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Abstract

This paper presents a novel algebraic formulation of the central problem of screw

theory, namely the determination of the principal screws of a given system. Using

the algebra of dual numbers, it shows that the principal screws can be determined

via the solution of a generalised eigenproblem of two real, symmetric matrices. This

approach allows the study of the principal screws of the general two-, three-systems

associated with a manipulator of arbitrary geometry in terms of closed-form expressions

of its architecture and configuration parameters. We also present novel methods for

the determination of the principal screws for four-, five-systems which do not require

the explicit computation of the reciprocal systems. Principal screws of the systems of

different orders are identified from one uniform criterion, namely that the pitches of

the principal screws are the extreme values of the pitch.

The classical results of screw theory, namely the equations for the cylindroid and

the pitch-hyperboloid associated with the two- and three-systems respectively have

been derived within the proposed framework. Algebraic conditions have been derived

for some of the special screw systems. The formulation is also illustrated with sev-

eral examples including two spatial manipulators of serial and parallel architecture

respectively.

∗Corresponding author, email: sandipan@iitm.ac.in.
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1 Introduction

The theory of screws has been used to analyse finite and instantaneous motions of rigid

bodies over the past few centuries. One of the major applications of screw theory has been

in describing the instantaneous motion of a rigid body in terms of the principal screws, which

form a canonical basis of the motion space. The elements of screw theory emerged from the

works of Giulio Mozzi [1] (1763 A.D.), Cauchy, and Chasles [2] (1830 A.D.). However, in

1900, Sir Robert Ball [3] established formally the theory of screws and applied it to the

analysis of rigid-body motions of multiple degrees-of-freedom. The fundamental concepts

of classical screw theory, including the principal screws of a screw system, the cylindroid,

the pitch hyperboloid, and the reciprocity of screws were introduced in his treatise. In

1976, Hunt [4] rejuvenated screw theory from geometric considerations and applied it to the

analysis and synthesis of mechanisms.

The determination of the principal screws of a given system has attracted a significant

amount of research ever since Hunt’s contribution. It is well-known that for the general two-

degrees-of-freedom rigid-body motion, the instantaneous screw axis (ISA) lies on a ruled

surface (known as the cylindroid) generated by the two principal screws of the system.

For general three-degrees-of-freedom rigid-body motion, the three principal screws meet

orthogonally at a point. The points on the resultant ISA having the same pitch lie on a

quadratic surface, known as the pitch hyperboloid. Hunt [4], Hunt and Gibson [5] have also

discussed the special cases of various screw systems and proposed a classification of various

screw systems.

Interestingly, in spite of the long history of classical screw theory and the number of

contributions in the area of principal screws, there seems to be a lack of variety in the

reported works. Researchers have mostly retraced the geometric construction of the principal

screws in one way or the other. For example, Zhang and Xu [6] have reconstructed the pitch

hyperboloid algebraically for a general three-system from the three cylindroids corresponding

to the distinct pairs of input screws. They have computed the principal pitches from the

normal form of the hyperboloid. However, their approach involves solutions of (up to 9)

simultaneous linear equations. Therefore it is procedural in nature, and as we show in

section 5.2, the numerical results obtained by it can be highly inaccurate. Fang and Huang [7]

have used the planar representation of a third-order screw system and the condition of
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degeneracy of the conic-sections in this plane to identify the principal screws. Huang and

Wang [8] have used the above formulation in the context of a 3-RPS pyramid manipulator

and identified numerically its principal screws at different configurations. Huang, Wang and

Fang [9] have studied the 3-RPS manipulator proposed by Lee and Shah [10], and termed it

a deficient-rank manipulator as the associated three-system is found to belong to the fourth

or the seventh special systems discussed in [4]. Huang, Li and Zuo [11] have combined

the concepts of reciprocal screws, planar degeneration etc. described above to analyse the

feasible motions of a special 3-UPU manipulator.

In [12], Bandyopadhyay and Ghosal have proposed a new approach based on the eigen-

problem of a symmetric dual matrix. The complete solution of the dual eigenproblem requires

the solution of a generalised eigenproblem involving two real symmetric matrices (namely the

real and dual parts of the dual matrix), and leads to the set of principal screws. In this pa-

per, we apply this method to study the principal screws of general two-, three-, four-, and

five-systems. We show that for two-, and three-systems, the generalised eigenproblem leads

to a quadratic and a cubic equation respectively. Therefore a closed-form exact solution is

always obtainable in these cases. We derive the expressions for the principal screws and

their pitches in these cases. For the sake of completeness, we derive the classical results

pertaining to the cylindroid and the hyperboloid within our formulation, and interpret some

of the special screw systems algebraically. We derive algebraically the conditions defining

some of the special two-, three-systems described in [4]. We also present the analysis of the

four-, and five-systems, which differs from the analysis of the previous two. The novelty in

our work is that unlike the other formulations, it does not require the computation of the

reciprocal systems as a starting point.

The paper is organised as follows: in section 2, we present a brief description of the

mathematical formulation of our approach for the general two-, three-systems. In section 3,

some closed-from results pertaining to these are presented. The four-, and five-systems are

discussed in section 4. In section 5, we present four examples to illustrate our formulation.

Finally, we present the conclusions in section 6.
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2 Mathematical Development

In this section, we describe the formulation very briefly. We follow the same notations and

formulation presented in [12], therefore the reader is directed to [12] for the details. For

an introduction to dual numbers and their use in kinematics, the reader may please refer

to [13, 14].

The forward linear velocity of a n-degrees-of-freedom manipulator may be written as

v = Jvθ̇, θ̇ ∈ R
n (1)

where θ̇ is the vector of joint rates, and Jv the corresponding Jacobian. Similarly, the

angular velocity is written as:

ω = Jωθ̇ (2)

The algebra of dual numbers allow a combination of these two velocities into the dual velocity

vector, V̂ , as follows:

V̂ = ω + ǫv

⇒V̂ = Jωθ̇ + ǫJvθ̇

⇒V̂ = Ĵ θ̇ (3)

where Ĵ = Jω + ǫJv is the dual Jacobian matrix.

The dual vector V̂ represents a twist associated with the first-order properties of the

motion of a rigid body (see, e.g., [13]). In a spatial manipulator, the twists of the end-

effector (the platform or the equivalent in case of a parallel manipulator) are of primary

interest in terms of analysis and design. The dual Jacobian, Ĵ , is in general a function of the

motion parameters, i.e., the joint variables in case of a manipulator. Therefore, the resulting

twist varies not only with the joint rates θ̇, but also with the configuration governed by θ.

To decouple these two factors, we freeze the configuration, and obtain the set of all possible

twists in that configuration. This technique is very well-known in manipulator kinematics,

and has been applied in terms of the dual Jacobian in [12]. The main points of the formulation

are reproduced below.

To study the distributions of twists, we obtain the extreme values of ‖V̂‖d (the dual norm
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of V̂) under the constraint ‖θ̇‖ = 1. This results in the following dual eigenproblem:

ĝθ̇ = λ̂θ̇, where (4)

ĝ = Ĵ
T
Ĵ (5)

Writing ĝ = g + ǫg0, g, g0 ∈ R
n×n, we get:

g + ǫg0 = Ĵ
T
Ĵ

⇒g + ǫg0 = JT
ωJω + ǫ(JT

ωJv + JT
vJω)

⇒g = JT
ωJω, and

g0 = JT
ωJv + JT

vJω

Returning to the dual eigenproblem (4), we find it equivalent to the following pair of real

eigenproblems:

gθ̇ = λθ̇

g0θ̇ = λ0θ̇ (6)

The two eigenproblems in equation (6) are consistent iff the matrices g and g0 share the

eigenvector θ̇. From linear algebra, the condition implies that:

gg0 = g0g ⇔ [g, g0] = 0 (7)

In general, this condition is not satisfied automatically. However, if g is positive definite,

there exists a transformation T of R
n, which reduces g and g0 to such forms that they

commute. The matrix g can be positive definite only if n equals 1, 2, or 3. Neglecting

the trivial case of one-DOF motion, this refers to the general two-, and three-systems. A

three-step method to obtain T and their geometric significance are described in [12]. The

same result can also be obtained by direct algebraic manipulation as follows. Since λ 6= 0

under the assumptions, we can write from equations (6):

g0θ̇ =
λ0

λ
gθ̇

⇒
(

g0 −
λ0

λ
g

)

θ̇ = 0, λ 6= 0 (8)

The above equation represents a generalised eigenvalue problem of g0 with respect to g. It

has been shown in [12] that the generalised eigenvalues, λ0

λ
, are double the principal pitches
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(denoted by hh). Denoting the ith generalised eigenvector by θ̇
h

i , we can rewrite equation (8)

as:

(

g0 − 2hh
i g
)

θ̇
h

i = 0 (9)

The generalised eigenvalues, hh
i , can be obtained from the generalised characteristic equation:

det
(

g0 − 2hh
i g
)

= 0 (10)

The eigenvectors, θ̇
h

i , form the columns of the required transformation T . The principal

screws are obtained from them in two steps. First, we obtain the principal twists by mapping

the eigenvectors by Ĵ (see equation (3)):

V̂
h

i = Ĵ θ̇
h

i (11)

Next, we normalise the principal twists to obtain the principal screws, $̂
h

i :

$̂
h

i = V̂
h

i /real(‖V̂h

i ‖d) (12)

It may be noted that after the transformation, ĝ is diagonalised, i.e., the dual inner-product

of two non-identical principal screws vanish:

〈

$̂
h

i , $̂
h

j

〉

d
= 0 + ǫ0 ⇔ i 6= j (13)

From the definition of inner product of screws (see, e.g., [13]) it follows immediately that

the principal screws meet at one point in space orthogonally. The pitches along these screws,

being the double of the generalised eigenvalues of g0 with respect to g, are also the extreme

values of the pitch1. Therefore, the screws $̂
h

i , i = 1, 2 or 1, 2, 3, are indeed the principal

screws described by Ball [3] and Hunt [4]. We term the set of screws the h-basis of P
5 [12].

This approach is novel to the best of our knowledge, and it seems to have the following

advantages over existing work:

• The problem of identification of the principal screws is reduced to a generalised eigen-

problem, which is well-studied in literature (see, e.g., [15]). Therefore, the properties

of screw systems can be analysed using standard algebraic concepts.

1A more direct proof of this claim is presented in Appendix A.
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• The conditions for a generic screw system to reduce to the special cases (as listed

in [4]) can be obtained symbolically in closed-form, in terms of the coefficients of the

generalised characteristic polynomial corresponding to equation (9).

• For three-DOF rigid-body motion, sizes of g and g0 are limited to 3 × 3, and hence

the generalised characteristic polynomial corresponding to equation (9) is restricted to

a cubic at the most. Therefore, we can solve the problem in closed form. Further,

since g is positive-definite in this case, we are also guaranteed to get real eigenvalues

and eigenvectors (see, e.g., [15]).

We present below the closed-form results for two-, and three-systems. The one-system is

trivial, as its only constituent screw serves as the principal screw.

3 Analysis of Two-, Three-systems in the h-basis

In this section, we present the symbolic expressions for the principal screws of h-basis in

terms of the input screw parameters. These exact expressions represent new contributions

of this paper.

We use the notation cθ, sθ respectively for cos θ and sin θ etc. The perpendicular distance

between the screws $̂i and $̂j is denoted by dij and the angle is denoted by αij . Further, ci

and si denote cos θi and sin θi respectively, and cij, sij denote cos αij and sin αij respectively.

3.1 Two-system

We first derive the closed-form expressions of the principal screws. We then recover the

classical equation of the cylindroid associated with the general two-system using the dual

algebra formulation. We also present a few special cases within the two-system.
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3.1.1 Derivation of the h-basis

In this case, the input screws are denoted by $̂1 of pitch h1 and $̂2 of pitch h2. The generalised

characteristic equation is a quadratic of the form:

a0h
2 + a1h + a2 = 0, where (14)

a0 = 4 det(g) = 4s2
12

a1 = 4s12(d12c12 + (h1 + h2)s12)

a2 = det(g0) = 4h1h2 − (h1 + h2)
2c2

12 − d2
12s

2
12 + d12s12(h1 + h2)

This equation may be solved to obtain the principal pitches as:

hh
1 = (h1 + h2) + d12

c12

s12

− D

s2
12

, s12 6= 0

hh
2 = (h1 + h2) + d12

c12

s12

+
D

s2
12

, D =
√

d2
12 + (h1 − h2)2

The (non-normalised) eigenvectors are given by:

θ̇
h

1 = (h2 − h1 + Ds12, (h1 − h2)c12 + d12s12)
T

θ̇
h

2 = (h2 − h1 − Ds12, (h1 − h2)c12 + d12s12)
T

The corresponding principal screws are obtained by mapping the eigenvectors by Ĵ and

normalising the result (as in equations (11,12)). The principal screws intersect orthogonally

at a point in R
3. We translate the origin to this point, and align the new coordinate axes

along q1, q2, q1 × q2, where q1, q2 are parallel to $̂
h

1 , $̂
h

2 respectively. In this new frame,

principal screws attain their simplest forms:

$̂
h

i = ei(1 + ǫhh
i ), i = 1, 2 (15)

where {ei}3
i=1 denotes the standard basis of R

3.

3.1.2 Derivation of the cylindroid

A general screw in a two-system can be expressed as a one-parameter system in the parameter

θ ∈ [0, 2π]:

$̂ = $̂
h

1cθ + $̂
h

2sθ

= cθe1 + sθe2 + ǫ(hh
1cθe1 + hh

2sθe2) (16)

8



Writing $̂ as s + ǫs0, and noting that ‖s‖ = 1, the foot of the perpendicular from the origin

may be found as: r0 = s × s0 = (0, 0, (hh
2 − hh

1)sθcθ)
T . Denoting (hh

2 − hh
1)sθcθ by z and

writing x = r cos θ, y = r sin θ, r ∈ R
+, we find:

z = (hh
2 − hh

1)
xy

r2
= (hh

2 − hh
1)

xy

x2 + y2

Rationalising, we arrive at the well-known equation of the cylindroid [3, 4]:

z(x2 + y2) + (hh
1 − hh

2)xy = 0 (17)

3.1.3 Algebraic analysis of the special cases

One advantage of the algebraic formulation is that the conditions leading to the special cases

of screw systems can be obtained in terms of closed-form algebraic equations.

Equal pitches (finite): The condition for the pitches to be the same is obtained by setting

the discriminant of equation (14) to zero:

16(d2
12 + (h1 − h2)

2)s2
12 = 0 (18)

The last equation shows that the pitches are equal if either of the two conditions hold:

1. s12 = 0: Input screws are coaxial.

2. d12 = 0 = h1−h2: The input screw axes intersect, and the screws have the same pitch.

However, condition 1 above implies that the screws have infinite pitch, since a0 = 4 det(g) = 4s2
12,

hence only condition 2 gives finite, equal pitches. This defines a one-parameter family of

screws, the free parameter being the angle between the axes of the screws.

Infinite pitches: From the above expressions of hh
1 and hh

2 , both the pitches become infinite

when s12 = 0, i.e., the screws are coaxial.

3.2 Three-system

We start with the closed-form results for the general three-system, and then derive the clas-

sical equation of the pitch-hyperboloid describing the distribution of pitches. The algebraic

treatment of a few special cases described by Hunt [4] is also presented.
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3.2.1 Derivation of the h-basis

The generalised characteristic equation (10) is a cubic in this case:

a0h
3 + a1h

2 + a2h + a3 = 0 (19)

Closed-form expressions of the coefficients are computed using the symbolic simplification

algorithms presented in [16]:

a0 = − 8 det(g)

=4(1 + A1 − 4A2)

a1 = − H(1 + A1 − 4A2)

+ 8 ((c12 − c23c31) d12s12 + (c23 − c12c31) d23s23 + (c31 − c12c23) d31s31)

a2 =h2
1(2 + A1 − 2 cos(2α23)) + h2

2(2 + A2 − 2 cos(2α31)) + h2
3(2 + A1 − 2 cos(2α12))

+ 2h1h2(2A1 − 6A2 − 1 − cos(2α12)) + 2h2h3(2A1 − 6A2 − 1 − cos(2α23))

+ 2h3h1(2A1 − 6A2 − 1 − cos(2α31))

− 4h1 ((c12 − c23c31) d12s12 + 2 (c23 − c12c31) d23s23 + (c31 − c12c23) d31s31)

− 4h2 ((c12 − c23c31) d12s12 + (c23 − c12c31) d23s23 + 2 (c12c23 − c31) d31s31)

− 4h3 (2 (c12 − c23c31) d12s12 + (c23 − c12c31) d23s23 + (c12c23 − c31) d31s31)

+ 2d2
12s

2
12 + 2d2

23s
2
23 + 2d2

31s
2
31

− 4(d12d23s12s23c31 + d23d31s31s23c12 + d12d31s12s31c23)
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a3 =det(g0)

=2 (c12c23 − c31) c31h
2
1h2 − 2c12 (c12 − c23c31) h2

1h3 − 2c12c31d23s23h
2
1

− 2c23 (c23 − c12c31)h1h
2
2 − 2(A1 − 2A2 − 1)h1h2h3

− (2c23c31d12s12 + 2 (2c23 − c12c31) d23s23 − 2 (c12c23 − 2c31) d31s31)h1h2

− 2c23 (c23 − c12c31)h1h
2
3

+ (2 (2c12 − c23c31) d12s12 + 2 (2c23 − c12c31) d23s23 − 2c12c23d31s31)h1h3

− (2d2
23s

2
23 + 2c31d12d23s12s23 + 2c12d23d31s31s23)h1

− 2c12 (c12 − c23c31)h2
2h3 − 2c12c23d31s31h

2
2 + 2 (c12c23 − c31) c31h2h

2
3

+ (2d12s12 (c12 − c23c31) − 2c12c31d23s23 − 2 (c12c23 − 2c31) d31s31)h2h3

− (2d2
31s

2
31 + 2c23d12d31s12s31 + 2c12d23d31s23s31)h2 − 2c23c31d12s12h

2
3

− (2d2
12s

2
12 + 2c31d12d23s23s12 + 2c23d12d31s31s12)h3 − 2d12d23d31s12s23s31

where A1 = cos 2φ12+cos 2φ23+cos 2φ31, A2 = c12c23c31 and H = h1 + h2 + h3. Equation (19)

admits only real solutions, as it arises from the simultaneous diagonalisation of two quadratic

forms, g and g0, where g is positive definite (see, e.g., [15]). The generalised eigenvectors

(non-normalised) corresponding to hh
i may be obtained as:

θ̇
h

i = (n1, n2, n3)
T , where

n1 =2c31

(

hh
i − h2

) (

2hh
i − h1 − h3

)

−
(

c12

(

2hh
i − h1 − h2

)

+ d12s12

)

×
(

c23

(

2hh
i − h2 − h3

)

+ d23s23

)

+ 2d31

(

hh
i − h2

)

s31

n2 =2c23

(

hh
i − h1

) (

2hh
i − h2 − h3

)

+ 2d23

(

hh
i − h1

)

s23 −
(

c12

(

2hh
i − h1 − h2

)

+ d12s12

)

×
(

c31

(

2hh
i − h1 − h3

)

+ d31s31

)

n3 =c2
12 (h1 + h2)

2 +
(

d2
12 + 4hh

i

(

−hh
i + h1 + h2

))

s2
12 − 4h1h2 − sin (2α12) d12

(

−2hh
i + h1 + h2

)

The corresponding principal screws are obtained from equations (11,12).

3.2.2 Derivation of the pitch-hyperboloid

As in the case of two-system, we move the origin to the point of concurrence of the principal

screws, and align the coordinate axes along the principal screw axes to obtain a new reference
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frame of R
3, in which the principal screws have the form $̂i = ei(1 + ǫhh

i ), i = 1, 2, 3. Under

the unit speed constraint, the possible screws can be written as a two-parameter family:

$̂ = $̂1l + $̂2m + $̂3n (20)

= le1 + me2 + ne3 + ǫ(lhh
1e1 + mhh

2e2 + nhh
3e3)

where l, m, n ∈ R, l2 + m2 + n2 = 1. The foot of the perpendicular from the origin to the

axis of $̂ may be found as:

r0 = s × s0

= ((hh
3 − hh

2)mn, (hh
1 − hh

3)ln, (hh
2 − hh

1)lm)T

By setting to zero l, m and n in turn, we obtain the cylindroids with the nodal axes

along e1, e2, and e3 respectively. Therefore we arrive at the result obtained in [3, 4], that

for an arbitrary three-DOF motion, the resultant screw axis lies on the intersection of three

cylindroids concurrent at a point, with their nodal axes mutually orthogonal. We now derive

the equation of the hyperboloid which describes the screw distribution completely [3, 4]. Let

the screw axis pass through the point (x, y, z)T . Hence its moment about the origin is given

by q0 = (x, y, z) × q. However, from the definitions, q0 = s0 − hq. Therefore we have the

equation:

(x, y, z)T × q = s0 − hq

Expanding this equation and rearranging, we obtain











h − hh
1 −z y

z h − hh
2 −x

−y x h − hh
3





















l

m

n











= 0 (21)

For the above homogeneous equations to have a non-trivial solution, we must have the

determinant of the matrix on the left hand side as zero. This condition yields:

x2(h − hh
1) + y2(h − hh

2) + z2(h − hh
3) + (h − hh

1)(h − hh
2)(h − hh

3) = 0 (22)

The above equation gives the pitch h associated with a line passing through any arbitrary

point (x, y, z), and corroborates with the results obtained by Hunt [4].

12



3.2.3 Algebraic analysis of the special cases

We now derive the conditions defining some of the special three-systems described by Hunt [4].

Two pitches are equal (all finite): We note that all the principal pitches are finite if

a0 6= 0 in equation (19). To find the condition that the two of the principal pitches are the

same, we scale the equation (19) by a0 and compare with the equation:

(x − α)2(x − β) = 0 (23)

where α, β represent the repeated, and the non-repeated roots respectively. Equating the

corresponding coefficients in equations (19,23), we obtain the following set of equations:

2α + β +
a1

a0

= 0

α2β +
a3

a0

= 0

α2 + 2αβ − a2

a0

= 0

Eliminating α, β from the above three equations, we obtain the required condition as:

4a3
1a3 − a2

1a
2
2 − 18a0a1a2a3 + a0

(

4a3
2 + 27a0a

2
3

)

= 0 (24)

All pitches are equal (all finite): All the pitches are equal when the coefficients of the

standard form of equation (19) vanish. In terms of the coefficients of the original equation,

the required conditions are:

2a3
1 − 9a0a1a2 + 27a2

0a
2
3 = 0 (25)

a2
1 − 3a0a2 = 0, a0 6= 0 (26)

One pitch infinite, two pitches unequal (finite): To derive this set of conditions, we

rewrite equation (19) in terms of σ = 1/h, to obtain:

a3σ
3 + a2σ

2 + a1σ + a0 = 0 (27)

The condition for one of the pitches being infinite is equivalent to the vanishing of one of

the σ’s, i.e.,

a0 = 0, a1, a2, a3 are not all zero (28)
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Further, the two finite pitches are unequal, i.e., discriminant of the residual quadratic equa-

tion is nonzero:

a2
2 − 4a1a3 6= 0 (29)

One pitch infinite, two pitches equal (finite): This case is similar to the last one, and

the conditions are given by:

a0 = 0

a2
2 − 4a1a3 = 0, a1, a2, a3 are not all zero (30)

Two pitches infinite, one finite: From equation (27), the conditions for this case can be

obtained as:

a0 = a1 = 0, a2, a3 6= 0 (31)

All pitches infinite: From equation (27), the conditions for this case can be obtained as:

a0 = a1 = a2 = 0, a3 6= 0 (32)

4 Analysis of Four-, Five-systems in the h-basis

We now study the cases where g is positive semi-definite. The formulation differs from the

two-, and three-systems in that the generalised eigenproblem formulation is not possible

in these cases, as these are characterised by det(g) = 0. Traditionally, in such cases the

reciprocal screw systems are computed first, and their properties are analysed [3, 4]. However,

we continue to use the same criteria for the identification of the principal screws- namely the

extreme values of the pitch. Using the concept of degrees-of-freedom partitioning described

in [12], we partition the space of input screws into two sets, having finite and infinite pitches

respectively. We then find the principal screws of the former set. These screws are reciprocal

to the principal screws of the reciprocal system by construction, and therefore we need not

compute the reciprocal screw system explicitly as an intermediate step in our formulation.

The basis can be completed by the addition of two coaxial screws of infinite pitches in

accordance with the concept of classical co-reciprocal basis [4]. The steps involved for the

analysis of four-system varies slightly from the five-system case, and we describe both of

them in details below.
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4.1 Four-systems

We study below the generic case considered in [3, 4]. The four-system considered constitutes

of three screws of finite pitch and one of infinite pitch, signifying one pure translational DOF.

The steps of computation may be delineated as follows.

• Identify the pure translational twists: We use the concept of partitioning of

degrees-of-freedom described in [12] to find out the screw representing the pure trans-

lation. This is done by first obtaining the nullspace of g, and then using it to obtain

the screw $̂T , which carries all the translational twists:

$̂T = Ĵ θ̇
n
, gθ̇

n
= 0 (33)

There are three linearly independent screws having finite pitches, which lie in the

column-space of Ĵ . We denote these screws by $̂Ci, i = 1, 2, 3, and their collection

by $̂C . Note that the original four-system is a direct sum of $̂T and $̂C .

• Decompose $̂C in sets of screws parallel and perpendicular to $̂T : It is known

in literature, that the principal basis in this case consists of two coaxial screws of

infinite pitch, and two screws of finite pitch orthogonal to this pair. In other words

there is a two-parameter family of screws having finite pitch, which are orthogonal

to the direction of pure translation. To find this set, we now decompose $̂C into two

disjoint subspaces, one of which have the axes parallel to the direction of $̂T , and the

other perpendicular to it. This is done by constructing a general screw, $̂c, within the

space $̂C by a linear combination of $̂Ci:

$̂c = ci$̂Ci, ci ∈ R, i = 1, 2, 3 (34)

We are interested in the solutions for ci such that the following orthogonality condition

is satisfied:

real
(〈

$̂C, $̂T

〉

d

)

= 0 (35)

Further, we introduce the normalisation condition to confine $̂c to P
5 (i.e., to ensure

real(‖$̂c‖d) = 1):

c2
1 + c2

2 + c2
3 = 1 (36)
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Equations (35,36) define two constraints on ci. There is a freedom in choosing one

of the parameters, and without loss of generality, we choose c3 arbitrarily. For each

such choice of c3, equations (35,36) yield two (generally distinct) pairs of solutions for

the other interpolation coefficients c1, c2. Each of these pairs lead to a pair of screws

in $̂C via equation (34), which are perpendicular to $̂T . We note that by the above

construction, all the screws generated by linear combinations of these two screws are

orthogonal to $̂T , and they can have only finite pitch.

• Find the principal screws of the two-screw system formed above: Using the

formulation for the two-system, we find the principal screws, $̂
h

1 and $̂
h

2 , of the screw-

system formed in the previous step. Note that these two screws will be concurrent

and mutually orthogonal, and they have the maximum and minimum pitch among the

finite pitch screws of the original system. Therefore they form a part of the set of

principal screws of the original system.

• Complete the principal basis using the co-reciprocal convention: The other

two principal screws can have infinite pitch, hence by the above construction, they are

restricted to be perpendicular to $̂
h

1 , $̂
h

2 . The location of these screws can be arbitrary.

However, as per the definition of co-reciprocal basis [3], we choose these two coaxial

screws to pass through the point of intersection of $̂
h

1 and $̂
h

2 , with their axes parallel

to that of $̂T . The pitches of these two screws can be denoted as ±hγ , hγ ∈ [−∞,∞].

• Position the origin of the principal basis at the centre of the reciprocal

cylindroid: The two-screw system generated by the screws $̂
h

1 , $̂
h

2 formed in the above

steps is not guaranteed to be reciprocal to the reciprocal of the original four-system,

and the reciprocity theorem is not used in their construction. On the contrary, it may

be shown that the h-basis formed thus is actually a two-parameter system, formed by

the arbitrary translations of the cylindroid formed by $̂
h

1 , $̂
h

2 in a plane perpendicular to

the axis of $̂T . This is possible since translations do not affect the pitch, or direction of

the screws. The reciprocal basis of the original system is located at a particular point

in this plane. This location, denoted by Oh(x, y, z), may be uniquely determined by

using the fact that the two-system of reciprocal screws are reciprocal to the original

four-system. The steps of the procedure are described below.
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1. Find the axes qh
1 , q

h
2 of the screws $̂

h

1 , $̂
h

2 respectively. Denote their pitches

by hh
1 , h

h
2 respectively.

2. Construct two screws, $̂r1 and $̂r2 coaxial with $̂
h

1 and $̂
h

2 respectively. Let

their pitches be (−hh
1) and (−hh

2) respectively, and let them pass through the

point Oh(x, y, z):

$̂r1 = qh
1 + ǫ(hh

1q
h
1 + Oh(x, y, z) × qh

1)

$̂r2 = qh
2 + ǫ(hh

2q
h
2 + Oh(x, y, z) × qh

2) (37)

3. Use the reciprocal product (denoted by 〈·, ·〉r) to generate three equations in x, y, z:

〈

$̂ri, $̂j

〉

r
= 0 (38)

where $̂j is an element of the input four-system. Choose (i, j) such that the

equations are distinct.

4. Solve the above set of equations linearly for (x, y, z).

Thus, in the process of locating the origin of the h-basis for the four-system uniquely,

we locate the origin of the reciprocal two-system as well. The other screw parameters,

such as the pitches, and the axes are obtained without using the reciprocal relationship.

This final step only completes the determination of the reciprocal basis of the original

four-system.

The above process is illustrated, and numerically verified for an example of a four-system in

section 5.

4.2 Five-systems

The analysis of the five-system is not very different from the above, hence we describe it

briefly below.

The starting point, once again, is the decomposition of the input screws into finite-, and

infinite-pitch subsets. In this case, in addition to the three principal screws of finite pitch,

there are two pure translation screws, i.e., all screws of infinite pitch are parallel to a plane

in this case, as opposed to a line in the above case. We identify the screws of finite pitch as

those perpendicular to this plane. Since there can be only one such direction, the finite pitch
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is also fixed for all the screws in that direction. Therefore all the screws perpendicular to the

translation screws qualify as one element of the principal basis of the four-system. The other

four principal screws of the h-basis are determined by constructing two pairs of co-reciprocal

screws of indeterminate pitch. Finally, the reciprocal basis of the original screw system may

be found by locating the single principal screw in a plane, as in the case of four-system. We

note that the computations involved in the cases of four- and five-systems include solutions

of linear and quadratic equations, in addition to the eigenproblem in the first case. However,

since all the computations can be done symbolically, the final results can still be obtained

in closed form.

We note that the general six-system associated with six-DOF rigid-body motion spans P
5

completely, and as such it has no constraints [4]. The screws can have any pitch in [∞,∞],

and their axes can have any direction and location in R
3. Therefore analysis in the h-basis

can yield no information about such motions.

5 Illustrative Examples

In this section, we illustrate, in closed form, some of the theoretical developments presented

above with the example of a 3-R serial manipulator and a general three-system studied by

Zhang and Xu in [6]. We also demonstrate our algorithm for the four-system numerically.

Finally, we analyse the instantaneous kinematics of an existing spatial parallel manipulator,

namely the 3-RPS, using our method.

5.1 Spatial 3-R manipulator

The DH parameters of the manipulator are given in table 1.

i αi−1 ai−1 di θi

1 0 0 d1 θ1

2 α12 a12 d2 θ2

3 α23 a23 d3 θ3

Table 1: DH parameters of the spatial 3-R manipulator
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The matrix g is computed as:

g =











1 c12 c12c23 − c2s12s23

c12 1 c23

c12c23 − c2s12s23 c23 1











Elements of g0 are obtained as:

g011 = g022 = g033 = 0, g012 = g021 = −a12s12

g013 = g031 = (d2s2s12 − (a23 + a12c2)c12)s23 − (a12 + a23c2)c23s12

g023 = g032 = −a23s23

The generalised characteristic equation (see equation (19)) is written in terms of the archi-

tecture parameters and configuration θ as:

4s2
2s

2
12s

2
23h

3 − 4s2s12s23(c2d2s12s23 + s2(a23c23s12 + a12c12s23))h
2

+ ((−a2
12 − 2a23c2s

2
23a12 + (a2

12 − a2
23c

2
2)c

2
23 − d2

2s
2
2s

2
23 + 2a23c2c23d2s2s23)s

2
12

+ 2a12c2c12s23(d2s2s23 − a23c2c23)s12 + ((a2
23 − a2

12c
2
2)c

2
12 − a2

23)s
2
23 + sin(2α12) sin(2α23)a12a23)h

+ a12a23s12s23((a12 + a23c2)c23s12 + ((a23 + a12c2)c12 − d2s2s12)s23) = 0

As expected, this is a cubic equation, which can be solved in closed-form using Cardano’s

formula (see, e.g., [17]). For the sake of illustration, we choose the architecture variables as

d1 = 2, a12 = 1, α12 = π/2, d2 = 1/2, a23 = 1, α23 = π/4, d3 = 1/4, a34 = 1/4, and the

configuration variables as θ1 = π/6, θ2 = π/4, θ3 = π/2. For these numerical values, the

symbolically computed principal pitches yield the following numerical values:

hh
1 = −0.987, hh

2 = 0.316, hh
3 = 2.171

The principal screws at this configuration, are given by:

$̂
h

1 = (0.745,−0.451, 0.493)T + ǫ(0.940, 2.681,−0.972)T

$̂
h

2 = (0.428,−0.243,−0.870)T + ǫ(0.510, 1.565,−0.550)T

$̂
h

3 = (0.512, 0.859, 0.012)T + ǫ(−1.638, 3.503, 0.052)T

It may be verified that the three principal screws intersect orthogonally at the point:

Oh(−0.308,−0.467,−3.207)T
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5.2 A general three system (adopted from [6])

In this section, we re-work an example provided in [6]. The authors have followed the geomet-

ric construction of the pitch-hyperboloid closely. They have solved several linear equations to

get to the principal screws, and have thereby obtained the solutions numerically. In our re-

production of the same example we use symbolic computation to obtain the exact solutions.

We compare some of the key results to show how our method provides an improvement.

The original screws are specified in terms of their axes, qi, a point on the axis, ri, and

the pitch, hi, i = 1, 2, 3. The data are reproduced below:

q1 = (1, 0, 0)T , q2 = (
√

2/2,
√

2/2, 0)T , q3 = (0, 0, 10)T

r1 = (0, 0, 0)T , r2 = (0, 0, 10)T , r3 = (0, 1, 0)T

h1 = 1, h2 = 1, h3 = −1

From these inputs, the ith screw is constructed as $̂i = qi + ǫ(hiqi + ri × qi). From these

screws, the matrices g, g0 are computed as:

g =











1 1√
2

0

1√
2

1 0

0 0 1











, g0 =











2 −4
√

2 1

−4
√

2 2 1√
2

1 1√
2

−2











The generalised characteristic equation (19) takes the following form in this case:

4h3 − 44h2 − 105h − 45 = 0

Solving this equation, we get the principal pitches as:

hh
1 = −3/2 = −1.500000000

hh
2 = (25 −

√
745)/4 ≈ −0.573672032

hh
3 = (25 +

√
745)/4 ≈ 13.073672032

For the sake of comparison, we quote the corresponding values from [6]:

hh
1 = −1.562292808, hh

2 = 0.008922166, hh
3 = 13.41848255

The inaccuracy in the result reported in [6] can be attributed to: (a) error accrual due to

numerous numerical operations, and (b) computation of the principal pitches from several

intermediate (and inaccurate) quantities in the last step.
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Proceeding further, we obtain the principal screws in closed form:

$̂
h

1 =





−5

3
√

6
,
−
√

2

3

3
,

5

3
√

6





T

+ ǫ





10
√

2

3

3
,
−11

√

2

3

3
,
−5

3
√

6





T

$̂2 =

(

−
(√

2

21605 − 791
√

745

(

−29 +
√

745
)

)

,
5
(

−27 +
√

745
)

√

43210 − 1582
√

745
, 2

√

2

21605 − 791
√

745

)T

+ ǫ

(

706
√

2 − 26
√

1490
√

21605 − 791
√

745
,

55
(

−27 +
√

745
)

√

43210 − 1582
√

745
,−2

√

2

21605 − 791
√

745

)T

$̂
h

3 =

(

(

29 +
√

745
)

√

2

21605 + 791
√

745
,

−5
(

27 +
√

745
)

√

43210 + 1582
√

745
, 2

√

2

21605 + 791
√

745

)T

+ ǫ

(

2
(

353 + 13
√

745
)

√

2

21605 + 791
√

745
,

−55
(

27 +
√

745
)

√

43210 + 1582
√

745
,−2

√

2

21605 + 791
√

745

)T

All the properties of the principal screws (e.g., their pitches, orthogonal alignment, concur-

rence) can be verified from the above expressions. For instance, the point of concurrence of

these screws, i.e., origin of the principal system is obtained as:

Oh(0, 1/2, 5)T

For comparison, in [6], the origin is reported as:

Oh(1.639061, 0.771626, 5.80187)T

This example demonstrates very clearly the advantages of the eigenproblem approach to

screw theory. In particular, the results obtained are in closed form and therefore exact.

5.3 A general four system

In this section we illustrate the procedure described in section 4 by deriving the h-basis

of an arbitrary general four system. The input four-screw system consists of the following

elements:

$̂1 = (−0.815, 0.575,−0.073)T − ǫ(0.815,−0.575, 0.073)T

$̂2 = (−0.799, 0.330, 0.502)T + ǫ(−0.799, 0.330, 0.502)T

$̂3 = (−0.982, 0.142,−0.122)T − ǫ(0.982,−0.142, 0.122)T

$̂4 = (−0.992,−0.002, 0.129)T − ǫ(0.992, 0.002,−0.129)T
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The screw system is decomposed in finite, and infinite pitch components, and from infinite-

pitch screw $̂T , the translation direction is obtained as: z = (0.488,−0.810,−0.325)T . The

three-system of screws with finite pitches are now decomposed in two sets, with axis parallel

and perpendicular to this direction. We choose the free parameter c3 in equation (36) as

c3 = 1/3. The two solutions for the interpolation coefficients ci in equation (34) come out

as:

c1 = −0.182, c2 = 0.925, c3 = 1/3

c1 = 0.050, c2 = −0.942, c3 = 1/3

Correspondingly, the two screws perpendicular to z are, respectively:

$̂C1 = −(0.435, 0.104, 0.393)T − ǫ(1.729, 0.759,−0.501)T

$̂C2 = (0.119,−0.118, 0.474)T + ǫ(1.870,−0.440, 0.375)T

The principal screws of the two-system generated by these two screws are:

$̂
h

1 = (0.692, 0.586,−0.421)T − ǫ(1.238,−3.067, 2.266)T

$̂
h

2 = (0.532,−0.020, 0.847)T + ǫ(3.512, 0.279,−0.100)T

The principal screws intersect at the point p(−1.016,−2.980,−2.210)T , and their pitches

are given by hh
1 = 1.893, hh

2 = 1.777 respectively. The principal system of screws can be

completed by adding to the pair $̂
h

1 , $̂
h

2 two co-axial screws along the z axis, whose pitches

are given by hγ and −hγ respectively, where hγ can take any value from −∞ to ∞.

We also derive the reciprocal two-system using our procedure. Solving equations (38) in

section 4, the origin of the reciprocal system is computed as:

Oh(0.871,−2.972,−2.012)T

The principal screws of the reciprocal system are computed from equation (37) as:

$̂r1 = (0.693, 0.586,−0.421)T − ǫ(3.741,−0.651, 0.751)T

$̂r2 = (0.532,−0.020, 0.847)T + ǫ(1.611, 0.368,−3.102)T

For the purpose of numerical verification, we also compute the reciprocal two-system fol-

lowing the procedure described in [4], and subsequently compute its principal screws using
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our method. The results are in numerical agreement up to the sense of these screws. Fur-

ther, we generate a twist in the original four-system by random interpolation of the input

screws: V̂o = (−1.327, 0.680, 0.005)T + ǫ(−2.760,−3.152, 3.905)T . It may be verified that

the reciprocal products,
〈

V̂o, $̂r1

〉

r
,
〈

V̂o, $̂r1

〉

r
∼ O(−16).

5.4 The 3-RPS parallel manipulator

We now analyse a three-degrees-of-freedom fully parallel spatial manipulator to illustrate

our method. This manipulator was first proposed by Lee and Shah [10] as a “parallel wrist”.

Figure 5.4 shows a schematic of this device. The manipulator has three identical prismatic
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Figure 1: 3-RPS parallel manipulator

legs, each connected to a base with a rotary joint, and to a top platform with a spherical

joint. The prismatic joints are actuated, and all other joints are passive. The connection

points are distributed uniformly over a circle in each case. The circumradius of the bottom

platform (denoted by b), is taken to be one unit without any loss of generality, and all other

linear dimensions are scaled accordingly. The top circumradius is denoted by a.

To find the principal screws associated with the motion of the manipulator at any given

configuration we must first solve the forward kinematics problem to obtain all the passive

variables and then calculate the matrices Jω and Jv. We follow the general method presented

23



in [12] for calculating these matrices and we retain the same notations.

We take a = 1/2 and choose the configuration given by l1 = 3/2, l2 = 5/4, and l3 = 3/4.

One of the feasible set of solutions for the passive variables is given by φ1 = 0.3947, φ2 =

0.9134, and φ3 = 0.3489. In this configuration, we have:

Jηφ =











−0.2970 1.7070 0

0 1.8790 −0.8215

1.7670 0 −0.1425











, Jηθ =











−1.6710 −0.0112 0

0 0.6916 −1.2780

−1.1620 0 −1.3520











We find that det(Jηφ) = −2.3980, therefore the configuration is non-singular. The matrices

Jω and Jv are calculated as:

Jω =











−2.1090 0.4495 1.3320

−0.3943 0.8390 −1.4990

−0.1334 0.4464 −0.8838











, Jv =











−0.4380 0.0746 0.3199

0.1314 −0.2365 0.3998

1.4230 0.5096 0.1446











Therefore we get the real and dual parts of ĝ as, respectively:

g =











4.6225 −1.3385 −2.0998

−1.3385 1.1053 −1.0539

−2.0998 −1.0539 4.8022











, g0 =











1.3647 0.4166 −2.8898

0.4166 0.1253 0.5473

−2.8898 0.5473 −0.6023











The generalised characteristic equation is given by:

4.2633 × 10−14h3 − 1.4211 × 10−14h2 + 13.3766h − 2.7712 = 0

It can be seen that the above equation is singular, as the coefficients of h3, h2 are practically

zeros. The only finite root is obtained as hh
2 = 0.2072. It can be shown that the other two

roots hh
1 , hh

3 tend to ∞ while maintaining the relationship hh
1 = −hh

3 . This confirms the

result presented in [9] that the screw-systems associated with certain configurations of the

3-RPS can belong to the seventh special screw-system described by Hunt [4].

As explained in [12], the reason for the degeneracy of the screw-system is that the axes of

the rotary joints at the base of the three legs are all in the base plane. This ensures that the

legs, and therefore the top platform, cannot have any rotational motion about the normal to

the base platform. Therefore at the most two of the angular velocities of the top platform

can be linearly independent at any configuration.
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It is intuitive that if any one or two of the rotary joints are twisted out of the base plane

then the above degeneracy will be removed. It would result in three independent angular

velocities, and the resulting screw system will be a regular one. To confirm this, we repeat

our calculations after tilting the axis of the rotary joint of the first leg CCW by an angle

β = π/15 radians about the X axis. The important intermediate entities are found to be as

below:

Jηφ =











0.1202 1.7960 0

0 1.8620 −0.9915

1.9330 0 −0.4282











, Jηθ =











−1.5340 −0.2713 0

0 0.7485 −1.0720

−1.0990 0 −1.0650











We find that det(Jηφ) = −3.5381, therefore this configuration is also non-singular. The

matrices Jω and Jv are calculated as:

Jω =











−1.1960 0.4041 1.2950

−0.7722 0.6184 −1.1520

−0.8876 0.3143 −0.7857











, Jv =











−0.2945 0.1021 0.2592

−0.0006 −0.2295 0.2965

1.1050 0.6340 −0.0642











Therefore we get the real and dual parts of ĝ as, respectively:

g =











2.8150 −1.2400 0.0375

−1.2400 0.6444 −0.4358

0.0375 −0.4358 3.6210











, g0 =











−1.2560 −0.2798 −1.7310

−0.2798 0.1972 0.1664

−1.7310 0.1664 0.0893











The generalised characteristic equation is given by:

− 4.063h3 − 18.2200h2 + 6.2830h − 0.4238 = 0

The three principal pitches are all finite in this case:

hh
1 = −4.8102, hh

2 = 0.0931, hh
3 = 0.2328

The principal screws of the h-basis are computed as:

$̂
h

1 = (0.0162, 0.3955,−0.9183)T + ǫ(−0.0186,−0.8045, 4.8910)T

$̂
h

2 = (0.9656, 0.2322, 0.1170)T + ǫ(0.2191,−0.0920, 0.3643)T

$̂
h

3 = (−0.2595, 0.8886, 0.3782)T + ǫ(−0.0418,−0.3678, 1.0820)T
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It may be verified that these screws meet orthogonally at the point Oh(−1.1957, 0.0616, 0.0064)T .

These results clearly show that the screw system associated with the 3-RPS manipulator with

one out-of-plane leg-joint is a general three-system as per Hunt’s classification.

The above example shows how our formulation can be put to use for reliable, and sys-

tematic analysis of the screw systems associated with practical manipulators.

6 Conclusions

In this paper, we have presented an exact formulation for the derivation of the principal

screws of a system of screws. We have shown that the complete solution of the dual eigen-

problem in equation (4) leads to a generalised eigenproblem involving the real and dual parts

of ĝ. The eigenproblem is also shown to be solvable in closed form, and particular cases of

screw systems have been studied symbolically.

The principal basis of screw systems, derived entirely from a new criterion, namely the

extremisation of the pitch of the screws, is shown equivalent to the principal screws dis-

cussed in [3, 4]. The classical results of screw theory have been derived to demonstrate the

consistency of our approach. However, the formulation presented here is novel, and some

of the closed-form results presented have been derived for the first time. Closed-form and

numerical examples have been provided to illustrate the theory developed in this paper as

applied to different screw-systems, including those associated with spatial serial and parallel

manipulators.
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Appendix

A Proof of hh being the extreme value of h

From the definitions of g, g0, we have:

θ̇
T
g0θ̇ = θ̇

T
(JT

ωJv + JT
vJω)θ̇ = ω · v + v · ω

θ̇
T
gθ̇ = θ̇

T
(JT

ωJω)θ̇ = ω · ω (39)

Therefore, from the definition of pitch, we have: h = ω·v
ω·ω

, i.e, h = 1

2

θ̇
T

g0θ̇

θ̇
T

gθ̇
. To obtain the

extreme values of the pitch, we set ∂h

∂θ̇
= 0. After a little manipulation, this leads to the

condition:

(g0 − 2hg)θ̇ = 0, det(g) 6= 0 (40)

equation (40) is identical with the eigenproblem in equation (9), and it is therefore established

that the solution of the generalised eigenproblem gives rise to the extreme values of pitch.
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