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Abstract--Kinematic pairs in a spatial mechanism are viewed either as allowing relative screw motion 
between links or as constraining the motion of the two chains of the mechanism connected to the two 
elements of the pair. Using pair geometry constraints of the sphere-plane and sphere-groove kinematic 
pairs, the displacement, velocity and acceleration equations are derived for, R-Sp-R,¶ R-Sp-P, P-Sp-P, 
P-Sp-R and R-Sg-C three-link mechanisms. For known values of the input variable, other variables 
are computed in closed form. The analysis procedures are illustrated using numerical examples. 

1. INTRODUCTION 

The mechanisms containing higher pairs such 
as cams, sphere-plane, sphere-groove, or 
cylinder-plane provide the designer with the capabil- 
ities of designing machines and mechanisms to satisfy 
more complex and exact functional requirements 
than feasible with only lower pair mechanisms. These 
mechanisms in general are compact and contain 
fewer links than those with lower pairs. 

In recent years, there has been considerable devel- 
opment in the tools for kinematic analysis of spatial 
mechanisms containing lower pairs. 

Kinematic analysis of space mechanisms was ini- 
tiated by the significant contribution of 
Dimentberg[1]. Dimentberg [2, 3] demonstrated the 
use of dual numbers and screw calculus to obtain 
closed-form displacement relationships of an 
RCCC¶ and other four-, five-, six- and seven-link 
spatial mechanisms containing revolute, cylinder, 
prismatic and helical pairs. Denavit[4] derived 
closed-form displacement relationships for a spatial 
RCCC mechanism using dual Euler angles. Yang[5] 
also derived such relationships for RCCC mech- 
anisms using dual quaternions. 

Vectors were first used by Chace[6] to derive 
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closed-form displacement relations of RCCC mech- 
anisms. Wallace and Freudenstein[7] also used vec- 
tors to obtain closed-form displacement relations of 
RRSRR and RRPLRR mechanisms. 

Yang[8] proposed a general formulation using dual 
numbers to conduct displacement analysis of 
RCRCR spatial five-link mechanisms. Soni and 
Pamidi [9] extended this application of (3 x 3) matri- 
ces with dual elements to obtain closed-form dis- 
placement relations of RCCRR mechanisms. 

Yuan[10] employed screw coordinates to obtain 
closed-form displacement relations for RRCCR and 
othe spatial mechanisms. 

Jenkins and Crossley[11], Sharma and 
Torfason[12], Dukkipati and Soni[13] used the 
method of generated surfaces to conduct analysis of 
single loop mechanisms containing revolute, pris- 
matic, cylinder, helical and spheric pairs. Hartenberg 
and Denavit[14] contributed iterative techniques to 
conduct displacement analysis of spatial mechanisms 
using (4 × 4) matrices containing revolute, prismatic, 
cylinder, helical and spheric pairs. Uicker[15] ex- 
plored in further detail the (4 x 4) matrix approach 
of Hartenberg and Denavit. Soni and 
Harrisberger[16] contributed an iterative approach 
for performing kinematic analysis using (3 x 3) ma- 
trices with dual elements. Kohli and Soni[17, 18] used 
finite screws to conduct displacement analysis of 
single-loop and two-loop space mechanisms in- 
volving R, P, C, H and S pairs. 

Bagci[19] used a (3 x 3) screw matrix for displace- 
ment analysis of a mechanism containing two revo- 
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lute pairs, one cylinder pair and one spheric pair. 
Dobrovolski [20] used the method of spherical images 
to analyze space mechanisms containing revolute and 
cylinder pairs. Duffy [21,22], Duffy and 
Habib-Olahi[23] used the method of spherical trian- 
gles to derive displacement relations for five and six 
link mechanisms containing revolute and cylinder 
pairs. Keller[25] and Gupta[26] also analyzed space 
mechanisms containing revolute, prismatic, cylinder, 
helical and spheric pairs. Recently Kohli and 
Soni [26] and Singh and Kohli[27] used the method of 
pair constraint geometry and successive screw dis- 
placements to conduct analyses of single and multi- 
loop mechanisms. 

In the present paper, screw displacements ex- 
pressed in vector form and the pair geometry con- 
straints, also expressed in vector form, are used to 
derive the displacement, velocity and acceleration 
equations for R-Sp-R, R-Sp-P, P-Sp-R, P-Sp-P 
and R-Sg-C three link mechanisms. 

Since Revolute (R) and Prismatic (P) pairs are 
special cases of the cylinder pair (in prismatic pairs, 
the rotation is zero; for revolute pairs sliding is zero), 
we derive the analysis equation for C-Sp-C and 
C-Sg-C mechanisms, and then force rotations or 
translations at one or more pairs to zero, to obtain 
the equations for the above described three-link one 
degree of freedom mechanisms. 

Briefly, the procedure for obtaining the analysis 
equations is as follows. 

Step 1. Consider the C-Sp-C mechanism and the 
C Sg-C mechanism. 

Step 2. Separate the two moving links (Bodies 1 & 
2) at the sphere-plane pair for the C-Sp-C case and 
at the sphere-grove pair for the C-Sg-C. 

Step 3. Use the screw displacements in vector form 
to describe the new (jth) position of the sphere-plane 
(Sp) or sphere-groove (Sg) pairs from two sides of 
the pair. 

Step 4. Use the pair geometry constraints on the 
position of the pair obtained from two sides. 

0 / I / I  

Step 5. Force the cylindrical (C)joints  as revolute 
(R) or prismatic (P) joints by setting the sliding or the 
rotation equal to zero at cylindrical pairs. 

2. THE THREE-LINK MECHANISM AND ASSOCIATED 

VECTORS 

Figure 1 shows the initial position of two rigid 
bodies grounded via cylindrical pairs and connected 
together by a sphere-plane pair. Also shown are the 
following vectors and scalar quantities: 
uA unit vector defining the direction of the axis of 

cylindric pair A. 
u8 unit vector defining the direction of the axis of 

cylindrical pair B. 
P vector locating the axis of cylindric pair at A in 

the fixed coordinate system. 
Q vector locating the axis of cylindric pair at B in 

the fixed coordinate system. 
A unit vector perpendicular to the plane of the Sp 

pair embedded in body 1. 
A' vector embedded in body 2, congruent with A in 

the starting position, as shown in Fig. 1. 
R vector locating point R, the sphere center in the 

fixed coordinate system. 
0 A rotation of link 1 about axis u A. 
O n rotation of link 2 about axis uB. 
SA translation of link I along axis uA. 
SB translation of link 2 along axis uB. 

Figure 2 shows the C-Sg-C mechanism with all 
associated vectors and scalars. Description of all 
parameters are the same as for the C-Sp-C mech- 
anism except for the direction of the vector A, which 
is now along the direction of the groove and also the 
addition of S~, which is the translation of the sphere 
along the direction of A. 

3. PAIR GEOMETRY CONSTRAINT EQUATIONS 

Figures 3 and 4 show a sphere-plane (Sp) pair and 
a sphere-groove (Sg) pair with the vector R locating 
R, the sphere center. The vector A, in the Sp pair is 
defined as a vector perpendicular to the plane in 
which the sphere moves. In the Sg pair, the vector A 
defines the direction of the groove. 

I / I /  ~ Y 

Fig. 1. C-SFC mechanism. Fig. 2. C-SFC mechanism. 
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We can now define the vectors Rj, Aj, R~ and A~. 
These new vectors will define the displaced position 
and direction of initially coincident point R and 
vector A in bodies 1 and 2 respectively after some 
relative motion between bodies 1 and 2. The prime 
notation here is used for new position expressed from 
the motion of body 2, whereas the unprimed no- 
tations are used for new positions expressed from the 
motion of body 1. 

The pair geometry constraint equation for the Sp 
pair is]" 

a n 

d-~[(Rj - R)). A~] = 0, n = 0, 1, 2 . . . .  (1) 

which expresses that any relative motion between the 
sphere and the plane must be perpendicular to the 
vector Aj (Fig. 1). 

The pair geometry constraint equation for the Sg 
pair is 

d"Rj d"R~ d" 
dt" dt" - d- :  (A~Saj) n = 0, 1, 2 . . . .  (2) 
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pair. After some displacement of the mechanism, 
these vectors, in general, will separate due to the 
relative motion of the joint elements. Noting that 
both bodies 1 and 2 are connected to ground by C 
pairs, we use the equations developed by Kohli and 
Soni[26] for expressing the direction of a vector 
embedded in the rigid body and also the displaced 
position of a point of the body after a rotation 0 
about the cylinder axis and a translation S along the 
same axis. Using the prime notation for positions of 
the vector A' obtained from the motion of body 2 and 
the unprimed notation for positions of vector A 
(assumed frozen in body 1 in the first position and 
then moving with body 1) from the motion of body 
1, the displaced directions of the vector A in bodies 
1 and 2 are 

Aj = cos 0Aj[A -- (A" ua)uA] + sin 0Aj(u A x A) 

+ (A- UA)UA (3) 

A: = cos 0Bj[A -- (A" UB)UB] + sin 08j(us x A) 

+ (A • uB)un (4) 

where Saj is the translation of the sphere along the 
groove in the direction of A~. The constraint equation 
for the Sg pair expresses that any relative motion 
between the sphere and the groove must be along the 
groove which is in the direction of A~ (Fig. 2). 

4. WORKING EQUATIONS 

Referring to Fig. 1, let A be a vector in body 1 and 
A' a momentarily congruent vector in body 2 in the 
first position, perpendicular to the plane of the Sp 

Fig. 3. Sphere-plane (Sp) pair. 

Also, the displaced position of the point R in rigid 
bodies 1 and 2 are given by: 

Rj = cos 0a,[(R - P) - ((R - P)" UA)UA] 

+ sin OA](u A x (R - P)) + [(R - P)" uA]ua 

+ uaS .  + P (5) 

R: = cos 0,,{(R - Q) - ((n - Q)" un)ud 

+ sin 0Bj(UBj(U n × (R -- Q)) 

+ [(a - Q)- us]u B + uaSB: + Q. (6) 

Using the identity [ A -  (A" UA)UA] = (UA X A) x uA, 
introducing the vectors 

K = R - P  
(7) 

L = R - Q  

and the following notation for any two vectors uc and 
D, 

UcD = (Uc x D) x Uo (7a) 

Fig. 4. Sphere-groove (Sg) pair. 

we can substitute eqns (7) and (7a) into eqns (5) and 
(6) to get 

Rj = R + uAS A + (cos 0Aj -- 1)UAK + sin 0Aj(UA X K) 
(5a) 

and 

R: = R + unSB + (cos 0Bj -- 1)UBL + sin 0Bj(UB X L). 
(6a) 

?See Appendix for the derivation from the complete We now take the time-derivatives of equations for Rj 
constraint equation, and R~ and using the notation of dots above the 
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variables to indicate time derivatives, we obtain the 
following equations 

]~i = u4S . + [cos 0.(u4 x K) - sin 04jU4AOAj (8) 

R; = uBSsy + [cos Oa:(us x L) - sin 0sjUsLldB/ (9) 

R /=  uAS'Ay -- [COS O.U4x + sin 04:(u A × K)]t~j 

+ [cos 04j(uA × K) - sin 0AyU4k]ti~ (10) 

fi; = usS~ - [cos 0,jUs,. + sin 0s,(u, × L)102/ 

+ [cos 0sj(us x L) - sin 0njUsL]b~. (11) 

Substituting eqn (7a) into eqn (4), using eqns (Sa) and 
(6a), and by making the following substitutions 

M4y = cos 0Aj(U:4 X K) -- sin 0.UA,~ 

Msj = cos OB:(us x L) - sin 0B/UsL 
(12) 

N4j = cos 04yU4x + sin OA:(u4 × K) 

Nay = cos 0njUsL + sin 0sj(u e × L), 
(13) 

For the Sp pair, 

( R / -  R; )"  A; = O. (20) 

For the Sg pair, 

(Ry - Rj) = A;S6y. (21) 

Observe that eqns (20) and (21) are eqns (1) and (2) 
with n = 0. 

The cylindrical pairs used in the derivation may be 
forced to work as prismatic (P) pairs by letting 0 = 0 
or may be forced to work as revolute (R) pairs by 
letting S - 0. 

5.1 The P-Sp-P  case 
For this mechanism, we use 04 = On - 0 and eqns 

(14) and (17) are simplified to 

and 
R/- R: = uASAj -- usSB: 

A; = A. 

Substituting in eqn (20), we get 

we can derive the following working equations (uASA:- uBSs:)" A = 0 (22) 

A; = A + (cos Osj-  1)Us4 + sin Osj(u s x A) (14) which simplifies to the input /output  equation 

.4,~ = [cos Os:(us x A) - sin OsjUs4]Osy = Vsfisj (15) 

A: = [cos 0s,(us × A) - sin OnjU,4]O ~ 

- [cos OnjUs4 + sin 0sj(ns × A)]tJ2j 

A:.' = VsjO~ - Ws:O2sj (16) 

where 

Vs. = cos Os:(us x A) - sin 0BjUB4 
and 

Wsj = cos OsjUs4 + sin Os:(u s x A) 

R: - R~ = uAS Aj + (COS 04: -- 1)U4x + sin 0 4:(u4 × K) 

- u s S B j  - (cos Os:  - 1)UsL 

- sin Osj(u s x L) (17) 

I~t:-P-.; =u4S47 +M4fi,-unSn:-M,fi,: (18) 

I~: - l~; = uA.~q4: -- N,4fi]j + M4j0;j 

- + ( 1 9 )  

5. DISPLACEMENT ANALYSIS 

To analyse the displacements of a particular 3-1 ink 

one-degree-of-freedom mechanism containing either 
the Sp or Sg pair, we need only to take working eqn 
(17), apply the constraints of the particular grounded 
pairs and then substitute the results into the following 
pair geometry constraint equations for displace- 
ments. 

u 4 • A 
Ssj = ~ SA:. (23) 

5.2 The R - S p - P  case 
0 A is the input; Ss is the output  and 0 s - $4 - 0. 

Equations (14) and (17) with On-  $4 - 0 substituted 
in eqn (20) provide, 

[ - usSB/+ (cos 0A/-  1)UAK + sin OAj(UA × K)]" A = 0. 

After simplification we obtain 

Snj = [(cos 0Aj-  I)UAr + sin OAj(UA X K)]" A. (24) 

118 " A 

5.3 The R Sp-R case 
We have for this case SA = Ss = 0, and eqn (14) and 

(17) are simplified to obtain 

and 

Rj - R) = (cos 0 .  - 1)UAK + sin 0Aj(UA X K) 

- -  (COS 0sj -- 1)UnL -- sin 0sj(us x L) 

A~ = A + (cos 0sj - I)UsA + sin 0sj(us × A). 

Substituting the above equations into eqn (20), and 
simplifying the resulting equation, we obtain 

- S/" A + (cos 0Bj -- 1)[ - UsL" A - Sj" UsA] 

+ sin 0a:[(uB x L)" A -- S:" (us x A)] = 0 (25) 
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where S / i s  the known vector Substituting in eqn (21), we have 

S / =  (cos OA/-- 1)Uax + sin Oaj(ua x K). (26) 

Equat ion (25) can be solved for Osj by using the 
following identities 

1 - -  tan 20s 2 tan 0_._~s 
2 2 

cos O n -  ; sin On 
1 + tan 20s 1 + tan 2 On 

2 2 

(27) 

and simplifying the resulting quadrat ic  equation to 
yield 

where: 

O s j  - b +_ x / ( b  2 - c (c  - 2a)) 
I 

tan (28) 
5 e - 2a 

a = -- UnL" A -- S/- Usa 

b = (u s x L ) -  A - S / -  ( u s  x A )  

c = - s / ' A .  

5.4 The  P - S p - R  case  
Here, OA -- S s  = 0 and we have 

R / -  R~ = uaS . - l(cos On~ - 1)UsL -- sin 0Bj(us x L) 

and 

A~ = A + (cos On/-  1)Usa + sin 0s~(us x L). 

u n S s / -  S / +  (cos 0 s / -  1)UsL 

+ sin 0sj(ue x L) + A~Soj  = O. 

Forming the dot  product  of  eqn (31) with (A~ × us) 
and upon simplification, we get 

cos O/y[/~" (A × us) + UeL" (A x us)] 

+ sin 0sj[S/• Usa + U/L" USA] -- (Us x L)" Usa = 0. 

(32) 

Again, 0n/can be obtained by substituting eqns (27) 
into eqn (32) to obtain a quadrat ic  whose solutions 
are 

t a n ~ j - - b  + _ x / ( a 2 + b 2 - c  2) (33) 
z ;  c - - a  

where 

a = S/- (A x us) + U/L" (A x us) 

b = S/" UsA + UnL" Usa 

c = - (Us x L)" UsA. 

Forming the dot  product  of eqn (31) with (us x L) 
and simplifying, we get 

[Sj" (us × L) - (cos 0 n / -  1)UsL " (Us × L)] 
S o / -  A : "  (us x L)  

Substituting the equations above into eqn (20) and 
simplifying, we get 

(cos 0 n / -  1)[  - U / L "  A - S . ( u A  • Usa)] 

+ sin Os:[(us L)" A - SAjua " (us x A)] - Sa:u 4." A = O. 
(29) 

Substituting eqns (27) in eqn (29) and simplifying the 
resulting quadrat ic  gives us 

sin Os:(us x L)" (us × L) 

A:" (us  x L)  
(34) 

Forming the dot  product  of eqn (31) with Us and 
simplifying, we get 

Ssj  = [Sj - (cos 0sj - 1)UsL -- sin Osj(us x L) 

- S~jA~] • us. (35) 

O s j  = - -  b +_ x / ( b  2 - c (c  - 2a)) 
tan ( 3 0 )  

2 c - 2a 

where this time 

a = - UBL" A - SAj(U A • UBA) 

b = (us × L)" A -- SAjUA " (Us × A) 

c = - S a j u A "  A .  

5.5 The  R - S g - C  case  
Only Sa in eqn (17) is identically zero, so we get 

Rj  - R j  : - uASsj  + S j  - (cos 0sj - 1)UsL 

--  sin 0sj(u s x L)  

where Sj is given by eqn (26). Also, 

A; = A + (cos 0Bj - 1)UBL + sin 0sj(un × A). 

6. VELOCITY AND ACCELERATION ANALYSIS 

To obtain the velocity and acceleration relations, 
we can either (a) take the derivatives with respect to 
time of the displacement equations or (b) use the 
higher order constraint  equations. Fo r  the P - S p - P  
case, taking the derivative of  the displacement equa- 
tion is trivial. But for the other cases, this procedure 
is cumbersome. It is therefore more convenient to just 
use eqns (14)-(19) in the following constraint  eqns 
(36)-(39), which are eqns (1) and (2) with n = 1 and 
n = 2 .  

For  the S p  pair  

(Rj- + ( R j -  S; ) .  : 0 (36) 

and 

(f~y - i ~ ) .  A~ + 2(l~y - 1~)- A~ + (Rj -- R~)" ~,~ = 0. 
(37) 
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For the Sg pair where 

and 
l l j -  11~ = A;.~,  + A;S~, (38) 

R~ - fi; = ~.;S~, + 2A;S~¢ + A;So~ (39) 

6.1 The P-Sp-P case 
Here we can use the time derivatives of the dis- 

placement equation to get 

u~ • A 
S~/= ~ S~ 

~nj = u~" A ~ (40) 
un • A ~Y 

D = Mej" A; - (R , -  K) • Ve/. 

6.4 The P Sp-R case 
Equations (18) and (19) are 

also, 

Substituting in eqns (36) and (37) we get 

(46) 

uA'A -. u~" A; 
Oei = Met" A; -- (R i 2 R;)" VB, S4j (47) 

6,2 The R-Sp-P case 
Equations (18) and (19) become 

and 

also 
A) = A,, ,i,) = X;' = 0. 

and 

- (K - R;)" W. )G3  

where D is given by eqn (46). 

(48) 

Substituting in eqns (36) and (37), we get 

Ssj MAj~-A 0 
-- u ~ ' A  ~J 

and 

g . j -  

(42) 

NAj" A "2 MAj" A 
~ :~-  0Aj + u~T~-  O~j. (43) 

6.3 The R Sp-R case 

Equations (18) and (9) become 

11,- [I; : MAjO,~j -- M.jO.j 
and 

R , -  Rj = - NAj02Aj + MAjffA, + Nnfi2jM.,~);. 

Also, 

~,; = v.G~; i ;  = v . G , -  w . , G  

Substituting in eqns (36) and (37), we get 

M,j" A; 
Gj = M~j. A; - (R / -  R;). v~j o .  (44) 

and 

O~ = - N.'D Aj O AS'2 + M.'D A~ OAj + 2M.'D Vsj 0Aj0nj 

+ NBj" A~ -- 2MBs" VBJD -- (Rj -- R~)" Wnj 02 j 

(45) 

6.5 The R Sg C case.. 
Only SAi, SAs and SAj are zero and eqns (18) and (19) 

become: 

and 

also, 

]~/- ]~; = MAi0A,- uB,~t~j- MBj0Bj 

+ Nz/() 2, - Mej0~, 

A/= Ve/0Bj and A/= VB/0~ - WBj0~j. 

Substituting the expression for (11/- il/)just obtained 
into eqn (38) we get 

Mafia , -- u~Se, - MBfiB, = A/SG/+ Vaj0zjS6/ (49) 

0~/, Sa/and SBj are unknowns in eqn (49). 
Forming the dot product ofeqn (49) with (A~ x ue), 

we get 

(MafiA.,- Maj0e) • (A~ × uB) = Vaj" (Aj x us)OaiSa~ 

or 
0n/= M~" Aj' x ue . (50) 

(Sc,VB, + n%)-  A; x us 0A'" 

Now, forming the dot product of eqn (49) with 
[A; x (SoiVB, + MB)], we have 

(MAj0A, -- uBSBj) " A; × (Sc;jVB~ + M,)  = 0 
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o r  

M . "  A: x (ScjVBj + Maj) 
= 0 . .  (51) 

Again forming the dot product of eqn (49) with 

us x (Sa:Vnj + Maj), 

we have 

(M~:~j ' " • - A:Scj) us x (SGjVBj + May ) = 0 

o r  

_ M~j" us x (SGjVBj + MBj) 
(52) 

Acceleration: Substituting the expression for 
(R~ - R~) obtained earlier for the R - S g - C  case into 
eqn (39), we will get 

- N4,0~ J + MAjO'Aj-- ua;S~. + Nafi2s, - Ma, O~ 

(va, O;:- + " " "" = 2VsflajSc: + A:S~: 

or 

uaSaj + ' .. AjS~j + (S~yaj + M,j)b',, 

= -- NAfi~j + M A ~  + (Naj + ScjWa/)O~/ 

- 2Vafia~S~j. (53) 
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Letting X be equal to the r.h.s, of eqn (53) and by 
using the same technique of forming the dot product 
of eqn (53) with the proper cross-products, we will 
obtain the following 

X ' A ;  x ua (54) 
O's: - (SajVa j + May ) "A; x us 

Ssj - X" A~ x_ (ScjVBj + MBj) 
• t us A~ x (Sa:VBj + Ms:.) 

X -  us x (S6jVBj + MB) 

(55) 

(56) 

7. NUMERICAL EXAMPLES 
1. Analysis of a R - S p - R  mechanism. 
The vectors describing the mechanism are 

uA = Of + Ij + O~ 

u, = (3F + 1: + 0/?)/~/i-6 

P = 0 ? + 0 ] + 0 £  

Q = Of + 4j + 0.75/f 

R =  l f +  1.5.f + 2,~ 

A = 0 f + 0 ] +  l~f 

The plot of the output displacement (0s) , velocity 
(03) and acceleration (0~) are given in Fig. 5. 

2. Displacement, velocity and acceleration analysis 
of a R - S g - C  mechanism. 

60*- 

0B 

)ISPLACEMENT 

OB, O B 

VELOCITY 

OA 

ACCELERATION 

INPUT: 

Fig. 5. Plot of 0s, 0B and 0B for the R-Sp-R mechanism. 
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Table 1. Displacements, velocities and accelerations 

°A % 6B ~g sc gc ~ 8B gB sB 

5 2 . 1 2  .41 - . 2 0  - . 1 3  - ] . 5 6  . 75  . 1 5  1 . 7 6  . 3 6  

40 12.99 .12 -1.23 -1.22 -1.95 -.41 1.26 1.79 -.32 

80 -95.87 -3.36 32.3 -2.06 1.66 5.58 2.04 -.81 -4.07 

120 -112.24 26 .40 -.64 1.99 -.55 i.ii -1.59 -.43 

160 -98.34 . 3 9  .ii .58 1.42 -i.0 -.04 -1.64 .28 

200 -8i.04 .46 .08 1.32 .68 -1,06 -I,06 -1.20 .90 

240 -61.47 .51 .06 1.55 .01 -,84 -1.65 -.44 1.23 

280 -40.35 .54 .003 1.37 -0.5 -.67 -I.~5 ,44 1.24 

320 -19.17 .51 -.07 .86 -.97 -.71 -1.05 1.23 .97 

355 -2.2 .45 -,16 .13 -1.43 -.77 -.15 1.69 .52 

The mechanism parameters are 

u~ = ( i f  + 2j + l~')/x/~ 

u~ = ( i f  + l/+ o~) / , , /~  

P = 0f + 0:  + 0~" 

Q = 0 r + 0 j +  i f  

R = 3/'+ 3 f+  3k 

A = (IF + 1j + 2g)/ , , /g.  

The motion parameters are: 0Aj is one unit of angular 
velocity and 0Aj is zero, both constant for j = 0, 
1,2 . . . . .  

The results of the analysis for the R-Sg-C mech- 
anism are shown in Table 1. 

The direction of the rotations and linear motions 
are established using the right hand rule. Rotations 
are positive counterclockwise looking at the head of 
the unit vectors uA and uB. Linear motions are 
positive when they are in the direction of the vectors 
they are associated with. 

It is to be mentioned here also that although the 
quadratic equations gave two sets of solutions, only 
one set will define the motion of the mechanism. The 
other set of solutions are for those positions in which 
the mechanism has to be disassembled into the other 
possible configuration. 

8. CONCLUSIONS 

Displacements, velocities and accelerations have 
been derived for several three-link spatial mech- 
anisms containing sphere-plane and sphere-groove 
pairs. The groove of the sphere-groove pair was 
assumed to be a cylindrical groove, resulting in 
straight line axis of the groove. However, a more 
generalized groove may be one whose axis is a spatial 
curve. The authors are working on developing anal- 
ysis procedures for mechanisms containing such a 
generalized sphere-groove pair. The expected results 
of their work will be the subject of a forthcoming 
paper. Similarly, the authors also have the gener- 

alization of the sphere-plane pair in progress, in 
which the parallel planes of the pair are generalized 
to form equidistant curved surfaces. 
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APPENDIX 

1. Sphere-plane constraint equation 
The complete displacement constraint equations of the 

Sp-pair are 

Rj - Rj = Se:uej (a) 
and 

u,~:" A: = 0 (b) 

wherc u~,j is a unit vector in the plane of the Sp pair, 
perpcndicular to A~ and is in the direction of thc relative 
motion of point R of body 1 with rcspcct to the initially 
coincident point R' of body 2. 

Derivatives of equations (a) and (b) with respect to time 
arc taken to give the following velocity and acceleration 
constraint cquations 

l • j  
_ Rj " / -t 

= S~p~j + S~p~j (c) 

a;j.A 5 + .~.: A, = o (d) 

Acceleration: 

. .  . . .  

~ - ~ = S ~ + 2 S ~ + S ~  (e) 

. . /  / . /  " t • " * 1  upj" A: + 2uej" A~ + upj" Aj = 0 .  (f) 

The constraint eqns (a)-(f) are complete in the sense that  all 
of the important  variables in the motion of the joint  
elements are included. Also, the Coriolis component  in the 
aceleration constraint eqn (f) is evident since Aj is a function 
of Oss. 

2. Proof that (d'/dt")[(Rj - R~)" A~] = 0, n = 0, 1, 2 satisfies 
the complete Sp pair constraint equation 

Without  loss of generality, we can let Sej = Seju'ej and 
write the complete constraint equation as 

d n d n 

~ ( R j  - R~) = ~ ( S e j )  (a) 

d n 

(Sej" Aj) = O. (b) 

Displacement: For n = 0, eqn (a) and (b) are 

(Rj - a 5) = S~j (c) 
and 

Spj" Aj = 0. (d) 

Forming the dot product of cqn (c) with A~ gives us the 
displacement constraint cquation for the Sp pair. 

(Rj - R~)" A~ = 0. (e) 

Velocity: With n = 1, eqns (a) and (b) will become 

- R; = (0 
and 

s , j .  A; = - s~j./~; (g) 

Taking the dot  product of eqn (f) with Aj gives us 

(l~j - l~j) • Aj = Sej "Aj. (h) 

Substituting eqn (g) into (h), we will have 

(Rj - R;) . A; = - Spj" :k;. (i) 

Equation (c) can now be substituted in eqn (i) to get 

(Rj -- 1~;) • A; = - (Rj -- R;)" A; 
o r  

( g -  R;)- A; + ( R , -  a ; ) .  = 0 0) 

which is really 

d 
[(Rj - a ; )"  A;] = O. (k) 

Acceleration: For n = 2, eqns (a) and (b) will be 

(1) 
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and 

Se," A~ + 2Se," A~ + Sej" ~/,; = 0. (m) 

Forming the dot product ofeqn (1) with A; and substituting 

Se," A~ = - 2ge," g - Sej" )~; 

from eqn (m), we will get 

( R , -  R;) • A~ = - 2 S , , "  ~ , j -  Se," .~ j 

or 

Substituting eqns (c) and (0 into eqn (n) gives us 

which is 
d 2 

d}7[(R: - R~)- A:] = O. (o) 

ANALYSE CINEMATIQUE DES MECANISMES SPATIAUX A TROIS BARRES CONTENANT LES PAI RES SPHERE-PLAN 

ET SPHERE-RAINURE 

G.N. Sandor, D. Kohli, M. Hernandez, Jr., A. Ghosal 

R~sum6 - On consid~re g6n6ralement qu'une paire dans un m~canisme spatial permet un mouve- 

ment relatif de vis entre les membres, ou. qu'elle restreint le mouvement des 616ments qui 

lui sont reli6s. 

En employant les contraintes g@om6triques des paires de sphere-plan et de sph~re- 

rainure cin6matiques, les Equations pour le d@placement, la vitesse et l'acc616ration sont 

d~riv~es pour les m~canismes avec trois membres R-Sp-R, R-Sp-P, P-Sp-P, P-Sp-R et R-Sr-C 

(R: r6volute; P: prismatique; C: cylindrique; S: sph~rique; Sp: sphere-plan; Sr: sph~re- 

rainure). Pour les valeurs connues de la variable d'entr~e, les autres variables sont cal- 

cul6es par des formules non-it6ratives. Le proc6d6 d'analyse est illustr~ par des exemples 

num@riques. 


