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Abstract – The six-degrees-of-freedom Gough-
Stewart platform manipulator is a promising
alternate architecture for the mechanical design of
a six component force-torque sensor. Two basic
configurations of the Gough-Stewart platforms are
used for the design of six component force-torque
sensors. In an isotropic configuration, equal sensitiv-
ity for all the six components of the force and torque
being measured can be obtained. In a singular
configuration, large mechanical magnification can
be obtained for certain selected components of the
force and torque, and, as a consequence, very small
forces and/or torque along the selected directions
can be measured. In this paper, we revisit the
use of the Gough-Stewart platform manipulator as
a sensor. Algorithms to determine the isotropic
and singular configuration of the Gough-Stewart
platform manipulator are presented. Two specific
configurations of the Gough-Stewart platform with
enhanced sensitivity to selected components of
external forces and torque are taken up for analysis,
design, fabrication and testing. Experimental results
show that the prototype six component force-torque
sensors can measure the external forces and torques
as designed.
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1 Introduction

The Gough-Stewart platform is a six-degree-of-
freedom parallel manipulator. It was first proposed
for the testing of wear in tyres by Gough [1] and later
by Stewart as a flight simulator [2]. The Gough-
Stewart platform manipulator consists of a moving
platform connected to a fixed base by means of six
extendable legs. Controlled extension and/or retrac-
tion of the legs results in six-degree-of-freedom mo-
tion of the moving platform. The main advantages
of a Gough-Stewart platform manipulator is its in-
creased load carrying capability since the load acting
on the moving platform is ‘shared’ by the six legs.
The Gough-Stewart platform manipulator has good
positioning accuracy since the legs are primarily in
tension/compression and undergo very little deflec-
tion due to bending. In addition, the errors in the
actuators do not add up as in a serial manipulator
– the positioning error is determined by the largest
error in any single actuator. Due to these and other
advantages the Gough-Stewart platform manipulator
has been used in a variety of applications such as
vehicle and flight simulators, accurate pointing de-
vices, micro-motion devices and machine tools (see
[3] and [4] and the references contained therein).
The main disadvantages of parallel manipulators in
general and Gough-Stewart platform manipulator in
particular are the small workspace and singularities
present in the workspace.

The Gough-Stewart platform can also be used as a
six component force-torque sensor (see references [5]-
[10] and the references contained therein). In a sen-
sor configuration, the prismatic joints in the legs are
replaced with sensing elements of different shapes,
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such as a ring [8] or ‘H’ slit beam [11], and mounted
with strain gages. The sensing element can measure
the axial force along the leg when an external force-
torque acts on the top platform. In the case of a sen-
sor, the small workspace is not a disadvantage as the
moving platform essentially does not move. When
used as a sensor, the friction, backlash and other non-
linearities at the spherical and Hooke joint joints in
the legs can affect the measurement in unpredictable
ways. In order to avoid the friction and backlash at
the joints, researchers have proposed the use of flexi-
ble hinges. The design of flexible hinges and its basic
theory first appeared in Paros andWeisboard [12] and
were refined by Zhang [13]. Flexible hinges has been
used for the design of a precision six axis dynamome-
ter [14] and, more recently, in a near-singular Stewart
platform based force-torque sensor [10].
The Gough-Stewart platform in an isotropic con-

figuration, as the name implies, has equal sensitivity
for all components of force and torque [8]. Whereas
a Gough-Stewart platform in a near-singular config-
uration will measure the six components of force and
torque with enhanced sensitivity along selected di-
rections [10]. Enhanced sensitivity is useful in many
applications where it is known em a priori that some
components of force or moment are much larger –
in robotic assembly and manufacturing, the force in
the normal direction is known to be 5 to 10 times
larger than in the tangential directions[15]. In aero-
dynamics, it is known that the drag forces, pitch-
ing and other moments are typically 10 to 20 times
smaller than the lift forces in a wing. In this paper,
algorithms developed to obtain isotropic and singu-
lar configurations are presented. Design, analysis and
testing of two near-singular configuration six compo-
nent force-torque sensor are also presented.
This paper is organized as follows: in section 2,

the geometry of Gough-Stewart platform is described
and the equations related to the kinematics and static
analysis of such platforms are presented. In section
3, the concept of isotropic configurations, algorithms
and numerical results of Gough-Stewart platforms in
isotropic configurations are presented. In section 4,
the concept of a singular configuration, algorithms
and results to obtain the singular configurations are
presented. In section 5, two six component force-

torque sensor in near-singular configurations, their
design and experimental results demonstrating the
concept of enhanced sensitivity for chosen compo-
nents of force and torque are presented. The con-
clusions are presented in section 6.

2 Kinematics and statics of
Gough-Stewart platform

Figure 1 shows a schematic of the Gough-Stewart
platform manipulator. It consists of six extensible
legs, denoted by Bi − −Pi, i = 1, 2, .., 6, with pris-
matic (P) joints in each leg. One end of a leg, Pi, is
connected to the moving platform with spherical (S)
joint and the other end, Bi, is connected to the fixed
base with Hooke or universal (U) joint. The Gough-
Stewart platform manipulator, in a general config-
uration, has six degrees-of-freedom – one can obtain
arbitrary desired translatory and rotary motion along
and about the X, Y and Z co-ordinate axis by ap-
propriately actuating the six prismatic joints. The
direct kinematics problem for a Gough-Stewart plat-
form manipulator may be stated as follows: given the
displacements at the six prismatic joints, obtain the
position and orientation of the moving platform. The
inverse kinematics problem is ‘opposite’ – given the
position and orientation of the moving platform, ob-
tain the displacements of the prismatic joints. The
direct kinematics problem is known to be one of the
hardest problems in robot kinematics. It involves
eliminating the S and/or U joint variables and obtain-
ing expressions for the position and orientation of the
moving platform only in terms of the actuated pris-
matic joint variables. Several researchers have tried
to solve this problem and eventually it was shown by
Raghavan and Roth [16] that the required expression,
after elimination, is a 40th degree polynomial. This
implies that there exists at most 40 possible config-
urations of the Gough-Stewart platform manipulator
for given values of the prismatic (P) joint variables.
The inverse kinematics problem on the other hand,
as in all parallel manipulators, is much simpler. As
shown in reference [17], the translation at the pris-
matic joint l1 and the two rotations at the Hooke
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joint, ψ1 and ϕi, can be obtained as

l1 = ±
√

[(x, y, z)T −B0 b1]2 (1)

ψ1 = Atan2(−Y,±
√
X2 + Z2)

ϕ1 = Atan2(X/cosψ1, Z/cosψ1)

where (x, y, z)T is the position vector of P1 obtained
from the given position and orientation of moving
platform, B0b1 is the position of the point B1 with re-
spect to a origin in the fixed base, and X,Y, Z are the
components of the vector [R(Ẑ, γ1)]

T ((x, y, z)T −B0

b1) with [R(Ẑ, γ1)] representing a constant rotation
matrix. For the other legs, the above equations can
be solved in ‘parallel’ and all the joint variables li,
ψi, and ϕi for i = 1, ..., 6 can be found.
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Figure 1: The Gough-Stewart platform

If an external force-moment is applied on the mov-
ing platform, one can obtain the axial forces in the
legs required to keep the Gough-Stewart platform in
equilibrium. This forms the topic of the statics of
the Gough-Stewart platform manipulator and is well
known (see, for example, Merlet [4]). Figure 2 shows
an arbitrary ith leg and the vectors B0bi,

B0t, and
P0pi in the coordinate system {B0} and {P0} at-

tached to the fixed platform and the moving plat-
form, respectively. The figure also shows the pris-
matic joint whose translation along the leg vector Si

is denoted by li. The vector locating the moving plat-
form point Pi can be written with respect to the fixed
base {B0} as

B0pi = [R]P0pi +
B0 t (2)

where the rotation matrix [R] transforms a vector in
{P0} to the coordinate system {B0}. The leg vector
can be written as

B0Si = [R]P0pi +
B0 t−B0 bi (3)

{P0}

{B0}

P0p
i

B0bi

X̂

Ŷ

Ẑ

P Joint

S Joint

U Joint

B0t

li

Bi

Pi

Figure 2: The Gough-Stewart platform

The axial force fi that can be exerted by the pris-
matic (P) joint acts along the unit vector B0si given
by B0Si/li. The resultant force B0F and moment
B0M that can be obtained by the application of the
six fi’s are given by

B0F =

6∑
i=1

fi
B0si

B0M =

6∑
i=1

fi(
B0bi × B0si) (4)
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Dropping the leading superscripts for convenience,
the above equations can be written in a compact ma-
trix form as (

F
M

)
= [H]f (5)

where the ith column of the matrix [H] denoted by
Hi is given by

Hi =

(
si

bi × si

)
(6)

and f is 6 × 1 vector of axial forces applied by the
prismatic (P) joints.
The matrix [H] is called the wrench transforma-

tion matrix and can be used to obtain the external
force and moment that can be supported by a set of
known leg forces. To obtain the required leg forces
fi, i = 1, 2, .., 6 that is required to support a given F
and M combination, the inverse of [H] can be used.
For a sensor application, the measured quantities are
fi, i = 1, 2, ..., 6 and as shown in equation (5), mul-
tiplying the [H] matrix with f directly gives the un-
known six components of the external load F and
M. It maybe noted that the computed F and M
from equation (5) are the forces and moments with
respect to the origin of the fixed base coordinate sys-
tem {B0}. If the force and moment vectors acting
on the moving platform {P0} are given, they can be
transformed to {B0} by using a transformation be-
tween {P0} and {B0}, and this transformation can
be obtained from the geometrical configuration of the
Gough-Stewart platform. In a similar manner, if the
force and moment acting on the moving platform are
needed to be measured, an appropriate transforma-
tion between {B0} and {P0} need to be used.
The matrix [H] forms the basis of the analysis

of isotropic and singular configurations of a Gough-
Stewart platform manipulator or sensor and this is
discussed in the next two sections.

3 Isotropy in Gough-Stewart
platform

The term ‘isotropy’ implies same or identical ‘prop-
erties’ in all directions. A large amount of litera-
ture exists on kinematic isotropy where the goal is

to design Gough-Stewart platforms which can move
equally well in all spatial directions [18, 19, 20, 21].
In the context of force-moment isotropy in Gough-
Stewart platform, it implies the ability of platform
to resist external forces and moments equally well in
all spatial directions [18]. Intuitively, it would be de-
sirable to have a isotropic configuration for a Gough-
Stewart platform based six component force-torque
sensor since the measurements would be equally sen-
sitive or accurate for all the six components of the
externally acting force and moment. Mathematically,
isotropy implies that the eigenvalues (or singular val-
ues) of the [H] matrix are all identical. Unfortu-
nately, this does not have much physical significance
since the elements of the top and bottom 3 × 6 sub-
matrices of [H] have different units – si has no units
whereas bi × si has units of length, and the elements
of the bottom 3× 6 sub-matrix will change with dif-
ferent choice of length units. Instead of evaluating
the singular values of the full [H] matrix, the singu-
lar values of the top and bottom 3 × 6 sub-matrices
are considered in the work by Bandyopadhyay and
Ghosal [22]. They introduce the concept of combined
isotropy where a) the three singular values of the top
3×6 sub-matrices of [H] are equal, b) the three singu-
lar values of bottom 3× 6 sub-matrix are also equal,
but c) the two sets of singular values are not neces-
sarily identical. This approach leads to a more con-
sistent mathematical treatment of the force-moment
isotropy and the design of Gough-Stewart platforms
for force-moment isotropy. The key steps and some of
the main results in reference [22] are presented next.
The equations in (5) can be written separately as

F = [H]Ff

M = [H]Mf (7)

where [H]F, [H]M are the top and bottom 3× 6 sub-
matrices of [H], representing the F and M equations,
respectively. Following standard matrix theory [23],
the extreme values of F and M can be obtained from
two eigenproblems

[g]Ff = λFf

[g]Mf = λMf (8)

where [g]F, [g]M are the square matrices [H]F
T
[H]F
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and [H]M
T
[H]M, respectively. These eigenproblems

have the following characteristics (see [22] for de-
tails):

• The eigenvalues λF and λM are real and nonneg-
ative.

• At the most three of the eigenvalues are nonzero
in each case as the rank of [H]F or [H]M cannot
exceed three.

• The eigenvalues can be solved in closed-form
since we need to solve for at most a cubic polyno-
mial. For example, the characteristic equations
of [g]F are

0 =


λ2F + a1λF + a2, n = 2

λ3F + a1λ
2
F + a2λM + a3, n = 3

λn−3
F (λ3F + a1λ

2
F + a2λF + a3), n > 3

(9)
where ai are real co-efficients. The characteristic
equations of [g]M has exactly the same form as
above.

• For a constraint of the form fT f = 1, the tip of
the force vector F lies on an ellipsoid in R3. The
extreme values of F, corresponding to the mag-
nitude of the semi-major, semi-intermediate and
semi-minor axis of the ellipsoid, are the square
roots of the three non-zero eigenvalues of [g]F.
Similarly, the the tip of the moment vector M
lies on another ellipsoid in R3 and the extreme
values of M are related to the three non-zero
eigenvalues of [g]M. Mathematically, we can
write

λFi = ∥F∗∥2 (10)

λMi = ∥M∗∥2 i = 1, . . . , n

where (·∗) indicates the extreme value of a quan-
tity.

The concept of force and moment ellipsoids are
similar to the concept of velocity ellipsoid for
the motion of an end-effector presented in refer-
ence [17].

• The condition for force isotropy, F − isotropy,
can be written in terms of co-efficients ai. They
are

a21 − 4a2 = 0, n = 2
3a2 − a21 = 0
27a3 − a31 = 0

}
n ≥ 3

(11)

In terms of the force ellipsoid, at F − isotropy,
the ellipsoid becomes a sphere.

• Similar to the above, the condition for moment
isotropy, M− isotropy, can be written as

b21 − 4b2 = 0, n = 2
3b2 − b21 = 0
27b3 − b31 = 0

}
n ≥ 3

(12)

where bi’s denote the real co-efficients of the
characteristic equation corresponding to the
eigenproblem associated with M. In terms of
the moment ellipsoid, at M− isotropy, the ellip-
soid becomes a sphere.

• Finally, the combined isotropy of force and mo-
ment can be written as

a21 − 4a2 = 0
b21 − 4b2 = 0

}
n = 2 (13)

3a2 − a21 = 0
27a3 − a31 = 0
3b2 − b21 = 0
27b3 − b31 = 0

 n ≥ 3 (14)

The above results can be used to compute numerical
results for isotropy in Gough-Stewart platforms. It
maybe noted that this algorithm gives exact isotropy
as opposed to approximate isotropy used by some re-
searchers (see, for example, [8]), and in this sense is
a significant improvement.

3.1 Numerical example of combined
isotropy in Gough-Stewart plat-
form

The semi-regular Stewart platform manipulator (SR-
SPM) is a special case of the general 6 − 6 Gough-
Stewart platform manipulator. It is the most widely
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used configuration in industry. In an SRSPM, the
moving platform and the fixed base can be circum-
scribed in two circles of radii rt and rb centered at P0

and B0, respectively. Moreover there is a 3-way sym-
metry in an SRSPM. The angle subtended by the arcs
P1−P2, P3−P4 and P5−P6 at the centre P0 are equal
and denoted by γt. Likewise the angle subtended by
the arcs B1 −B2 and B3 −B4 and B5 −B6 at centre
B0 are also equal and denoted by γb (see figure 1).
As shown in reference [22], with the moving platform
kept horizontal at a height of z = 0.4627 and rotated
about Z axis by an angle π/18, the SRPSM will ex-
hibit combined force-moment isotropy when rb = 1,
γb = π/5, γt = π/10 and rt = 0.3789. The SRSPM
in the combined isotropic configuration is shown in
figure 3.

Figure 3: Combined force-moment isotropic configu-
ration for an SRSPM (from [22])

4 Singularity in Gough-
Stewart platform

The singular configuration for a Gough-Stewart plat-
form manipulator is obtained when det[H] = 0. From
equation (5), we can write

f = [H]−1(F;M)T (15)

and if det[H] → 0, a finite (F;M)T will give rise to
infinite forces in one or more legs, and some com-

ponent(s) of the external force-moment (F;M) can-
not be supported by the leg forces. The eigenvec-
tors corresponding to the zero eigenvalues of [H]
when mapped to (F;M)T give the singular direc-
tions and Gough-Stewart platform cannot withstand
any force/moment applied along the singular direc-
tions. If the Gough-Stewart platform is in a near-
singular configuration with det[H] small, then a small
force/moment along the singular direction will give
rise to large axial forces along the legs. This me-
chanical magnification can be used to design sensi-
tive six component force-torque sensors where small
forces/moments along certain directions can be more
easily measured. This key concept was used in ref-
erence [10] to design a force-torque sensor with en-
hanced sensitivity to forces along X and Y direc-
tions and to moments about Z direction. The al-
gorithm to determine the singular direction for a
Gough-Stewart platform and some of the key results
from reference [10] are described next.

As discussed in section 3, the rank of [g]F is at most
3 and three eigenvalues of [g]F are always zero. At a
F−singularity, one ( or more) of the three non-zero
eigenvalues of [g]F] becomes zero and the force ellip-
soid degenerates to a ellipse, a line or a point (simi-
lar to the concept of singularities of point trajectories
presented in reference [24]). The singular directions
of a Gough-Stewart platform for externally applied
F can be obtained by mapping the eigenvectors cor-
responding to the zero eigenvalues of [g]F. Likewise
starting with [g]M, we can obtain the singular di-
rections corresponding to M. In reference [10], the
singular directions for several regular 6 − 6 hexag-
onal Gough-Stewart platforms, with identical fixed
and moving platforms, are presented. Two of these
configurations are given by the following sequence of
connection between the base points Bi and moving
platform points Pi.

• Configuration 1: B1 − P1, B2 − P2, B3 − P3,
B4−P4, B4−P4, B5−P5. In this configuration,
the legs are vertical. Two of the three non-zero
eigenvalues of [g]F are found to be zero and the
singular directions of force are along X and Y
and the singular direction of M is about Z. In
this configuration, the Gough-Stewart platform
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will not be able to withstand any force applied
in the horizontal plane and any moment applied
about the vertical axis.

• Configuration 2: B1 − P2, B2 − P3, B3 − P4,
B4 − P5, B5 − P6, B6 − P1. In this configura-
tion, the legs are skewed. All the three non-zero
eigenvalues of [g]M are found to be zero and [g]F
is of rank 3. In this configuration, the Gough-
Stewart platform will not be able to withstand
any of the three moment components.

At a singular configuration f → ∞. This is not
feasible for an actual sensor application since the ax-
ial forces can be come too high and the sensor may
fail. At a near-singular configuration, one can still
get large axial forces in the legs and a reasonable me-
chanical amplification. In reference [10, 25], extensive
simulations are presented, based on rigid and flexible
models using Matlab [26] and NISA [27], to arrive
at detailed design of the near-singular configurations
which gives acceptable amplification and is still able
to bear the external loads. These two sensors and
some of the results obtained from experiments with
them are presented in the next section.

5 Two sensors based on near-
singular Gough-Stewart plat-
forms

In this section, we present the detailed design of two
six component force-torque sensors and experimental
results obtained from the hardware. We start with
Configuration 1 which is sensitive to Fx, Fy and Mz.

5.1 Configuration 1

To arrive at a near-singular configuration, the half-
angle between any two connection points on the plat-
form, namely γt is perturbed from the nominal value
of 30◦. It is observed that if the half-angle devi-
ates from the nominal by ±3◦ then the the condi-
tion number of [H] is approximately 19101 with the

1The condition number of a matrix is the ratio of the mag-
nitude of the largest to the smallest eigenvalue. At a singular

Table 1: Nominal geometry of Configuration 1 sensor

Base coordinates Platform coordinates
Point x y Point X Y
No. mm mm No mm mm
B1 43.30 25.0 P1 41.93 27.23
B2 0 50.0 P2 2.62 49.93
B3 -43.30 25.0 P3 -44.55 22.70
B4 -43.30 -25.0 P4 -44.55 -22.70
B5 0 -50.0 P5 2.62 -49.93
B6 43.3 -25.0 P6 41.93 -27.23

length units chosen to be milli-meters. This indicates
that there will be significant amplification. Based on
this analysis, the nominal coordinates of Bi and Pi

points are given in Table 1. It maybe noted that
centre of the moving platform is chosen to be 100
mm above the centre of the fixed platform. Each leg
is modeled as a thin rod with a ring shaped sens-
ing element mounted with strain gauges and flexi-
ble hinges. The leg is made of titanium for its high
strength, low weight and its ability to undergo large
strain without failure. A finite element model of the
sensor was made and analysed in NISA [27]. For a
typical external loading of Fx = Fy = Fz = 0.98 N,
Mx =My =Mz = 49.05 N-mm, the maximum defor-
mation obtained from the finite element analysis was
found to be 0.5 mm – see figure 4 for the undeformed
(blue) and deformed (red) Gough-Stewart platform.
The maximum stress level is about 294 N/mm2 (see
figure 5) at the flexible hinges. These values are well
within the allowable values for the chosen material.

A prototype of the designed force-torque sensor
was made and is shown in figure 6. The prototype
sensor was loaded externally, in a specially designed
fixture, by means of standard dead weights. The
loading and unloading was done in steps and limited
to 0.98 N and 49.05 N-mm, respectively. The strain
values were measured for each leg. Using a calibra-
tion done for each leg (see [10] for details), the strain
measurements were converted to axial forces along

configuration the condition number will be infinity and at an
isotropic configuration, the condition number is 1.0 [23].
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Figure 4: Deflection of the sensor in mm (from [10])

the legs and plots of applied load versus axial forces
in each leg were plotted. The experimental data was
compared with numerical results obtained from finite
element analysis, and it was observed that the max-
imum error between the numerical and experimental
data was less than 10% in the sensitive directions. It
was also clear that the prototype sensor is sensitive
to Fx, Fy and Mz and not to Fz, Mx and My.

Using several measurements the elements of
the [H] matrix was computed using a least-
squares technique [10]. The columns Hi, i =
1, 2, .., 6 (see equation (6)) were obtained as
(−0.0204 0.0279 0.8890 22.7237 − 6.7289 1.3319)T ,
(0.0273 −0.0082 0.8294 44.3631 −5.5169 −1.5084)T ,
(−0.0266 −0.0367 0.8321 21.0266 −5.0906 1.8969)T ,
(−0.0210 0.0292 0.8845 − 18.6015 − 4.8826 −
1.4110)T , (0.0380 0.0048 0.9704 − 45.1386 −
5.1129 1.2823)T , and (−0.0117 − 0.0272 0.9712 −
26.4990 −6.4894 −1.9917)T . It maybe noted that the
condition number of [H] given above is about 1360
as against 1910 obtained for the nominal design. The
[H] matrix computed above now can be used to mea-
sure unknown F and M for a known measured leg
forces by using equation (5). Two sample cases are
as follows:

MIDDLE LAYER

  ROTX
 -45.0
  ROTY
   0.0
  ROTZ
 -45.0

X

Y
Z

 1E-02

 21.31

 42.60

 63.89

 85.19

 106.5

 127.8

 149.1

 170.4

 191.6

 212.9

 234.2

 255.5

 276.8

 298.1

STRESS CONTOURS

VON-MISES (VONM )

VIEW : 0.0149899
RANGE: 298.1128

Figure 5: Stress in the sensor in N/mm2(from [10])

• For a combined (known) external load of
(0.7160.7160)T N force and (−7.8777.8770)T N-
mm, the measured values of force and moments
are (0.7350.7130.068)T N and (−9.6717.630 −
1.168)T N-mm, respectively.

• For a combined (known) external load of
(0.9120.9120)T N force and (−10.03610.036 −
45.617)T N-mm, the measured values of force
and moments are (0.9050.9260.146)T N and
(−12.2098.999− 45.957)T N-mm, respectively.

The error in the measurement can be improved by
more accurate application of external loads and by
more accurate calibration.

5.2 Configuration 2

As mentioned earlier, the Configuration 2 with con-
nection sequence B1−P2, B2−P3, B3−P4, B4−P5,
B5 − P6, B6 − P1 was found to have singular direc-
tions for the three components of the moments. As in
the Configuration 1, to arrive at the nominal dimen-
sions of a six axis force-torque Gough-Stewart plat-
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Figure 6: Force-torque sensor based on Gough-
Stewart platform – Configuration 1(from [10])

Table 2: Nominal geometry of Configuration 2 sensor

Base coordinates Platform coordinates
Point x y Point X Y
No. mm mm No mm mm
B1 21.65 12.5 P1 22.27 11.35
B2 21.65 -12.5 P2 22.27 -11.35
B3 0 -25.0 P3 -1.31 -24.97
B4 -21.65 -12.5 P4 -20.97 -13.62
B5 -21.65 12.5 P5 -20.97 13.62
B6 0 25.0 P6 -1.31 -24.97

form based sensor sensitive to Mx, My and Mz, ex-
tensive numerical simulations and additional require-
ments of maximum size and load carrying capability
were taken into account. The nominal dimension for
a near-singular configuration are as given in Table 2.
It may be noted that the centre of the top platform
is at a height of 37 mm from the centre of the bottom
platform. The condition number of [H] is about 707
which gives rise to fairly good mechanical amplifica-

tion.
Due to the large load handling requirements, the

flexure joint in a leg of this sensor is redesigned to
make it stronger. This is shown in figure 7.

Figure 7: A typical leg of the sensor for Configuration
2 (from [25])

A CAD model of the sensor was made and as in
the Configuration 1 sensor, extensive finite element
analysis was performed to test the integrity of the
sensor. The prototype sensor is shown in figure 8.

Figure 8: Force-torque sensor based on Gough-
Stewart platform – Configuration 2(from [25])

Experimental tests are being conducted to obtain
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the performance and accuracy of the sensor in mea-
suring all six components of force and moment. Pre-
liminary tests show that the sensor is, as expected,
sensitive to all the three components of moments and
the sensor is quite accurate. A sample plot of the ap-
plied moment, My, versus the strain measured in leg
1 is shown in figure 9. As it can be seen that the
deviation from a linear fit is quite small. More ex-
periments are being planned to collect enough data
so that the [H] matrix can be estimated accurately
and the sensor is made capable of actual measure-
ments of all the six components of applied force and
torque.

Figure 9: Applied moment versus strain in leg 1

6 Conclusions

This paper deals with the use of Gough-Stewart plat-
form configuration for six component force-torque
sensors. The Gough-Stewart platform based sen-
sors can be either in isotropic or near-singular con-
figurations, each with its advantages and disadvan-
tages. In this paper, an analytic formulation to ob-
tain the isotropic and singular configurations of 6−6
Gough-Stewart platforms are presented. Two near-
singular configuration six component force-torque
sensors were designed, fabricated and tested. The ex-
perimental results demonstrate that Gough-Stewart
platform based force-torque sensors, especially the
ones in a near-singular configuration, have a lot of
promise.
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