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Abstract 

This paper deals with the kinematics of pantographs masts, which have widespread use as deployable 

structures in space. They are overconstrained mechanisms with degree-of-freedom (d.o.f), evaluated 

by the Grubler-Kutzbach formula, as less than one. In this paper, we present a numerical  algorithm to 

evaluate the d.o.f of pantograph masts by obtaining the null-space of a constraint Jacobian matrix. In 

the process we obtain redundant joints and links in the masts. We also present a method based on 

symbolic computation to obtain the closed-form kinematic equations of triangular and box shaped 

pantograph masts and obtain the various configurations such masts can attain during deployment.    

1.0 Introduction  

Deployable masts used in space are prefabricated structures that can be transformed from a closed 

compact configuration to a predetermined expanded form in which they are stable and can carry loads. 

Deployable / foldable mast have one or more internal mechanisms [1-2] and their d.o.f as evaluated by 

the Grubler-Kutzbach criterion often turns out to be less than 1[3]. In this paper we study the 

kinematics of deployable masts made up of pantograph mechanisms or scissor like element (SLE). An 

SLE in two dimensional form has straight rods of equal length connected by pivots in the middle. The 

assembly has one d.o.f and the basic model can be folded and deployed freely. Three dimensional 

masts are created with SLE in such a way that they form a structural unit which in plan view is a 

normal polygon with each side being an SLE. The polygon can be equilateral triangle, square or 

normal n-sided polygon. By combining several of these normal polygon shaped units, structures of 

various geometric configurations can be created [4]. Active cables control the deployment and pre-

stress the pantograph and passive cables are pre-tensioned in the fully deployed configuration. These 

cables have the function of increasing the stiffness when fully deployed. The whole system deploys 

synchronously. 

The kinematics of pantograph masts can be studied by use of  relative coordinates[5], reference point 

coordinates (as in the software package ADAMS) or Cartesian coordinates[6]. In this paper Cartesian 

coordinates, also called natural / basic coordinates, have been used. This method uses the constant 

distance condition for two or more basic points of the same link. Using unitary vectors the method can 

be extended to spatial mechanisms. The main advantage of using Cartesian coordinates is that the 

constraint equations are quadratic as opposed to transcendental equations, and the number of variables 

tends to be (on average) in between relative coordinates and reference point coordinates. In an earlier 

study, the foldability equations were formulated for SLEs based on geometric approach[7].



 

The equations of motion for the SLE masts were obtained and solved numerically using Cartesian 

coordinates [8]. To the best of our knowledge, no attempt has been made  by previous researchers in 

obtaining the closed-form solution for these masts. Closed-form equations, are expected to 

considerably reduce computation time and allow us to obtain different configurations a mast can attain 

which helps in better design of the system. In this paper the closed form kinematic equations are 

derived for the triangular and box  mast using symbolic software MATHEMATICA[9].  

Typical deployable masts have large number of links and joints. The d.o.f of these masts, as evaluated 

by the Grubler-Kutzback criteria, gives numbers less than one and hence, the d.o.f  formula do not 

give a true number. Other methods such as screw theory and graph representation have been proposed 

by various researches to evaluate the correct d.o.f [10-11]. The concept of using first and higher order 

derivatives of constraint equations has been used for under constrained structural systems [12] to 

evaluate mobility and state of self stress. In this paper, we use the natural coordinates and the 

derivatives of the constraint equations to obtain the correct d.o.f  of deployable masts. We also present 

an algorithm to identify redundant joints / links in a mast  which leads to incorrect d.o.f from the 

Grubler-Kutzback criteria. 

2.0   Kinematic description of the mechanism  

The simplest planar SLE is shown in Figure 1. The revolute joint in the middle connect the two links 

of equal length. The assembly has one degree of freedom internal mechanism. The SLE remains stress 

free during the folding and extending process.  The triangular mast and box mast are presented in 

Figure 2 and Figure 3 respectively.     
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Figure. 1. Basic module of SLE   Figure 2. Triangular SLE mast    Figure 3. Box SLE mast 

3.0 Kinematic Modelling  

Modeling of three dimensional mechanisms with natural coordinates [6] can be carried out such that 

the links must contain sufficient number of points and unit vectors so that their motion is completely 

defined. A point shall be located on those joints in which there is a common point to the two links. A 

unit vector must be positioned on joints that have rotation or translational axis. All points of interest 

whose position are to be considered as a primary unknown variable can like wise be defined as basic 

points. In the natural coordinate system the constraint equations originate in the form of rigid 



 

constraints of links and kinematic joint constraints  

3.1  Rigid constraints of link: This imposes a constant distance condition between two natural 

coordinates i  and j  of the link. This is given by 02 ��� ijijij Lrr    (1) 

where,   T
jijiji ZZYYXX )}(),(),{ ( ����ijr and XK,YK and ZK , K = i  or j , are the coordinates at  

basic points  i  or j .  

3.2 Joint constraints: These constraints describe the relative motion in accordance with 

kinematic joints that  link them. The kinematic constraints corresponding to spherical joint is 

automatically satisfied when adjacent links share a basic point. Revolute joint is formed when two 

adjacent links share a basic point and an unit vector. The constraint equations can also be formulated 

for the slider pair[6].   

3.2.1 Scissor like element : Scissor like element (SLE) or pantograph is shown in the Figure 1. Link 

ji  and �k  are coplanar and can rotate around the pivot. It is assumed that the two links are not equal 

and pivot is not in the middle. The position vectors must fulfill the following geometry conditions  
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where, Pm and  �,,, kjim�  is the position vector consisting of coordinates of  basic points. 

3.3 Boundary constraints: The boundary constraints to exclude the global motion, need to be 

defined. If the basic point P is fixed, its coordinates are zero. If point Q moves along a plane 

perpendicular to Z axis, its Z coordinate is zero.  These equations are written as  

Xp = 0=Yp=Zp=Zq                   (3) 

3.4 Constraint equations : The rigid constraint equations, joint constraints and  boundary 

constraints can be written as � � cnj ntojfortf 10,,........., 21 �����  (4) 

in which cn  represents the total number of constraint equations including rigid body conditions, joint 

constraints due to SLE, slider, revolute pair and boundary constraints and n is the number of 

Cartesian coordinates of the system. Derivative of the constraint equations, with respect to time give 

the Jacobian matrix, which can be symbolically written as   

    � 	 0�XB �       (5) 

Since, equation (5) is homogeneous, one can obtain a non-null X�  if the dimension of the null-space of 

)(][ nnc

B  is at least one. The existence of the null-space implies that the mechanism possess  a d.o.f  

along the corresponding X� [6].  



 

The deployable masts will have large number of kinematic pairs and links. It is useful to estimate the 

minimum number of kinematic pairs without losing the desired motion of the system. The dimension 

of null space basis  is useful in estimating the d.o.f  and identifying the redundant kinematic pairs.  

3.5 Numerical Algorithm: The main steps in the numerical algorithm are as follows:  

i)       Add the derivative of the constraint equations one at a time in the following order 

�� arising out of length constraints 

�� arising out of Slider/SLE constraints 

ii) At each step we evaluate dimension of  null space of [B]. If dimension of  null space of 

[B] doesn't decrease  when a constraint is added it is redundant. 

iii) Boundary constraints are added last and the dimension of  null space of [B] is evaluated. If 

dimension of null space does not decrease after adding a boundary constraint, then 

corresponding constraint is redundant. 

iv) The final dimension of the null space of [B] is the degree of freedom of the system. 

In choosing the basic points the finite dimensions of joints are not taken into account. The spherical 

joints are taken at the intersection point of two adjacent links. In this formulation the initial folded 

configuration is not considered as it can have many singular configurations and hence does not give 

the true d.o.f of the system. The basic points  of intermediate configuration is taken for the evaluation 

of Jacobian matrix.  

4.0    Closed form solution for triangular mast  

The numerical algorithm presented above does not give the closed-form expressions for direct and 

inverse kinematics of masts. To obtain them we have to use  the original constraint equations (not in 

its derivative form) and attempt to obtain the minimal set of constraint equations and eliminate 

unwanted variables. Elimination of variables from a set of nonlinear equations is known to be an 

extremely hard problem and the difficulty increases with the number and complexity of each equation 

in the set. We have used a  symbolic computation software, MATHEMATICA, to obtain closed-form 

solutions for some masts.  The natural coordinates are useful in this respect since the equations are 

atmost quadratic in the variables used. In this section, we present the approach to obtain the closed-

form solution for a triangular mast shown in Figure 2. For simplicity, we assume that (i) the links of 

SLEs are equal in length and the pivot is at the midpoint of the links, (ii) the joints 1 to 6 are spherical 

joints, (iii) the joints 1,2 and 3 are constrained to move in a plane, (iv) joint 1 is fixed, and (v) the links 

are rigid and the cables used for pre stressing does not affect the kinematics. 

Using Equation (1), the length constraint equation for link 1-5 is given by  
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Similarly, the equations for the other links can be written.  

The SLE equations can be obtained by using Equation (2) as  

02451 ���� PPPP       (7)  

05362 ���� PPPP       (8)  

06143 ���� PPPP       (9)  

         
It can be observed that only two of the three linear SLE equations are independent. These can be 

checked by reducing these linear equations to row reduced echelon form. By using the assumptions 

(iii) and (iv), and substituting the above equations and observing that X4 = 0 and Y4 = 0 and solving, 

we get only three independent equations with five variables. 
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Assuming X2,Y2 as known inputs, the solution for X3 ,Y3, and Z can be obtained as follows. 
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Hence, using Equations (13) and (7) through (9), the coordinates of all the joints of the triangular mast 

can be obtained in closed form. It can be observed that for the given X2, Y2   coordinates of joint 2, four 

configurations are possible-two configurations each for the positive and negative Z coordinate 

respectively. Each configuration is the mirror image of the triangle formed about the line joining the 

joints 2 and 1. Hence, assuming the mast moves only in the positive Z direction, the number of  

kinematic solution the mast can have is 2.  

From the Equation(13), we have 0)( 2
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joint 2 lie in a circle of radius L. This corresponds to the fully deployed configuration with Z = 0. 

Depending on the magnitude, the joint 2 moves along the circle of radius L. If 0)( 2
2

2
2

2

��� YXL , 

the  solution for Z is imaginary. The coordinates of joint 2 lie out side the work space of the mast. The 

mast cannot reach these coordinates. If  0)( 2
2

2
2

2

��� YXL . The mast configuration includes the 

fully folded (Z = L) and very close to the fully deployed configuration,  ( 0�Z ). 

In the above analysis the independent variables are taken as the coordinates of joint 2. The above 

method  can be used by taking the coordinates of joint 3 as independent variables. Alternatively 



 

Equations (13) containing X3 and Y3 , can be simultaneously solved to evaluate the coordinates X2  and 

Y2  in terms of X3 and Y3  and Equation (12) can be used to evaluate the coordinate Z. 

Box Mast : For the box mast, there are eight length constraint equations and nine independent SLE 

equations. We get following closed form solutions with X2, Y2 and X3  as input. The solutions with 

positive Z axis are given  in Table-1. This mast has eight solutions - four configurations each for 

positive and negative Z coordinate. Each configuration has two folded type and two deployed type of 

configurations.   

Table 1 : Closed form solutions for the box mast �
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5.0   Results  and Discussions 

In this section the methodology for evaluating the d.o.f described in previous section is used for 

triangular and box mast. Finally we present the deployment simulation of a single triangular mast 

using the closed from solutions. 

5.1  Degree of freedom and redundancy  evaluation:  The triangular mast shown in Figure 2 has 

six rigid constraints, 3 SLEs and fixed boundary conditions at joint-1. The additional boundary 

conditions at points 2 and 3 are required to  ensure the motion in XY plane. The results of null space 

are presented in Table 2. It is observed that the null space reduces by three by adding the first SLE. 

The null space reduces by only 2 for the 2nd  SLE and it does not change for the 3rd SLE.  The 

dimension of null space for the triangular mast is 2. Hence, it has one rigid body rotation about point 1 

and one mechanism.  

Table 2 : B matrix details for Triangular mast 
Contents  Size of [B] Null space  Remarks 
Length constraints  (6,18) 12  
+ Boundary conditions (11,18) 7  
+ SLE I (14,18) 4  
+SLE II (17,18) 2 (one component is redundant) 
+ SLE III (20,18) 2 SLE – III is redundant 

The results of null space for box mast shown in Figure 3 are presented in Table 3. It is observed from 

the table that  the null space reduces by three by adding each SLEs. The null space reduces by only 2 

for the 3rd SLE. The null space does not change for the 4th SLE.  The dimension of null space for the 



 

box masts is 3. Hence, the mast has one rigid body rotation about point 1 and two mechanisms. It is 

observed from the last row that the rank does not increase by adding additional boundary conditions 

because three boundary conditions are sufficient to represent the motion in a plane.  

Table 3 : B matrix details for Box mast 
Contents  Size of [B] Null space  Remarks 
Length constraints  (8,24) 16  
+ SLE I (11,24) 13  
+SLE II (14,24) 10  
+ SLE III (17,24) 8 (one component is redundant) 
+ SLE IV (20,24) 8 SLE – IV is redundant 
+ Boundary conditions 
(X1 = Y1 = Z1 = 0) 

(23,24) 5  

+ Boundary conditions 
(Z2 = Z3 = Z4=0) 

(26,24) 3 (Z4 is redundant) 

   
The analysis was also carried out for the hexagonal mast and similar behavoiur was observed. Hence, 

for the n-sided SLE mast, null space reduces by three for addition of each SLE and it  reduces by only 

2 for addition of  (n –1)th  SLE. The null space does not change for the addition of nth SLE.   

5.2 Kinematic simulation for the triangular mast :  The triangular mast with fully stowed 

configuration is taken as the initial configuration. The coordinate X2 is varied from 0 to 30 units in 

steps of 2 units, Y2  is taken as  0.0 and L = 30.0 . The equations (13) are solved to get the coordinates 

of joint 3 as the mast deploys. The simulation is shown in Figure 4. It is observed from the figure that 

as the joint 2 moves horizontally, the two solutions of joint 3 moves along the +60o and –60o line 

about X axis. The decrease in height of the mast during deployment is also shown. The simulation 

were also carried out for the two triangular masts attached at the sides. Due to page limitations these 

are not shown in this paper. 

 

Figure 4 : Trajectory of joint coordinates for triangular mast 



 

6.0 Conclusions  

In this paper the Cartesian coordinate approach has been used to obtain the kinematic equations for the 

three dimensional deployable SLE masts. The d.o.f was evaluated using the Jacobian matrix. An 

algorithm was presented to identify the redundant kinematic pairs. It was observed that some of the 

SLEs were redundant. Hence, these masts can achieve the required single d.o.f with out these 

kinematic pairs. This formulation is easy to apply for the large number of masts. The kinematics of 

triangular and box  masts were studied in closed form and the multiple solutions were evaluated. This 

method can be extended to masts of different shapes and for the stacked masts.  
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