of
the inverse kinematics branches lead to ID, as we will show in our discussion on ID.

We now find out the configuration of the active links for FSM. Using equation(39) in
equation (35), and substituting in the original constraint equation(32), we get

licp —lacg — 9 =

0
1181 —lasy = 0
To+locyg —lzcs — 23 = 0

0

losg —l3s3 —y3 =

19



Figure 6: Configuration of the Three-degree-of-freedom Parallel Manipulator for FSM

Eliminating #; from the first two of the above equations, we get after some rearrangement,

2, .2 _ 2
cos(m — b0y) = % (42)

which shows that the links /;, [, form a triangle with a side of the base triangle, of which,
7 — 05 is the angle opposite to the link /;. Similarly, from the last two equations of (41), we
find that the links /o, l5 form a triangle with another side of the base triangle. Combining
these two conditions, we find that the tips of the active links also meet at a point, which is
also the point of meeting of the ends of the passive links, hence the results are consistent.
Note that in this case, the architectural requirement is not unique, and any set of link lengths
that allow the mechanism to attain the special configuration is sufficient to allow FSM. The

configuration of the manipulator corresponding to the above conditions is shown in figure 6.

Finite Dwell
The mobile platform of the three-degree-of-freedom parallel manipulator can also show finite
dwell. The architectural requirements for this is derived below using the method described

in section 3.
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The row of the matrix [K*] ' (—[K]) corresponding to ¢ is given by

rirgrs [ SO (61— 61) sin (¢ — ¢3)

W l2 Sin ((]52 - 02) Sin (¢3 — ¢1)

I3 sin (@3 — 63) sin (¢1 — ¢o)

where det [K*] is given in the left-hand side of equation (34). Since we assume det [K*] # 0

for the above to be defined, we must have the ¢;’s all different, i.e., we have

T

The above equation gives the ID criteria, which implies that the individual fingers are
stretched (or folded back) in this configuration. This is also the requirement of meeting
of the inverse kinematics branches. Differentiating equation(43) with respect to the active

variables 0;’s, and solving for the partial derivatives 9%i we get

80j ’
00;
AR 44
aej ) ( )
Differentiating the constraint equations with respect to 6, and noting the results in equation(44),
we obtain
—1181 — T8¢, = 0
llcl + cCy, = 0 (45)

where from we recover the architectural requirement, /; = r;, and the ID criterion for this
finger as ¢1 = m+ 6. Proceeding in a similar fashion, we obtain the architectural constraint
on the links of the i*® finger as I; = ;. Note that there is no relationship between the link-
lengths of different fingers. Also note that maximum number of architectural requirements
on the non-dwelling part of the manipulator, as predicted by equation (21) is 1 x (7—4)? = 9.
In this case, however, the actual number is only 3.

To find the relation between the size of the mobile platform a, and the base platform formed

by the pivots, we substitute l; = r;, and ¢; = m+6; in the constraint equation(32) and obtain

ACy — Ty =
as, =

To+acCiziq) — T3 =

0
0
0
aS(2x1q) — Y3 = 0
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From the last equation, we find that & = 0,2 = a and (x5 — x2)? + y5 = a?. Geometrically,
this shows that the mobile platform has the same size as the base platform, and rests on top
of the base for finite dwell. All the passive links fold back on the corresponding active links,
such that their tips coincide with the pivots.

4.3 Spatial Three-Fingered Manipulator

We now analyze a three-loop six-degree-of-freedom spatial manipulator.

Geometry of the Spatial Three-Fingered Manipulator

The manipulator has three-fingers, each of which has three revolute joints. The first two
of the joints in each finger are actuated, and the last link is passive. The active variable is
given by 0 = (01,0, 03,11, %,13)", and the passive variable by ¢ = (¢1, ¢2, ¢3)7. The DH
parameters of the i*" finger is given in the following table.

i|ojq|aiq|di| 0
1 0 0] 6;
2| 7 lii |0 |9
31 0 lio | 0| ¢

The base of the third finger is taken to be the origin of the fixed coordinate system, and the
base of other two fingers are placed symmetrically about the X axis at distance d from it,
and at a height h above the origin, i.e., the base coordinates of the three fingers are given by
b, = (0, —d, h)", by = (0,d, h)T, and bz = (0,0, 0)” respectively. Finally, the gripped object
is modeled as an equilateral triangular platform of side s, and the connection of the object
with the fingers are modeled as spherical joints.

Formulation of Instantaneous Kinematics

1. Loop-Closure Equations

The position vectors p; (i = 1,2, 3) of the centers of the spherical joints are given by
P: = bz + X; (47)

where x; denotes the position of the center of the spherical joint attached to the 7

finger with respect to the base of the finger. We have
Co; (Lin + linCy; + lisC(yir:))

x; = | so;(lix + liocy; + li3c(¢¢+¢¢))
liosy; + 1i3S(y; +:)
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Figure 7: Spatial Three-Fingered Manipulator

The loop-closure equations are formed by equating the distance between the tips of

pairs of fingers with the length of a side of the gripped object.

(p2 - pl) : (p2 - P1) = S
(ps—p1)-(P3—p1) = s (48)
(P2 - P3) : (P2 - P3) = S

. Formulation of the Matrices
The matrix [K*| has the form:

Ky K, 0
[K*] = 0 K3 K
Ky 0 K
where the non-zero entries of [K*| are given by

ox
K, = 2(bi+xmp)- yﬁl
1
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8X2

K{y, = —2(biy+x12)- 96

K5, = 2(bas +x23) - %}Z

K33 = —2(bgs +xa3) - %z

K} = —2(bs +x3)- %

Kjy = 2bu +xa) - 5 (49)

and b;; and x;; denote b; — b; and x; — x; respectively.

Condition for Gain Singularity

The singularity criteria is given by

det[K"] = K7, K3, K33 — K1, K3 K = 0 (50)

Finite Self Motion of the Spatial Six-degree-of-freedom Mechanism
We study the case when N([K*]) = 1 and choose ¢! = ¢1, ¥ = (¢, #3)T. Equating the

total derivatives of the constraint equations with respect to ¢, to zero, we get

Ky + Kﬁ% =0
b+ Kigs = 0
éﬁ% + K3 = 0
(51)
Solving the first and the last equation respectively, we get
% = —Ki /K,
= KK, (52

Substituting these solutions into the second equation of (51) we recover the singularity
criteria, i.e., equation (52) is consistent at a gain-singularity. Differentiating equation (50)

with respect to ¢, we get an equation involving complicated expressions. However, as in the
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case of the planar three-degree-of-freedom manipulator, it may be verified that this equation

is satisfied by

%:1,2':1,2,3 (53)
These equations being linear in %;‘f—i, %;‘f—i = 1 is the only solution of the system. From
equations (50, 51), we get
Ki, = —Kj
K3 = —Kj3 (54)
K33 = —K3

Combining the last equation with equation (49), we obtain

8X1 8x2

(b1a + x12) - (yqﬁl - %

)=0 (55)

whence we get % = g%;z, since in general, the vector (b, + x12) is not perpendicular to

Oxo

(&1 9%2)  Gimpilarly, a5 = 3_23' Using the expressions of x;, we get

o1 O¢2

lizcos by sin(¢pr + 11) = log cos Oy sin(ps + 1)
lizsiny sin(¢y + 1) = logsinbysin(dy + 92)
lizcos(¢r + 1) = lazcos(ga + 12)
(56)

Squaring both sides of all the above equations and adding, we get [;3 = lo3. Using this, from
the first two equations of the set, we obtain #; = 0, and finally, ¢+ = ¢1+1;. Proceeding
in the same manner, from g%i = g—zg we obtain l13 = l33, #; = 05, and ¢ + Y1 = @3 + Us.
This implies that the passive links of all the fingers are of the same size, and they make the
same angle with the horizontal, and the fingers lie in parallel vertical planes which make an
angle # with the X axis, where § = 6, = 6, = 3. The configurational requirement of FSM
is non-unique in this case, and there is at least one single parameter (f) family of solutions
to the FSM equations.

Substituting the relations derived above in the first of the constraint equations (47) we

get

(lu +5120¢1 _l21 —l220¢2)203+ (2d+ (111 +5120¢1 _l21 —l220¢2)89)2+ (ll?sll)l —1228¢2)2 = 82 (57)
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The solution is valid for all # satisfying the original constraint equations, and may be non-
unique in v; and v, and hence also in the linkage parameters of the first two links of the
fingers of the manipulators. In particular, if we choose identical linkage parameters and
symmetric configuration, i.e., l1; = la1, l10 = loo and 11 = 1)y, it is easy to see that s = 2d.

Similarly, from the third constraint equation, we get
(l11+l126w1 —131—l320¢3)263+(d+(511+l120¢1 —131—1326¢3)89)2+(h+l128¢1 —1328¢3)2 = 82 (58)

Under a similar assumption of symmetry, i.e., l11 = 31,12 = l32 and 1 = 3, we get
h =+/3d.

Thus one family of FSM requires s = 2d,h = v/3d,60; =0, =03 and ;s = lo = I3, i=
1,2,3.

4.4 Planar Six-bar Mechanism

In this section, we study a single-degree-of-freedom planar six-bar mechanism derived from
the Watt chain. This is an example of a mechanism where N ([K*]) can be 1 or 2.
Geometry of the Six-bar Mechanism

Figure 8 shows the general geometry of a six-bar mechanism. Link 1 is the actuated

Y

Figure 8: Planar Six-bar Mechanism with Revolute Joints

link, and the active variable is given by 8 = 6, while passive variables are given by ¢ =

(B2, b3, b4, 95)""
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Formulation of Instantaneous Kinematics

1. Loop-closure equations

We have the loop-closure equations in the form

m = llcl + l20¢2 + lgC¢3 — lo =0

N2 = lisi+1las4, — 354, =0
ns = —bycos(by — B1) + lacy, + lscs; — bacos(dy + az) =0
N = —b1 sin(91 — ﬁl) + l48¢4 — l58¢5 - bg sin(gzﬁg + 042) =0
(59)
2. Formulation of the matrices
We find the matrix [K*] from the above equation as
—128¢2 —l38¢3 0 0
l26¢ —l36¢ 0 0
K*| = . > s 60
K] by sin(¢ + az) 0 —lusg, —lssy, (60)
—bz COS(¢2 + 062) 0 l4C¢4 —Z5C¢5
Condition for Gain Singularity
From equation (9), the condition for gain singularity is given by
l213l4l5 Sin(¢2 + ¢3) sin(qb4 + ¢5) =0
= (¢o+¢3)=0,7 and/or (¢s+¢s)=0,7 (61)

Note that [K*] is of rank 2 when both sin(¢e + ¢3) = 0 and sin(¢4 + ¢5) = 0.

Gained Passive Joint Motion

In this case, N([K*]) = 1 or 2. The gained passive motion is given by (£l3l4l5sin(ds +
B5), lalyls sin(dy + ¢5), bolsls sin(a — @3 — @s), balzly sin(ae — 3 — ¢4))T, when the inner loop
consisting of links 1,2,3 show a gain of degree-of-freedom. The corresponding vector for
the outer loop (consisting of links 1,4,5,2) is (0,0, £l5, Fl4)T. When both the loops are at
respective singular configurations, two of the eigenvalues of [K*] vanish, and the correspond-
ing eigenvectors, which span the null-space of [K*| are linearly dependent. In this case, the
null-space turns out to be the same as in the case of the singularity of the outer loop.
Locking Configuration

The mechanism gets locked when either ¢y = —¢3 or ¢4 = —¢p5. We show a special case in

figure 9, where both the conditions are met.
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Figure 9: Configuration of the Six-bar Mechanism for Instantaneous Gain of Two Degrees
of Freedom

Finite Self Motion of Six-bar Mechanism
We now investigate the gained degree-of-freedom for possible FSM. In this case, N ([K*]) =

1 or 2, hence there are several different possibilities:
1. Instantaneous gain of one degree-of-freedom
2. Instantaneous gain of two degrees-of-freedom
3. Instantaneous gain of one degree-of-freedom resulting in FSM

It was found that both the instantaneous gains can not lead to simultaneous FSM in this
mechanism, hence we consider the case (3). First, we assume sin(¢q + ¢3) # 0, and ¢4+ @5 =

7. Proceeding as in section 3, with ¢! = ¢4, we get

doy dos
* L K* 255 —
11d¢4+ 12d¢4 0
dos dos
o+ K5y—— = 0
21d¢4+ 22d¢4
. do . , do
31ﬁ+K33+K34ﬁ =0
dos dos
K,—+K, ,+K,,— =0
41d¢4 43 44d¢4

(62)
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Consistency of this set of equations requires det([K*]) = 0. Following our assumption,

déy
ds
dos
dos
dés
Ao
dés
des

dés

Derivative of the singularity criteria gives o = —1. The last two equations yield Iy = I3

after some manipulation. Substituting this result in the original constraint equation (59),

= _K§3/K§4

= _KZ?,/KL

we get

—bycos(6y — B1) = bycos(ag + ¢2)
—b1 sin(91 — ﬂl) = bg sin(ozg —+ ¢2) (63)

These equations yield b; = by, whence 6, — 3y = T+ ¢o+ 5. The corresponding configuration

is shown in figure 10.

Figure 10: Configuration of the Six-bar Mechanism for FSM of the Outer Chain

We now consider the case sin(¢s + ¢3) = 0, with ¢! = ¢,. Proceeding as above, we obtain

ly = l3 as the architectural requirement. Using this result, from the original constraints
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equations we recover l; = [y and #; = 0. The requirement on other links is such that link 2
can behave like a crank, and links 4, 5 complete a 4-bar with link 1 as the fixed link. Figure
11 shows the corresponding configuration, with link 1 lying on top of the base link, and link
3 lying on the side of length [ link 2. Links 2 and 3 can now rotate together finitely, while
the driving link (link 1) is held fixed.

Y

&

, P
o 1, \) 4 X
l, /

Figure 11: Configuration of the Six-bar Mechanism for FSM of the Inner Chain

5 Conclusion

In this paper, we have analyzed the singularities associated with the configuration and the
architecture of parallel manipulators. The gain of degree-of-freedom of a closed-loop mech-
anism at a singularity has been analyzed both from geometric and algebraic points of view,
and it has been shown to be associated with the locking of the actuators. The special singular
phenomena such as finite self motion and finite dwell of a mechanism have been explained
in terms of the second-order properties of the constraints, and the analytical criteria for the
same have been derived. The theoretical results have been illustrated through several planar

and spatial single- and multi-degree-of-freedom mechanisms and parallel manipulators.

30



References

1]

[10]

Wang, S. L., and Waldron, K. J., “A study of the singular configurations of serial
manipulators”, Trans. of ASME, Journal of Mechanism, Transmissions and Automation
in Design, Vol. 109, pp. 14-20, 1987.

Litvin, F. L., Zhang, Y., Parenti Castelli, V., and Innocenti, C., “Singularities, config-
urations and displacement functions for manipulators”, The International Journal of
Robotics Research, Vol. 5, pp. 52-65, 1990.

Hunt, K. H., “Special configurations of robot arms via screw theory, Part 1. The
Jacobian and its matrix cofactors”, Robotica, Vol. 4, pp. 171-179, 1986.

Martinez, J. M. R., Alvarado, J. G., and Duffy, J. A., “A determination of singular
configurations of serial non-redundant manipulators and their escapement from singu-

larities using lie products”, Proc. of the Conference on Computational Kinematics,
Nizza, 1994.

Sugimoto, K., Duffy, J., and Hunt, K. H. ; “Special configurations of spatial mechanisms
and robot arms”, Mechanisms and Machine Theory, Vol. 17, pp. 119-132, 1982.

Gosselin, C. and Angeles, J., “Singularity analysis of closed loop kinematic chains”,
IEEFE Journal of Robotics and Automation, Vol. 6, No. 3, pp. 281-290, 1990.

D. Zlatanov, R. G. Fenton, and B. Benhabib “A unifying framework for classification and
interpretation of mechanism singularities”, Journal of Mechanical Engineering Design,
Vol. 117, No. 4, pp. 566-572, 1995.

Park F. C., and Kim J. W.; “Singularity analysis of closed loop kinematic chains”,
Trans. of ASME, Journal of Mechanical Engineering Design, Vol. 121, No. 1, pp. 32-38,
1999.

Merlet, J. P., “Singularity configurations of parallel manipulators and Grassman ge-
ometry”, The International Journal of Robotics Research, Vol. 10, No. 2, pp. 123-134,
1991.

Agrawal, S. K. and Roth, B., “Statics of in-parallel manipulator systems”, Trans. of
ASME, Journal of Mechanical Engineering Design, Vol. 114, pp. 564-568, 1992.

31



[11]

[12]

[13]

[14]

[15]

[16]

Dasgupta, B. and Mruthyunjaya, T. S., “Force redundancy in parallel manipulators:
theoretical and practical issues”, Mechanism and Machine Theory, Vol. 33, No. 6, pp.
727-742, 1998.

Chowdhury, P. and Ghosal, A., “Singularity and controllability analysis of parallel
manipulators and closed-loop mechanisms”, to appear in Mechanism and Machine
Theory.

Hunt, K. H., Samuel, A. E., and McAree, P. R., “Special configuration of multi-finger
multi-freedom gripper - A kinematic study”, The International Journal of Robotics
Research, Vol. 10, No. 2, pp. 123-134, 1991.

Basu, D. and Ghosal, A., “Singularity analysis of platform-type multi-loop spatial
mechanisms”, Mechanism and Machine Theory, Vol. 32, No. 3, pp. 375-389, 1997.

Ghosal, A. and Ravani, B., “Differential geometric analysis of singularities of point
trajectories of serial and parallel manipulators”, ASME Design Engineering Technical
Conference, 1998.

Strang, G., “Linear Algebra and its Application”, Saunders College Publishing, 1988.

32



