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Abstract

The determination of principal twists of the end-effector of a multi-degree-
of-freedom manipulator plays a central role in their analysis, design, motion
planning and determination of singularities. Most approaches to obtain prin-
cipal twists and the distributions of twists, such as the well-known classical
results of cylindroid and hyperboloid, are based on geometric reasoning and
involve intuitive choice of coordinate systems. In this paper, we present a
formal algebraic approach to obtain the principal twists of any multi-degree-of-
freedom serial, parallel or hybrid manipulator, by making use of the algebra of
dual numbers, vectors and matrices. We present analytical expressions for the
principal twists and the pitches for any arbitrary degree-of-freedom manipula-
tor. A consequence of our approach is that we can obtain analytical expressions
for the screws along which a manipulator can lose or gain degrees-of-freedom at
a singularity. The theoretical results are illustrated with the help of examples
of parallel and hybrid manipulators.

1 INTRODUCTION

It is well known in literature that rigid-body displacements constitute a group of
isometries of B3, known as the Special Euclidean Group (denoted by SE(3)). Twists,
representing linear and angular velocity of a rigid body, lie in tangent-space at the
identity of SE(3), which is also the lie algebra (denoted by se(3)) associated with
this group (see, e.g., [1]). Twists are 6-dimensional, but they may be expressed con-
veniently in terms of a pair of vectors in 3. The central problem of screw theory
is to find a suitable principal basis of ®2, in which the basis vectors of se(3), or the
principal screws take the simplest of forms. The principal screws are obtained using



geometric arguments(2, 3]. In this paper, we make use of the dual orthogonal ma-
trix representation of SFE(3)[4] and arrive at the dual vector representation of twists.
Dual 3-vectors form a free-module, D3, over the ring of dual numbers (denoted by
A)[5], which is isomorphic to se(3). This allows us to define an inner product on
se(3), and the corresponding norm of twists, as an element of A. Using these con-
cepts, we reduce the problem of identification of principal twists to the extremization
of the norm of the resultant twist. The extremization leads to an eigen problem of
a symmetric dual matrix, consisting of the dual inner-products of the input screws,
which is positive semi-definite over A. We show that our formulation results in
analytical description of two different principal bases, which contain all the relevant
informations about the first-order kinematics. Extremization of the real part of the
dual norm leads to a basis (denoted by w—basis), in which the degrees-of-freedom of
a multi-degrees-of-freedom rigid-body motion decouples into pure translational and
finite-pitch screw modes. We also show that the classical basis of Ball, which we de-
note as the h—basis, and the w—basis arise out of the general case of the dual eigen
problem. We show that the determination of the principal screws of the h—basis
reduces to a generalized eigen problem involving the real and dual parts of a dual
matrix. The principal pitches are proved to be half of the generalized eigenvalues,
and analytical expressions for them can be obtained in closed form. We also show
that singularities of loss and gain kind, in serial and parallel manipulators, can be
treated naturally. These results form the most important contributions of the paper,
and the theoretical development and the analytical results are more complete and
elegant than the previous attempts of algebraic formulation of principal screws (see,
e.g,[6, 7]).

The paper is organized as follows: in section 2, we present the notion of dual
vectors and matrices and their use in representing twists. We present a symmetric
dual matrix and discuss the eigen systems associated with it. In section 3, we present
the analytical expressions of the principal twists for multi-degree-of-freedom rigid
body motions and the concept of partitioning of degrees-of-freedom of a rigid body.
In section 4, we present results on lost or gained twists at a singularity, and illustrate
the theory, in section 5, with the help of a parallel and a hybrid manipulator.

2 MATHEMATICAL FORMULATION

The theoretical development and results presented in this paper are obtained using
dual numbers, vectors and matrices. In this section, we first briefly review the
notions of a dual number, vector and a matrix, and then apply them to analyze
multi-degree-of-freedom rigid body motion.



2.1 Lines, Screws, and Twists as Dual Vectors

A dual number, a, has the form a + eag, where a, ag € R and e stands for the dual
unit, with the properties € # 0, €2 = 0. The properties of dual numbers are detailed
in[8]. Here we note that the dual numbers over the real field form a ring, and dual
n-vectors form a free module over this ring[5] denoted by D". We can define an
inner product on D? as

(,9) =z -y+e(@ yo+y- zo) (1)

The real and dual parts of the inner product are known to posses frame-invariance|[1]
and the dual inner product is positive semi-definite. A dual vector & is called
a dual unit vector if ||z|| = 1, - zo = 0[8]. A line in R3 can be described in
terms of a dual unit vector as £ = Q + €Q,, where (Q; Qp) is the Pliicker vector

associated with the line. The inner product of two lines, ﬁl,ﬁg , is given by

cos¢p — edsing = coquS where ¢ and d are the angle and the shortest distance
between the two lines respectively[9]. A screw has five independent parameters and
can be described by a dual vector $ = Q + €(Qy + hQ. The pitch of the screw, h,
is given by %%9, IIS]| # 0. If the magnitude of the real part of $ is 0, and that
of the dual part is non-zero, then the pitch is infinite, signifying a pure translation.
The inner product of two screws is computed as cos ¢ + €((h1 + ha) cos ¢ — dsin ¢),
where h; and ho are the pitches associated with the two screws respectively.

We parameterize SE(3) in terms of dual orthogonal matrices of the form A =
R+ eDR, where R € SO(3) gives the orientation of the moving frame attached to
the rigid-body with respect to some fixed reference frame, and D € so(3) is the 3 x 3
skew-symmetric matrix associated with the displacement of the origin of the moving
frame with respect to the fixed frame[4]. For n-DOF motions of the rigid-body, we
can associate n independent real motion parameters, 6;, i = 1,... n, via a smooth
map, ¥ : R" — SE(3) such that ¥(@) = A € SE(3). The motion parameters, 6,
may be assumed to be functions of time ¢ alone, and as 0(¢) evolves smoothly, it
traces a curve c(t) = ¥ (6(t)) on the manifold SE(3), to each point of which we
can associate a tangent space containing the velocity ¢(t) of the curve. The tangent
vector ¢(t) may be obtained from the push-forward map 4, : R" — T, SE(3) such
that v,(0) = A(8(t)) = R+ ¢(DR + DR) € TySE(3). We can translate this
tangent vector to the tangent-space at the identity element of SE(3) by left or
right translations by 21_1(: AT) to obtain the Lie algebra se(3) associated with
the group, where the multiplication is given by the Lie bracket, denoted by [-,-].
The algebra se(3) is isomorphic to the space of twists[1]. Depending upon the
translation used to take them to the identity, we can get a left-invariant twist or




a right-invariant twist. In this paper, we use the right-invariant twists', whose
explicit form is = AAT —q+ (D, Q] + D) where 2 = RR” € 50(3) denotes
the right-invariant angular velocity of the rigid-body. Using the isomorphism of the
algebras (so(3),[-,-]) and (R3, x), we express the twist in terms of a dual vector,
V=w+ e(d + d X w), where w,d and d X w are the counterparts of Q,D, and
[D, Q] respectively in R3. The quantity V is also known as a motor, and may be
thought of as a screw together with a magnitude[9]. In terms of line coordinates,
V = |w]|(Q+¢e(Qy+hQ)), where ||w||, the magnitude of the angular velocity vector,
also denotes the magnitude of the twist.

The resultant twist of the end-effector of a n-DOF manipulator can be expressed
as a linear combination of the input screws, $;,4 = 1,...,n, as

n
f)zzgiéi:jé:J‘dé—}—eré,izl,...,n (2)
i=1

where gi, the ith column of J , may be computed as the vector form of the dual
. . AT . . . . . .

skew-symmetric matrix g—gA , and 6; is the joint variable corresponding to the ith

joint. The dual Jacobian, J , is composed of the Jacobians J, and J, corresponding

to the angular and linear velocities respectively?. The square of the dual norm of
VY may be written as

VI = 8" g8 = |lw](1 + e(2h)) (3)

where ||w|| is the magnitude of the twist, and h is its pitch. The elements of the
matrix g are ($;,8; ), and hence the matrix g is symmetric and frame invariant.

Following the results for point trajectories[10], we seek the extremal values of
the square of the magnitudes of the resultant twist, ||V||2, subject to a unit speed
constraint, ||@|| = 1. Using equation (3) and Lagrange multipliers, \; € A, the
objective function to be minimized is §;;6;,0; — \(6? — 1), i,5 = 1,...,n. The
solution of this n-dimensional extremization problem leads to the eigen problem

g0 = )\ (4)

where A = X\ + €\ is the dual eigenvalue of g. In the following, we present the
special properties of the eigen system of g which form the basis of the theoretical
results of this paper.

! Analogous results can be obtained for left-invariant twists.
2The Jacobians of parallel and hybrid manipulators can be obtained as shown in Appendix A.



2.2 Properties of the Eigensystem of g

The ring of dual numbers, A, have the lexicographical order, namely Z; >< 9
if £1 >< z9, and if 1 = x9, then Z; >=< Iy if g1 >=< zg2. Therefore, the
extremization of the magnitude of the resultant twist implies extremization of the
real part of |V|?, i.e., |w|/?. Expanding equation (4) into its real and dual parts,
we get two real matrix equations,

gh =20,  go0 =0 (5)

Noting that w = J 0, it is easy to see from equations (3) that the extremization of
|w]||? reduces to the first of equations (5) under the constraint ||@|| = 1. However, if
we consider the space of screws alone, with w = 1, then as per the lexicographical
order in A, ||V|? is extremized when its dual part is extremized. The dual part is
twice the pitch, h, and can be shown to be equal to h = g‘—g. This leads to two bases
discussed in the following sections.

2.3 Formulation of the w—basis

Since rankgpd,, < 3, the characteristic polynomial of g, for n-DOF motion (n > 3),
reduces to the form

)\n73(>\3 - an,l)\Q + CI,nfg)\ + an73) =0 (6)

and hence we have to solve for at most a cubic. The cubic is guaranteed to have
real roots, since g is symmetric and the cubic can be solved analytically in closed
form using Cardan’s formula. Hence, we can obtain analytical expressions for the
eigenvalues and the eigenvectors in terms of the input screw parameters. The eigen-
vectors, denoted by OZ , form a basis of the row- space of J and the principal twists,
denoted by V lying in the column-space of J are J 0 The set {V },oi=1,---,n
constitute the w—basis.

2.4 Formulation of the h—basis

It is known from linear algebra, that the two matrices g and g, share an eigenvector,

éh, iff ggo = gog- We show that if g is positive definite we can always find
a transformation 7' of R", which will reduce g and g, to such forms that they
commute. From equation (6), we can observe that the matrix g is positive definite
when the n < 3 — for n > 3, n — 3 eigenvalues are zero. For n < 3, the required
transformation may be obtained in three steps:



1. Diagonalization of g and transformation of go: The transformation T'; has
the eigenvectors of g as its columns and we can write

g1 = Tl_lng = dla‘g{AZ}, 1=1,...,m, 901 — Tl_lgoTl

2. Scaling by the square-root of X\;: The transformation 75 is given by diag

{1/V/i}, i=1,...,n, and we get
go = T2_191T2 = dia‘g{la LR 1}7 9oo — :1’12_19015112

3. Diagonalization of gy, and transformation of g,: The transformation T'3 has
the eigenvectors of gg, as its columns and we get

95 = T3 9,T3 = diag{1,...,1}, go3 = T3 90, Ts = diag{2h;}, i=1,...,n

The total transformation, T' = T'1T2T'3, reduces g into an identity matrix and g,

to a diagonal matrix with entries 2h;. The eigenvectors, 8 , obtained by solving
. . ~h A L

the generalized eigen problem g,0 = 2h;g, when mapped by J leads to principal

screws, and $f =J 0? constitute the h—basis. The matrices g and g, are diagonal
in this basis, and the principal screws meet at one point in space orthogonally, and
as proved above, their pitches are extremal. These two observations identify the
h—basis as the classical principal basis as described in [2, 3]. It may be noted, that
as in the w—basis, the generalized eigenvalues and eigenvectors can be obtained
analytically, since we have to solve at most a cubic equation.

3 PRINCIPAL TWISTS IN w—basis

We now present the analytical expressions of principal twists in the w—basisfor
multi-DOF rigid-body motionand partitioning of degrees-of-freedom. We present
the results for various degrees-of-freedom?.

One-degree-of-freedom rigid body motion: In this case, the distribution
of allowable twists is of the form YV = $101 The single input screw $1 is the the
principal screw of the system, and transforming to a frame where the X axis is
along the screw axis, and the origin is some chosen point on the axis, the principal
twist is k(1 + eh*)(1,0,0)” where h* is the pitch of $ and k € R is the magnitude
of the input, assumed to be unity under the unit-speed constraint.
Two-degrees-of-freedom rigid body motion : Let 8(t) = (61(t),0:(¢))”
represent the two independent motion parameters and Qi, 1 = 1,2 represent the two

3The following results are directly applicable to serial manipulators. For parallel and hybrid
manipulators, similar analytical expressions can be written in terms of g;; and go,;-



input screws. The resultant twist, Vis §191 + éQéQ. The elements of g are* are
cij + 6((hz + hj)cij — dijsij)a 1,7 = 1,2 with ¢; = 1 and s;; = 0. The real and dual
part of the characteristic equation can be solved to obtain

A1 = 2 COS2 ¢12/2(1 + 6(h1 + ho — dig tan(¢12/2)))
Ao = 2sin® ¢19/2(1 + e(hy + hy + dys cot(d12/2))) (7)

The principal magnitude and pitches are given by

|w?|| = V2 cos ¢12/2, lw¥|| = v/2sin ¢r/2 (8)
$ =1/2(h1 + he — di2 tan(¢12/2)), 5 = 1/2(h1 + hg + di2 cot(d12/2))

The real eigenvectors of § are given by 1/4/2(14+1)T, and they map to the principal
twists as \%(@1 +8,).

Three-degrees-of-freedom rigid body motion: In this case, the resultant
twist is $101 + $292 + $303 The characteristic polynomial of g can be written as

)\3 — 3A2 + (3 — C%Q — 033 — Cgl))\ + (6%2 + 633 + Cgl — 2612623631 — 1) =0 (9)

which has real roots

2v3

>\i:1+T c%2+c%3+c§1cos(

b+ (i — 1)%) (10)

3

where i = 1,2,3, and ¢ € [0,27] is such that sing = (1/27)(c?y + 33 + c31)® —
2y 33, and €08 ¢ = ci2¢93c31. The principal magnitudes and pitches are ||w¥| =

Vi, i =1,2,3, and

e — _ az)\;? + alAZ’ + ag
' 3>‘§3 - 6)‘12 + (3 = (cfy + 33+ c5)) N

(11)

Using the notation H = hy + ho + hs, where h;, 2 = 1,2,3 are the pitches of the
input screws, we have

ar = —2H, ar = H(2—ci2 —co3 —c31) + hicoz + hacoz + hacia
ag = H(COS12 —+ cos23 + €0s31 —4012023631) + 2d19 (023631 — 012)
+  2d3zi(ci2co3 — €31) + 2das(ciac31 — c23) (12)

612631+623(1+)\) 012623+C31(1+/\) .1 T and
(1+Ai)2—cly 7 (1+Xi)2—ciy ’

they can be mapped by the dual Jacobian to obtain the principal twists Vi . It may

The ith eigenvector of g is given by 0, = (

*We use d;; and ¢;; to denote the distance and angle between the ith and jth screw axes, and
c;j and s;; to denote cos ¢;; and sin ¢;; respectively.



be verified that for distinct A;, the axes of the principal twists are orthogonal, but,
in general, they do not coincide in $3.

Rigid-body motion with DOF > 3 : The general case of n-DOF motion can
be considered within the same framework by noting that the ranky(Jy) < 3, and
hence ranka(g) < 3, which restricts the characteristic polynomial of § to at most a
dual cubic. More explicitly, the characteristic equation takes the form

333 4+ a1 A2+ @p_o A + Gn_g) =0 (13)

We conclude from the above that n — 3 of the eigenvalues are zeros, and the 3 non-
zero ones can be computed from the residual cubic equation, once the coefficients
are computed from the dual invariants of g. We also note that a,_1 = —n, as it
is the negative of the trace of g and g;; = 1 + €(2h;). The residual cubic equation,
A3 —nA? 4+ a, oA + an 3 = 0, requires the computation of only two coefficients,
which are the second and the third invariants of g. Thus, by exploiting the algebraic
structure of the problem, we ensure an analytic solution for rigid-body motion of
arbitrary DOF greater than 3. The 3 eigenvectors corresponding to the non-zero
eigenvalues and n — 3 principal twists in the null-space of J can be computed by
using standard linear algebra methods.

3.1 Partitioning of DOF

If nullity(Jw) = m, m € Z*, m # 0, then m of the principal twists will lie in
the left null-space of J. Expressed as dual vectors, these twists are of the form
0+ ev? = eJyi, (i =1,...,n—3) for n-DOF motion (n > 3). These twists
have infinite pitches, and they signify pure translational motion of the rigid-body.
Rigid-body motion can thus be divided into two parts, namely, one consisting of
both rotation and translation (finite-pitch motion), and another consisting of purely
translational motion, and independent of the rotational motion of the rigid-body.
This DOF partitioning allows us to study the rotational and translational modes
of rigid-body motion independent of each other, and our analytical expressions for
the principal twists can now be profitably used for robotic applications where the
end-effector motion requirements can be split into these two modes explicitly.

4 ANALYSIS OF SINGULARITIES IN w—basis

The analytical expressions of the principal twists, derived in the previous section,
can be profitably used for analysis of singularities. In this section, we discuss both
the loss and gain kinds of singularities seen in serial and parallel manipulators[11].



4.1 Loss Type of Singularity

The loss kind of singularity is said to occur when the manipulator end-effector fails
to twist about certain screw(s) in spite of full actuation. This results in the loss
of one or more degrees-of freedom of the end-effector[12]. We first consider loss of
rotational DOF.

The manipulator end-effector has 1,2 or 3 rotational degrees-of-freedom depend-
ing upon the number of non-zero eigenvalues g has at a non-singular configuration.
If at a singular configuration, m additional eigenvalues vanish®, then we say that
the manipulator has lost m rotational degrees-of-freedom. It may be noted that
the corresponding pitch also vanishes, and hence the corresponding twist reduces
to a pure translation in the null-space of J at that configuration. We look at the
possibilities on a case by case basis.

One-degree-of-freedom: In this case, the principal screw reduces to a null vector,
0 + €0, unless the original DOF was translational (as in a P-joint), in which case
there is no loss of rotational DOF possible.

Two-degrees-of-freedom: From the set of equations (7), 5\2 can vanish if sin? P19 =
0. The two principal twists collapse to f)‘f = %(él + $2) which gives the resultant

rotational DOF in this case, and \AJ(; = %(@1 — ég), now forms the left null-space

of J, signifying a translatory DOF in addition to the residual rotational DOF.
Three-degrees-of-freedom: In this case, there may be loss of one or two angu-
lar degrees-of-freedom, the conditions of the same are found from equation (9) as
2, + C%3 + Cgl — 2c12¢23¢31 — 1 = 0 and ¢, + 033 + Cgl — 2ci2c3c31 — 1 =0 =
(3 — 2y — 23 — c3,) respectively. The non-zero roots may be computed from equa-
tion (9), which reduces to a quadratic and a linear equation in A in the two cases
respectively. The eigenvectors of g can be computed symbolically, and therefrom
the principal twists in the column-space and null space of J can be obtained.
Degrees-of-freedom(n)> 3: The treatment in this case follows exactly the case
of three-degrees-of-freedom. We need to consider the general equation and the con-
ditions for loss of one or two rotational DOF are a,—3 = 0, and an,—3 = 0 = ap—o
respectively.

The number of pure translational degrees-of-freedom equal the number of linearly
independent pure dual vectors in the left null space of J and they span the space
of pure translational velocities of the rigid body. We write their dual parts as the
columns of a 3 xm real matrix, B, and let the rank of B be r(r < 3). At a singularity
leading to loss of translational DOF, the rank of B reduces by 1, 2 or 3. It may be

5m can be either 1 or 2. All the three eigenvalues can vanish only for a purely Cartesian

manipulator, whose analysis can be done much more conveniently by looking at its linear velocity
distribution in ®2.



noted that loss of rotational motion also leads to the addition of a column to B, but
since the rank of B is limited to 3, the degeneracy of rotational motion does not
lead to an additional translational DOF if rank of B is already 3.

4.2 Gain Type of Singularity

A parallel device gains one or more degrees-of-freedom in the configuration space
when one of the constraint Jacobians, J,¢, loses rank (see Appendix A for deriva-
tion of Jacobians for parallel and hybrid manipulators), and the number of DOF
gained equals the nullity of J,¢ (see, for example, [13]). The gained passive mo-
tions lie in the null-space of Jy4, and may be obtained by solving J 7,¢(i’>z~ = 0,
i=1,...,nullity(Jye). The effect of this gain is that the manipulator end-effector
can now twist about one or more screws even with all the actuators locked. These
twists are given by

Vi =Juwpd; + eJvpdi (14)

The gained principal twists can be obtained analytically since, once again, we need
to solve at the most a cubic equation.

5 ILLUSTRATIVE EXAMPLES

Moving Platform

Base Platform

Axisof R1

X

Figure 1: The 3-RPS Parallel Manipulator Figure 2: The 6-DOF Hybrid Manipulator

The above developed theory is illustrated by an examples of a 3-DOF parallel ma-
nipulator shown in figure 1 and a 6-DOF hybrid manipulator shown in figure 2.
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At a non-singular configuration for the 3-DOF parallel manipulator defined by
li =1, Iy = 2/3, I3 = 3/4, and corresponding passive variables #; = 0.878516
rad , f2 = 0.905239 rad and 63 = 0.120906 rad, the dual eigenvalues of g are A=
3.92612+ €(—0.91996), Ay = 1.87034 4 ¢(0.44710), A3 = 0+ €¢(0), and the three prin-
cipal pitches in the w—basis are given by AY = —0.117159, h¥ = 0.119524, h§{ = oo
respectively. The principal twists, at this configuration, are given by

V] = (1.61698,—1.11205,0.27354)T + ¢(0.59693, 1.14580, —0.55239)"
V, = (—0.63533,—1.06544, —0.57580)" + €(0.13730, —0.28080, —0.02015)
Vv, = (0,0,0)T +€(0,0,0.90320)"

The DOF decoupling is apparent in the purely translational nature of the third
principal twist. The principal twists of the h—basis are computed as

V, = (1.10500,—1.35959,0)" + €(0.55638, 0.85062, —0.80373)"
f)'; = (9.73597,7.91281,6.20082)T x 10~% + €(0, 5.25180, —0.90320 x 10°)T x 10°
i)f; = (9.73597,7.91281,6.20082)7 x 107 + €(0, 5.25180,0.90320 x 10%)T x 107°

The principal pitches in h—basis are hh = —0.17648, hh = —2.85962 x 107, h’g =
«h
2.85962 x 107 respectively. It may be noted that h3 = —hy — oo, and ||[V,| =
~ h o . .
V3]l — 0, even as g has rank 2. The direction of pure translation obtained by sub-

tracting 193 from f)';, (0,0,0)T +¢€(0,0,2x0.9032), is consistent with the translational
velocity obtained in w—basis. The advantage of exact analytical computation is also
clearly seen from the values of the principal screws in h—basis. One can observe
that some entries are O(1) whereas others are O(10~?) and most numerical compu-
tations will round them off to 0. If they are rounded off to zero, then we will get
two translatory modes which is incorrect.

For the 6-DOF hybrid spatial manipulator, shown in figure 2, the active vari-
ables are 8 = (01,05,03,%1,12,%3)T, and the passive variable are given by ¢ =
(é1, p2, ¢3)T. We choose, the link-lengths as I} = 2lo = 4l3 = 1,d = 1/2, h =/3/2,
and s = 1/3/2. At a non-singular configuration given by = (0.2,0.1,0.3, —1., —1.2,1)T,
and ¢ given by (0.3679, 1.4548,0.8831)7, the dual eigenvalues of g are computed as
A1 = 0.03+¢€(0.09), Ay = 2.10+€(5.45) and A3 = 1496.45+¢(1070.41). The principal
pitches are given by hY = 1.37, h§ =1.30, h§{ = 0.36, and h{ = h¥ = h{ = oo.
The last three principal twists signify three translational degrees—of—freedom. We
consider the singular configuration where all the three fingers are fully stretched[11],
and in this configuration we find that the pure dual principal twists vanish iden-
tically, signifying the loss of three translational degrees of freedom. For 6 =
(0.0554, —0.0544, —0.8119, —0.8199, 0, 1.5708), and ¢ = (—1.3300, —1.3300, 0.7854)7,

11



there is a gain of a single DOF, and the gained twist is (0,1/3,0)7 +¢(—1/12,0,0)7
which indicates angular velocity along Y direction and linear velocity in the X — 7
plane. In this example too, the analytical computations yield exact directions and
not numerically corrupted values.

6 CONCLUSION

In this paper, we have presented a formal algebraic framework for analysis of multi-
DOF rigid body motions which is applied towards analysis of parallel and hybrid
manipulators. The development and the results presented in this paper are heavily
based on the use and properties of dual numbers, vectors and matrices. The main
contributions are a) analytical expressions for principal twists for arbitrary multi-
DOF rigid body motions, b) the concept of DOF partitioning, and c) analytical
identification of gained or lost twists at singular configurations of a manipulator.
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A Dual Jacobian of Parallel and Hybrid Manipulators

In parallel manipulators, closed loop mechanisms, and hybrid manipulators, in ad-
dition to the actuated joints, we have one or more passive joints. A parallel de-
vice with m passive variables has m independent constraint equations of the form
1n(0, ¢) = 0, where 7 is a m-vector, @, and ¢, are n-and m-vectors denoting the ac-
tuated and passive joint variables respectively. Differentiating with respect to time
and rearranging[12], we get _ _

Jneb +Jped =0 (15)

At a non-singular configuration, J,¢ is invertible, and the passive joint rates can
be obtained as ¢ = —JT_,;,J ne@. For parallel and hybrid manipulators the dual

Jacobian may be written, after eliminating q}, as

~

Jeq = (on - Jw¢J;,;5J'r)0) + 6(J'UO - J'U¢J1;<};J'rle) (16)

and its columns may be considered as equivalent input screws.
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