
Efficient representation of ducts and cluttered spaces for
realistic motion planning of hyper-redundant robots

through confined paths

K. P. Ashwin *, A. N. Chaudhury ∗, and A. Ghosal †

Abstract

Application of highly articulated hyper-redundant robots to manoeuvre in narrow
and confined spaces is gaining popularity due to their obvious advantages. In this
paper, we describe an optimization based approach for motion planning of hyper-
redundant robots, which results in a natural motion of the links through ducts and
confined spaces. It is shown that for a desired motion of the end-effector or the head
of the hyper-redundant robot, the motion of the subsequent links attenuate and all the
links avoid collision with the walls of the ducts and any other obstacles in the con-
fined spaces. We discuss several ways to represent ducts in 2D and 3D space and also
how the proposed algorithm is applied in these representations. It is shown that the
complexity of the algorithm, with m constraints is at most O(m3.5) and in case where
the ducts can be modeled with polyhedra, the complexity can be as low as O(m1.5).
The proposed approach is also used to determine the largest link length in the hyper-
redundant robot which can traverse the confined path. The concepts developed in this
paper are demonstrated using simulations conducted on three practical scenarios: 1)
hyper-redundant manipulators inspecting an industrial pipeline, 2) motion of an en-
doscopic robot through gastro-intestinal (GI) tract and 3) motion of hyper-redundant
manipulators in search and rescue operations. Analysis on the computational complex-
ity and the simulations shows that the method is feasible for practical implementation.

Keywords: Ducts and cluttered spaces, hyper-redundant robots, optimization, motion

planning, simulation

∗Graduate Student at the Robotics and Design Lab, Department of Mechanical Engineering, Indian
Institute of Science, Bangalore 560012, India, email: ashwinkp,arkadeepc@iisc.ac.in
†Corresponding Author, Professor, Department of Mechanical Engineering, Indian Institute of Science,

Bangalore, email: asitava@iisc.ac.in.

1

1 Introduction

A serial robot with more than 6 joints in 3D space is considered to be a redundant system

– for a given position and orientation of end-effector, there can be infinite number of joint

values with which a robotic end-effector (tool) can achieve its desired position and orien-

tation. A hyper-redundant robot, as defined by Chirikjian and Burdick [1], is a robot with

large (n >> 6) kinematic redundancy. These robots consist of either a large number of small

links connected in series or a series of continuous flexible beams joined to each other. In op-

erations, these robots approximate the shape of tentacles, elephant trunks, snakes etc. One

of the main advantages of a hyper-redundant robot is that it can be used for avoiding obsta-

cles or for easily maneuvering in cluttered and confined spaces. As a result, hyper-redundant

robots have been suggested in applications such as exploring earthquake hit regions for search

and rescue operations [2, 3], remotely operated robotic arms for minimally invasive laparo-

scopic and endoscopic surgeries [4, 5, 6, 7]and inspection of industrial pipelines and nuclear

reactors [1, 8, 9, 10, 11]. Identifying a suitable configuration from the many possible config-

urations, given the position and orientation of the end-effector constitutes the redundancy

resolution of the hyper-redundant robots. If the trajectory which the end-effector has to

trace is predetermined, then the redundancy resolution problem also constitutes the motion

planning of the robot.

There exists extensive literature on motion planning of redundant robots. The most

basic approach uses the pseudo-inverse of the manipulator Jacobian matrix (see, for example,

[12], [13], [14]). Since the major advantage of using a hyper-redundant robot is to facilitate

motion avoiding obstacles and movement in confined spaces, many researchers have also

worked on this particular task using the pseudo-inverse [15]. However, the method becomes

computationally complex for large number of joints [16]. Many other redundancy resolution

methods including variational approach, geometric approach, neural networks and fuzzy

logic can also be found in the literature [17, 18, 19, 20]. In [1], obstacle avoidance problem

for hyper-redundant manipulator is carried out by fitting a curve through the joints of

manipulator and planning the path for this ‘backbone curve’ which avoids obstacles. Finding

the pose of the backbone curve directly gives the co-ordinates of the joints. Hence, in case

of obstacle cluttered environments, planning the path of the end-effector which avoids the

obstacles will result in redundancy resolution since the trajectory itself forms the backbone

curve of the manipulator [21, 22, 23, 24]. Even though the backbone curve approach is very

simple, end-effector trajectory with many kinks may sometimes produce high acceleration at

the tail of the link which is undesirable and also the motion will look un-natural. In [25], the

2

authors proposed a tractrix based redundancy resolving algorithm which generates natural

motion of a hyper-redundant robot. The realism is imparted from the characteristics of the

algorithm that from the end where the displacement is specified, the motion attenuates as

it proceeds to the other links as if the robot moves in a damped environment. In [26], the

authors have showed that the tractrix based realism can also be achieved by posing the

same problem as a minimization problem. Apart from redundancy resolution of robots, the

approach has other interesting applications such as animating flexible objects such as string,

hair, rope etc. for CAD as well as motion simulators.

In [27], it has been shown that the minimization based approach can be easily imple-

mented for obstacle avoidance of the entire link chain, when the obstacles are represented

by simple analytical shapes. However, in the special case of motion through confined spaces

within a narrow bounded path (called as ducts in this work), direct implementation of the

algorithm is non-trivial, since 1) except for simple shapes, analytical formulation of a duct

is not always possible, and 2) directly implementing the algorithm would require modeling

the entire half space outside the duct as obstacles, which is impractical. In this paper, we

discuss the implementation of the minimization-based scheme for redundancy resolution of a

hyper-redundant robot moving in ducts. We present three methods each, to represent ducts

in 2D as well as 3D and discuss how the minimization-based approach can be implemented

in different representations. All the methods discussed have certain advantages and disad-

vantages in terms of modelling time, solving time and ease of implementation. The paper is

organized as follows: in section 2, for completeness, the tractrix based algorithm is discussed.

Representation of ducts in 2D and 3D and motion planning through the ducts is detailed

in section 3. In section 4, we illustrate the concepts and algorithms developed in this work

by simulating the motion of hyper-redundant robots in three practical applications. The

details of optimization based approach, its computational complexity and a few practical

limitations are mentioned in section 5. Finally, in section 6, we present the conclusions of

the paper and the scope of future work.

2 Overview of tractrix based motion planning

The motion planning problem addressed in this paper corresponds to finding a particular

configuration of a hyper-redundant robot, when the trajectory of the leading tip of the robot

is known or prescribed. In this section, we present the basic concepts of the tractrix based

approach which is utilized to plan the motion (resolve redundancy) of a hyper-redundant

robot (see references [25, 26] for more details).

3

Consider a rigid link of length L0 positioned in a 2D plane, initially aligned to the Y−
axis as shown in figure 1a, with the ‘head’ being moved along the X− axis. The initial

location of the ‘tail’ is at Xt0 = [Xt, Yt]
T
0 = [0, L0]

T and the initial location of the head is at

Xh0 = [Xh, Yh]
T
0 = [0, 0]T . Let the coordinates of the ‘tail’ be denoted by xt = [xt(p), yt(p)]

T

when the head moves to Xh = [p, 0]T . If the head is given an infinitesimal displacement dp

along the X− axis (to xh = [xh, yh] as shown in figure 1a), the displacement dr of the ‘tail’

and hence the magnitude of the velocity is least when it is along the link (the figure shows

two more exaggerated infinitesimal displacements to illustrate the point).

The curve traced by the ‘tail’ point, denoted by xt = [xt, yt]
T , when we use the condition

that the velocity of the tail (or the tangent to the curve) should always be along the link is

called the tractrix. The tractrix equation can be derived from the tangent of the curve given

by

dy

dx
= − y√

L2
0 − y2

(1)

and the above differential equation can be solved in closed form in terms of the parameter

p as

[xt(p), yt(p)]
T = [p− L0 tanh

p

L0

, L0 sech
p

L0

]T (2)

The extension of tractrix equation for a motion of the ‘head’ in arbitrary direction in 3D

as well as an algorithm to compute the location of the ‘tail’ in 3D can be found in [25]. In

case of multiple links connected to each other, as in the case of a hyper-redundant robot or

a one-dimensional flexible object approximated as a series of connected links, the algorithm

can be applied iteratively from the first link through the last link (see [25]). In this case,

only the path traced by the head of the first link (x1
h) is specified. The position of the tail

of the first link (x1
t) is calculated using the tractrix approach. Since the tail of the first link

is also the head of the second link (as seen in Fig. 1b), the displacement of the head of the

second link will be already obtained from solution of the first (x1
t = x2

h). Using this data,

tractrix approach is then used to find the position of tail of the second link (x2
t) and the

procedure is iterated for all the links to obtain the configuration of the entire robot.

Some of the key properties of the tractrix based approach are as follows:

• It can be shown that dr ≤ dp. As a consequence when the tractrix based algorithm is

applied sequentially from the first link to the last link, the displacement attenuates from

the head of the link-chain to end of the chain as illustrated in figure 1b. This imparts

a more ‘natural looking’ and realistic motion to the hyper-redundant manipulator.

4

• It is shown in reference [25] that the complexity of the tractrix based motion plan-

ning algorithm is O(n), i.e., linear in the number of links n in the hyper-redundant

manipulator. Hence the tractrix based approach is computationally efficient.

(Xh, Yh)0 dp

(Xt, Yt)0

dr1

dr

dr2

L0

(xh, xh)

(xt, yt)

X-axis

Y-axis

Tractrix

dr
dy

dx

(Xt, Yt)

tangent to circle

circle with radius L0

L0

(Xt, Yt)

(Xh, Yh) (xh, yh)

(a) Tractrix curve in 2D with one link

-0.4 -0.2 0 0.2 0.4 0.6
-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(b) Tractrix with multiple links

Figure 1: Tractrix in a plane

In reference [26], it is shown that for a single rigid link, the tractrix curve can also

be obtained by minimizing an L2 metric related to the instantaneous velocity subject to a

constraint of preserving the length of link1. For any rigid link of the hyper-redundant robot,

the co-ordinates of the tail of a rigid straight link, due to an infinitesimally small motion of

the head, can be obtained from the following minimization problem

arg min
xt

‖xt −Xt‖ (3)

Subject to: ‖xh − xt‖ − L0 = 0 (4)

Given data: xh,Xt, L0

An advantage of expressing the tractrix solution as a minimization problem is that we can

add more constraints in addition to the preservation of the length. For obstacle avoidance,

1Using calculus of variation, it is shown for a generic 2D curve the L2 metric is minimum when the
velocity at point is along the tangent at that point – see equation(15) in [26]. The L2 metric defined in the
work is similar to the Euclidean distance traveled by points on the curve. When the 2D curve is assumed
to be a straight line (rigid link), the equations of the tractrix curve are derived – see equations (16) through
(23).

5

we can formulate the optimization problem as:

arg min
xt

‖xt −Xt‖ (5)

Subject to:‖xh − xt‖ − L0 = 0

f(xt) � 0

Given data: xh,Xt, L0

where f(x) = 0 are the analytical equations of the boundaries of the surfaces each of which

are to be avoided2. For example, if the tail is to avoid a single obstacle represented by a circle

with center (xc, yc), the expression f(x) = f(x, y) = (x − xc)2 + (y − yc)2 − r2 > 0 ensures

that the point x always lies outside the circle of radius r. Complex objects can be modeled

as a combination of super-ellipses as shown in [27]. In this case, f(x) will be a vector of all

boundary equations f(x) = [f1(x), f2(x), ...fm(x)]T . It is also worth noting that the value of

constraint function in equation (5) will increase or decrease as the point is farther from the

curve f(x); the value being zero on the curve. It maybe noted that the resulting solution

from the optimization with obstacle avoidance may not necessarily be the tractix curve, the

motion of the tail will nevertheless appear realistic.

Extending the idea of motion planning as a minimization problem, the motion of the

hyper-redundant robot through a duct can be formulated as:

arg min
xt

‖xt −Xt‖ (6)

Subject to: ‖xh − xt‖ − L0 = 0

Cineq : f(xt) < 0

Given data: xh,Xt, L0

Here, x1
h will trace a series of points inside the duct. While this expression is applicable for

a duct represented by a single surface with the boundary f(x), unlike the obstacle avoidance

problem, the same will not work in the case of complex surfaces represented by combination

of simpler analytical shapes. This is because if a point is classified as inside one of the

simpler shapes, then it should be classified as outside the other shapes forming the duct.

In other words, if one constraint function fk(x) < 0, then the other constraint functions

fi 6=k ≥ 0. In the next sections, we present different methods to represent the ducts and

2The curled inequality symbol � (and its strict form �) is used to denote generalized inequality: between
vectors, it represents component wise inequality; between symmetric matrices, it represents matrix inequality.

6

f1(x)

f2(x)

f1(x)

f2(x)

f1(x)

f2(x)

f1(x)

f2(x)

Figure 2: Obstacle avoidance in a plane (Inset shows the individual links of robot)

how confined space motion is achieved in different cases. While it may be observed in the

following sections that x1
h could be the points on any curve inside the duct, for simplicity, we

choose the path of the head as the medial axis of the duct in the further derivations. When

the bounding curves are line segments or curves, the medial axis is calculated by taking the

mean of points on both boundaries of the duct. For boundaries represented by analytical

curves or surfaces (for example ellipses and ellipsoids), the path traced by head is usually

generated by combining the axes of these shapes.

2.1 Nature of the optimization problem

In the previous section we discussed how the tractrix based motion planning with obstacles

can be formulated as a constrained optimization problem. In this section, we show that the

problem in equation (6) and the variations of the same used in the current work can be posed

as convex problems and hence it is possible to obtain unique solutions.

A function f : Rn → R is convex if and only if the following two conditions hold:

7

I The domain of f , dom(f) is a convex set, and,

II For all x, y ∈ dom(f) and θ with 0 ≤ θ ≤ 1

f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y) (7)

In our problem, the function is the L2 norm of a vector in R2 or R3. Though the L2 norm

is defined for all real vectors, the constraints ensuring that the object moves within the

confinement of the duct restricts the domain to a feasible closed set S3. Therefore, if the

conditions I and II associated with the definition of a convex function are satisfied for S and

the L2 norm, then the solution obtained for equation (3) is unique.

It is a well known result that any p-norm ||x||p =

(
n∑
i=1

|xi|p
)1/p

, x ∈ R is a convex function

for p ≥ 1 [28] and all we need to ensure that the feasible set S is convex. It maybe noted that

by themselves none of the problems posed in equations (3), (5) and (6) are convex because

of the non-linear equality constraints associated with them. To pose it as a convex problem

we approximate the non-linear constraint with linear constraints as described in section 5.2.

For the cases of motion planning in 2D and 3D, the paths chosen are either entirely convex

or are discretized as such. As discussed in the following sections, we do not represent a duct

as a union of closed convex sets as the first condition of convexity cannot be guaranteed

for sets formed by union of convex sets. For all our numerical examples, we choose S to be

convex by assigning convex boundaries to it or, by expressing S as intersections of closed

convex sets.

3 Representation of ducts in 2D and 3D

In this section, we present different methods to represent a duct in 2D and 3D and how we

can add constraints in different representations of duct so as to ensure that the the tip will

always lie inside the duct during motion. Each method is shown to have its own advantages.

3.1 Duct using super-ellipses

One method to represent a duct in 2D is by overlapping a series of super-ellipses as shown

in figure 3b. This is the most straightforward means of representation as shown in [27]. In

3Assuming S to be a closed set allows the object to physically touch the boundaries of the duct.

8

Cartesian co-ordinate system R2, the contour of super-ellipse can be obtained from:

f(x) = f(x, y) :

∣∣∣∣x− xca

∣∣∣∣n +

∣∣∣∣y − ycb

∣∣∣∣n − 1 = 0 (8)

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-1.5

-1

-0.5

0

0.5

1

1.5

(a) Super ellipses

(b) Duct modeled as a combination of super-ellipses – red: outer
boundary, blue: desired path of head

Figure 3: Super-ellipses and a duct modeled as combination of 5 super-ellipses

The condition f(xt) < 0 will ensure that the co-ordinates of the tail of the link (xt, yt)

always lie inside the bounding curve of a super-ellipse. However, in case of multiple equations

(fi(x), i = 1, 2, ...,m), only one of them will be satisfied for the point to be inside the duct.

In practical implementation, this translates to saying that the least value amongst all the

values of fi(x) should be less than zero. For the ith super-ellipse which is rotated by an angle

φi about the Z− axis and whose center is translated to the co-ordinates (xi, yi) so as to fit a

portion of a duct, the co-ordinates of boundary should be multiplied with a transformation

matrix

Ti =


cosφi − sinφi 0 xi
sinφi cosφi 0 yi

0 0 1 0
0 0 0 1

 (9)

The constraint equation now becomes gi(xt) : fi(T
T
i xt) < 0, i = 1, 2, ...,m and for imple-

mentation, we can write the inequality constraint as

Cineq : min (gi(xt)) < 0, i = 1, 2, ...,m (10)

An example of single link and multi-segmented chain passing through the duct is shown

in figure 4a. The motion of a unit link with and without constraint is shown in figure 4b. The

negative gradient of the inequality constraint function is also shown in the figure 4b. The

9

method shown here is quite fast and scalable as explained in section 5.2 and the majority of

time taken is in identifying the super-ellipsoids which fit the duct profile. For the example

shown in this section, this identification is done by manually selecting clusters of points in

the duct and fitting ellipses which will reduce the fitting error in a least squared sense.

a b

c d

e f

(a) Motion of 20 link robot through duct
modeled as combination of super-ellipses
(See Movie 1)

X
-4 -2 0 2 4

Y
-4

-2

0

2

4
Initial Position
With constraint
Without constraint

(b) Effect of gradient of inequality constraint
in pulling the tail into the duct

Figure 4: Tractrix based algorithm on duct represented by super-ellipses

3.2 Duct as set of connected quadrilaterals

Since the profile of a super-ellipse is always symmetric, for complex and non-symmetric

ducts, representation using the previous method might require a large number of shapes.

For such cases, a complex duct shape can be represented as a closed shape obtained by

stitching convex quadrilaterals as shown in figure 5. The individual quadrilateral patches,

denoted as A1, A2, ..., An, are each bounded by the line segments defined by the points

(P0,P1), (P1,P2), ..., (Pn−1,Pn) for the curve ζ1 and (Q0,Q1), (Q1,Q2), ..., (Qn−1,Qn) for

the curve ζ2. Classification of a point xt as inside or outside a quadrilateral represented by

points, say, P1,P2,Q2 and Q1, is essentially checking the placement of the point in the half

spaces represented by the four lines spanned by the point set (P1,P2), (P2,Q2), (Q2,Q1),

and (Q1,P1). This can be written as a set of four inequality constraints:

A1
ixt + A2

i yt +Bi < 0 i = 1, 2, 3, 4 (11)

10

where A1
ix + A2

i y + Bi = 0 represents a line obtained from one pair of non-diagonal points

in the quadrilateral. In matrix form, the inequality will be:

Cineq : [A]xt + B < 0 (12)

where [A] is a 4× 4 matrix and B is a 4× 1 vector.

A more convenient method for practical applications is as follows:

The co-ordinates of a point inside the surface patch Ai is given by the parametric expres-

sion

xi(u, v) = [Pi−1 + (1− u)Pi] (1− v) + [Qi−1 + (1− u)Qi] (v) (13)

in parameters u and v. If the vertices of the quadrilateral are given by Pi = [xPi,
yPi]

T and

Qi = [xQi,
yQi]

T , then the analytical expressions for the terms u and v, given the value of

xi, can be obtained by solving equation (13) (see appendix A). The values of u, v can be

used to classify the point with respect to the surface patch Ai
4.

-100 -80 -60 -40 -20 0 20 40 60 80 100
-100

-80

-60

-40

-20

0

20

40

60

80

100

P0

P1

P2

P3

P4

P5

P6

Q0

Q1

Q2

Q3

Q4

Q5

Q6
A1 A2

A3

A4 A5

A6

11

12

u

v

Figure 5: Duct represented by stitched quadrilaterals

In case of a single quadrilateral patch, the inequality constraints will be simply,

Cineq : 0 ≤ u ≤ 1, 0 < v < 1 (14)

4It may be noted that there will be two sets of solution and they are not always real and unique. For
example, the point P = (10,−5) when classified with respect to the area A given by the points P1 =
(0, 15) ,P2 = (10, 10) ,Q1 = (0, 0) and Q2 = (4, 1) , returns the values u = (1.0 + 0.6 i, 1.0− 0.6 i) and
v = (2.0 + 1.9 i, 2.0− 1.9 i). However, it is easy to filter out the imaginary set of solutions, should the
algorithm encounter the same.

11

for real values of u and v. In case of multiple patches, classifying one point with respect to all

the patches return the values (u1, v1) , (u2, v2) , ..., (um, vm) etc. for the m number of patches

A1, A2, ..., Am and consequently, m set of conditions. However, out of the m condition sets,

only one set should be satisfied since the point will belong to only one patch at a given

instance of motion through the duct.

In order to provide a gradient to the constraint which will direct the joints of the robot into

the duct, an inequality constraint is to be included as in the case of super-ellipses described in

the previous subsection. If û and v̂ represent the parameters obtained for a point xt classified

with respect to the quadrilateral Ai, xζ1(t) = Pi−1+(1− û)Pi and xζ2(t) = Qi−1+(1− û)Qi

will give the two points on the duct boundary curves corresponding to the parameter û. Then

we can see that the quantity

h = ‖xζ1 − xt‖2 + ‖xζ2 − xt‖2 − ‖xζ1 − xζ2‖2 (15)

will always assign a negative real value for h when point is inside the duct and a positive

real value when the point is outside the duct. The value will be zero only at the boundaries.

Hence, for an array of quadrilaterals, it is only necessary that the minimum value of the

vector h = [h1, h2, ..., hm] should be negative for classifying the point with respect to the

duct, as in the case of previous section. It may be noted that the inequality only takes

into account the parameter variation across the boundaries (along the parameter v) and not

in the direction of u. To account for the same, we make use of the function χ which is

necessarily a linear combination of two Heaviside step functions H(0)−H(1), defined as:

χ(t) =


0, t < 0
1, 0 ≤ t ≤ 1
0, t > 1

(16)

The function χ applied on the quantity ûi (which is the value of parameter u classified with

respect to quadrilateral Ai), will return 0 only if the point satisfies the constraint 0 ≤ ûi ≤ 1.

Now, multiplying this quantity χ(û) with hi will return a non-zero negative value only if the

point is inside the duct. Then the following inequality constraint:

Cineq : [χ (û)]T h < 0 (17)

where û = [û1, û2, ..., ûm]T becomes a more practical and convenient way to implement the

inequality constraint in the optimization problem.

12

As an example, motion of a unit link passing through the duct and the effect of the

added inequality constraint in equation (17) to pull the tail end of the link which is initially

positioned outside the duct, is shown in figure 7. Apart from being more flexible, another

advantage of representing a 2D duct as a set of connected quadrilaterals in this parametric

form is that by setting the limits of the parameter v to 0 + δ < v < 1 − δ, δ < 0.5, it is

easy to manually add a clearance from the walls of the duct without manipulating the duct

itself. Also, it is easy to note that δ = 0.5− ε (where ε is a small number) would follow the

backbone curve motion.

-1 0 1
-1

-0.5

0

0.5

1

-1 0 1
-1

-0.5

0

0.5

1

-1 0 1
-1

-0.5

0

0.5

1

-1 0 1
-1

-0.5

0

0.5

1

-1 0 1
-1

-0.5

0

0.5

1

-1 0 1
-1

-0.5

0

0.5

1

Figure 6: Example of constrained motion of a 40 link robot with stitched quadrilaterals (See
Movie 2)

3.3 Duct as two non-intersecting continuous curves

If the non-intersecting border curves of the duct can be analytically expressed, then the

equation of the surface patch can be written as

xi(u, v) = ζ1(u) (1− v) + ζ2(u) (v) (18)

For example, figure 8a shows a 2D duct defined by two curves ζ1(u) = [u, sin (u)]T and

ζ2(u) =
[
u, sin

(
u+ π

8

)
+ 1
]T

and a path chosen midway between the two curves. The

13

X
0 1 2 3 4 5

Y

0

1

2

3

4

Initial Position
With constraint
Without constraint

Figure 7: Effect of gradient of inequality constraint in pulling the tail into the quadrilateral
duct

equation of the surface generated by this curves will be[
x(u, v)
y(u, v)

]
=

[
u

sin (u) +
[
sin
(
u+ π

8

)
− sin (u) + 1

]
v

]
(19)

which has the analytical solution for u and v given by

u = x

v =
y − sin (x)

sin
(
x+ π

8

)
− sin (x) + 1

In this case, we solve the optimization problem:

min
xt

‖xt −Xt‖ (20)

subject to: ‖xh − xt‖ − L0 = 0

0 < v|xt < 1 (21)

Given data: xh,Xt, L0

An example movement of a 40 link hyper-redundant manipulator through the duct is

shown in figure 8b. However, analytical solution is not always viable for complex equations

and numerical procedure must be employed to find the values of u and v corresponding to

the given tail point to be classified. Additionally, since multiple solutions may be possible

for such cases, the correctness of the solution would heavily depend on the choice of initial

guess5.

5The same argument will also hold for analytical surfaces spanned in 3D and hence is not studied further.

14

X
0 2 4 6

Y

-2

0

2

11(u)

12(u)

11+12
2

(a) Example of analytical duct

X0 5

Y

-2

0

2

X0 5

Y

-2

0

2

X0 5

Y

-2

0

2

X0 5

Y

-2

0

2

(b) Motion through analytical duct (See
Movie 3)

Figure 8: Tractrix based algorithm on analytical duct

3.4 Duct in 3D using combination of super-ellipsoids

Representation of ducts in 2D can be extended to 3D by using super-ellipsoids. In a Cartesian

co-ordinate system, the surface of a super-ellipsoid follows the equation:

f(x, y, z) :

[{(x
a

) 2
e

+
(y
b

) 2
e

} e
n

+
(z
c

) 2
n

]n
2

− 1 = 0 (22)

By changing the parameters a, b, c and n, we get different closed surfaces as shown

in figure 9 and by combining different super-ellipsoid shapes, we can generate a 3D duct

profile.

2
0

e=1, n=1

-2
-1

0
1

0

1

-1 5

e=0.2, n=0.2

0

-5-2
0

2

-2
0
2

5

e=0.88, n=0.57

0-5-10010

5

10

-10

-5

0

Figure 9: Super-ellipsoids

The procedure to calculate the inside-outside condition is same as that of the method

described in section 3.1. The inequality condition will be equation (10). An example problem

with duct approximated using super-ellipsoids is shown in figure 3b. As mentioned in the

15

case for super-ellipses, solution to the motion planning problem with ducts represented by

super-ellipsoids is fast (also explained in section 4). Identifying the shapes which fit the

duct, is also same as the method mentioned in section 3.1.

3.5 Duct as a set of connected cylinders

Similar to the set of connected quadrilaterals in 2D, a duct in 3D can be represented by series

of connected cylinders. By linearly interpolating two circles in space, we get the parametric

equation of the cylinder as given in equation (23) below (see figure 18a and appendix B for

the expanded form of equation (23))

x = C1(u, v, θ), y = C2(u, v, θ), z = C3(u, v, θ) (23)

where the parameters u, v and θ varies along the radial, axial and circumferential direction

of the cylinder respectively (see figure 18a). Similar to the representation in section 3.2,

0 ≤ u < 1 and 0 < v < 1 classifies the point as inside the cylinder. The constrained

inequality 17 generated will also be valid for cylinders. The quantity hi is given as hi = ûi−1

which shows the same characteristics as defined by the value of hi in equation (15). The

constraint inequality, hence takes the form:

Cineq : [χ (v̂)]T h < 0 (24)

As is the case of quadrilaterals, it is possible to add a clearance from the walls by changing

the radius of cylinder from r to r− δ, which is a very desirable characteristic for robots used

in medical applications.

3.6 Duct as point clouds

The most direct way of representing the duct would be as a point cloud as obtained from

measurements or a depth map. Subsequently, it would be possible to process the raw data (by

using alpha shapes [29] and standard Delaunay triangulation algorithms [30]) to obtain the

geometric representation of the cloud of points as a convex polyhedron. Stereo-lithographic

formatted file (STL) is a standard data structure, which has been used in the current work.

Using the current framework, it is possible to pose the motion planning problem in the

16

following form:

min
xt

‖xt −Xt‖ (25)

subject to: ‖xh − xt‖ − L0 = 0

[A]xt + B ≤ 0

Given data: xh,Xt, L0

where A is a m × 3 matrix and B is a m × 1 vector. The left-hand side of m inequalities

represent the equations of m number of planes spanned by three points on each triangular

facet of convex polyhedron. The ith equation, A1
ixt+A2

i yt+A3
i zt+Bi takes a value less than

zero when the point xt is in the half space which contains the origin and is greater than zero

otherwise. The value also provides the attractive gradient which will ensure that the point

stays inside the duct. However, in actual implementation, this procedure will be tedious and

for practical convenience, it is possible to classify the point xt as inside or outside the hull

using the algorithm 2 described in appendix C. The attracting gradient which ensures the

point to be inside the duct–as was the case with the previous methods– can be provided using

the artificial potential field generated from the centroid of the point cloud in conjunction

with the output of the in-out function. The inequality constraint then becomes

w(R)
1

‖(R)− xt‖
≤ 0 (26)

where w(R) represents the output from in-out function which is either 1 for the point being

outside and 0 for the point being inside the cloud or on the bounding surface6. Representation

of a pipe using ellipsoids, analytical cylinders and as convex point clouds is shown in figure 10.

(a) Fitted ellipsoids

1
0.5

0
-0.5

-10
0.5

1

0

0.5

1

1.5

(b) Fitted cylinders

1
0.5

0
-0.5

-10
0.5

1

0

0.5

1

1.5

(c) Convex polyhedra

Figure 10: Representation of duct using ellipsoids, cylinders and point clouds

6Unlike the previous classification problems, the bounding surface will also be considered as inside the
surface in this case.

17

In the next section, we present three scenarios where we show the motion planning of

a hyper-redundant robot in ducts and in presence of obstacles. The section also includes a

discussion of the results in terms of complexity and largest length of a link that can traverse

the confined spaces.

4 Examples of motion planning

In this section, we present three practical examples where the above mentioned methods are

applied and some discussion on the implementation of the above mentioned algorithms. For

all the examples, the algorithms have been implemented in Matlab [31] and the results are

rendered using Blender [32].

4.1 Motion planning for inspection robots

One major use of hyper-redundant robots is in the inspection of ducts such as industrial

pipelines. By representing the pipe-line using a set of ellipsoids (or cylinders), we use the

aforementioned methods to plan the motion of a 20 link hyper-redundant robot through the

duct. The path is chosen as the medial axis of the duct, which is also the axis of the cylinders

which make up the duct. The configuration of hyper-redundant robot for each path-step is

calculated and the simulation of resultant motion is shown in figure 11.

Figure 11: Motion of hyper-redundant inspection robot(See Movie 4)

18

4.2 Motion planning through a GI tract

There has been a growing interest in simulating motion of endoscope through GI tract

for developing simulators for endoscopy and for implementing path and motion plans for

endoscopic and laparoscopic surgical robots. In this section, we simulate the natural motion

of an endoscope through GI tract. For simulation, we use the stereo-lithographic data of

GI tract obtained by processing CT scan data obtained from Visible Human Dataset [33].

For demonstration, both the methods presented in section 3.4 and section 3.5 are used for

approximating the GI tract. In the first method, a collection of points are manually selected

from the STL file where super-ellipsoids are fit based on least square error minimization

techniques. It may be noted that as this domain is inherently non convex, we cannot use

the formulation in section 3.6, as approximately classifying a whether a point is inside or

outside a domain will incur significant computations. Representation of GI tract as series of

super-ellipsoids is shown in figure 12a.

(a) GI tract as collection of super-elliposids
(b) GI tract with connected cylinders

Figure 12: Representation of GI tract in two methods

19

For representing GI tract as cylinders, we first found out the medial axis of the duct

following Cao et al.[34]. Then at equal intervals of distance along the medial axis, planes are

drawn normal to the same. The collection of points which are in the close proximity of the

plane are selected and a circle is fitted on the points using least square error minimization.

The parameters so obtained are used for the cylinder equations in (23). Representation of

GI tract as a series of connected cylinders is shown in figure 12b. It maybe noted that the

GI tract is a 3D structure with both in-plane and out-of plane curvatures.

The realistic motion simulation of endoscope through GI tract is shown in figure 13. It

maybe noted that the insertion of the endoscope is in a roughly horizontal direction and

after passing through the throat, the head follows the centerline of the GI tract. In the

simulation, the endoscope is discretized with links of dimension 0.5 cm and the motion of

each link is computed such that it does not collide with the walls of the GI tract.

Figure 13: Motion of endoscope (shown in black) through GI tract (See Movie 5)

4.3 Motion planning for search and rescue operations

Exploring a cluttered environment – such as in an earthquake hit zone – is one of the major

applications that necessitates the use of hyper-redundant manipulators. In this example,

we show how the proposed algorithms can be effectively used in such applications. With

reference to figure 14, the objective of the hyper-redundant manipulator, consisting of 20

links is to 1) Enter the scene through the hole in the outer wall, 2) Pass through the vent to

get inside the room, 3) Explore the objects 3, 4 and 5 located inside the blue region and 4)

20

Exit without colliding with the complex shapes given by objects 6 and 7. In this example,

motion planning is effectively tackled by combining the various methods discussed so far.

We use the following constraints to define the 6 different problems of the form in equa-

tion (6), to generate the entire motion plan. The first problem is to enter through the hole

in the wall. For this, an ellipsoid of the size of the hole located in the outer wall, and the

feasible set for the first problem is the interior of the ellipsoid, the path being the axis along

the direction of the entry. The second problem is a free tractrix motion, where the robot

has to reach the opening of the vent. The feasible set in this case is R3. Next, the robot

passes through the vent. This problem is analogous to the one discussed in section 4.1. A

collection of cylindrical polyhedra have been used to represent the vent– the feasible set

in this problem. This is followed by another free tractrix problem, where the robot exits

the vent at the top of the room and reaches to the floor level. Following which, the robot

enters the transparent blue search region populated by objects 3, 4, and 5. The feasible

set of each of the links are obtained on the fly, as a combination of the faces of the search

region (transparent blue polyhedron) and the nearest obstacle. Finally, the robot exits the

scene through another ‘hole’ in the designated search region modeled as a cylinder. This

guarantees that the complex objects 6 and 7 have no effect on the robot motion as they have

no contribution to the feasible set of the final problem. This would have been particularly

difficult in half-space based motion plans [27]. Also, it is easy to see that the geometry based

global motion planning techniques for obstacle avoidance existing in literature will entail

a very involving problem formulation [35]. Figure 15 shows the simulated results for the

motion of manipulator along a chosen path.

5 Optimization method

In this section, we present the details of the optimization method used and its implementa-

tion, discuss the computational complexity and some of the limitations of the approach.

5.1 Method

In all the examples provided, we formulated the tractrix problem as inequality-constrained

convex optimization problems. The implementation is carried out in MATLAB R2016b using

the standard fmincon function with the interior-point algorithm specified in the algorithm

option. A main MATLAB script conducts the tractrix iteration which proceeds from the head

of the robot to the tail for each step of the robot motion. All necessary pre-processing such

21

3

4

5

6

7
1

2

Figure 14: Schematic of search and rescue problem

Figure 15: Motion of hyper-redundant robot in confined spaces (See Movie 6)

as the representation of the duct and medial axis determination is performed in this main

script. The fmincon function has one of the arguments as the function to be minimized

which is the function given in equation (3). The user specified data such as the position

of the head of the links (xh), length of each links (L0) and the position of the tail of the

links (Xt) are provided to fmincon as parameters. The equality constraint as well as the

inequality constraints are given to fmincon as arguments. Finally, the information about

the duct is also passed on to the fmincon function.

22

As an example, the algorithm which determine the motion of the robot passing through

joined quadrilateral duct is given as follows:

Purpose : To determine the motion of the robot through a duct given by connected
quadrilaterals
Input:

1. The set of points which define the duct boundaries B
{1,2,..,l}
{1,2} where {1, 2} represent

points on either sides of the duct made of (l − 1) quadrilaterals

2. An array containing the initial co-ordinates of the robot X
(1,2,...m)
0 where

2, 3, .., (m− 2) are the joints of the robot,

3. Link length of the robot L0

Output: The array X
(1,2,...,m)
(1,2,...,N) representing the entire motion of the robot

1: Calculate the mean of the points B
(·)
1 and B

(·)
2 : B

(·)
1/2 which are the vertices of the line

segments forming the medial axis.
2: Join the points in B

(·)
1/2 and obtain line segments L

1,2,...,(m−1)
1/2

3: Find points P(1,2,...,N) which are N equidistant points on the connected line segments.
4: for i = 1, 2, ..., N do
5: Assign P i+1 → next step

6: X1
i = next step

7: for k = 2, ...,m do
8: Solve equation (3) for the tail position: ‘tail pos’ using the constraints (14),

equations in Appendix A and also the parameters: next step, Xk−1
i−1 , Xk

i−1, L0 and

B
(·)
(1,2)

9: Assign tail pos → Xk
i

10: Assign next step → tail pos

11: end for
12: end for

Algorithm 1: Algorithm for motion planning of a robot through duct with connected
quadrilaterals

We use the well-known and extensively used standard interior point algorithm (see for

example [28]) to solve the optimization problems. One rationale behind using the interior

point algorithm was the intuitive sense of a force field associated with the constraints, the

notion of a convex domain– the feasible set where the problem is posed and solved. Addi-

tionally, the interior point method solved using the barrier method lends itself for rigorous

complexity analysis and this is discussed in the following section.

23

5.2 Complexity analysis

An important aspect of the formulations described in the current work was to show that the

formulation and implementation of motion planning problem using tractrix is intuitive and

has a broad scope of application. In concurrence to that theme, in this section, we attempt

to analyze the worst case computational complexity of such an implementation to show that

the current work has potential for real time application in actual problems. We begin by

reviewing some mathematical concepts, after Boyd and Vandenberghe [28], to be used in the

following discussion.

Self Concordance: A convex function f : R→ R is self-concordant if |f ′′′(x)| ≤ 2f ′′(x)3/2

for all x ∈ dom(f). It can be shown that the Euclidean norm and linear functions are self

concordant.

Feasible set : For an optimization problem with constraints fi(x) ≤ 0 and hj(x) = 0, for

i = 1, 2, ..., n and j = 1, 2, ...,m, the feasible set is S = ∩ni=1 dom(fi ≤ 0) ∩ ∩mj=1 dom(hj =

0). For all our problems, S is a subset of the real space R of dimension 2 or 3.

Slater’s condition: Slater’s conditions of constraint qualification hold when there exists

an x ∈ S, a strictly feasible point, such that all the inequality conditions and equality

conditions are satisfied7. This would, in general, mean that strong duality would hold and

at the optimum point, the primal and dual problem would have the same solutions.

With the above definitions, we proceed to the complexity analysis of the optimization

problems. In section 2.1 we discussed that the problem as presented in equation (3) is

not convex due to the non-linear equality constraint guaranteeing the constant link length.

We get around this problem by replacing the non-linear equality constraint by it’s affine

equivalent—a first order approximation of the constraint about a feasible point x∗ ∈ S, and

a trust region constraint as shown in equation (27). It is imperative for the trust region

radius to be small— in our implementation, we have chosen the trust region radius εT to

be about 6 orders of magnitude smaller than the smallest dimension of S. In equation (27),

∇xtg(x) is the gradient of the objective function.

arg min
xt

g(xt) : ||xt −Xt|| (27)

Subject to : g(x∗)−∇xtg(x∗)(xt − x∗) = 0

|x∗ − xt| � εT

Cineq : f(x) � 0

7For a more complete treatment, refer to Chapter 5 of the book by Boyd and Vandenberghe [28].

24

We can rewrite equation (27) as a standard nonlinear program with the objective function

g, all the m constraints f and s, a vector of m× 1 slack variables as

arg min
xt

g(xt) (28)

Subject to: f(xt) + s = 0

s � 0

We also observe that the problem in equation (27) corresponding to the implementations

studied so far, is actually a minimum norm problem with either polyhedral (or polygonal

in 2D) or super-quadric (or super-elliptic) constraints. As all of the constraints qualify

Slater’s condition, we conclude that strong duality holds for all versions of the problem

studied in the current work. We choose an interior point method to solve the nonlinear

programming problem at hand and by reformulating equation (28) as a barrier problem with

barrier parameter µ. The KKT (Karush Kuhn-Tucker) necessary and sufficient conditions

for the given problem is given in equation (29).

∇xtg(xt) +∇xtf(xt)
T~λ = 0

f(xt) + s = 0 (29)

LS− µ~e = 0

In equation (29), L is the m×m diagonal matrix of the Lagrange multipliers (~λ), S is the m×
m diagonal matrix of the slack variables s and e is a m×1 vector of ones. The above system

represents 2m + 1 equations in 2m + 1 variables and is known as the KKT system. While

using an interior point method, the computation time depends on two principal factors—the

number of Newton steps required to converge and the complexity of each Newton step, i.e.,

the total amount of computation required in solving equation (29) to obtain the Newton

direction. For our case with a self-concordant log barrier and polyhedral constraints, which

are by default self-concordant, we can conclude that the total number of Newton steps are

of the order of
√
m+ c where c is an integer. In the case of our problems, we observed that

for a 2D case the total number of iterations were about 10, for the six constraints(m = 6)—

4 linear constraints defining S and 2 trust region constraints.

Equation (29) can be linearized, and solved (for a 3D case) to obtain the Newton direction

as  A3×3 BT
m×3 03×m

B3×m 0m×m Im×m
06×m S L

 4 x
4λ
4s

 =

 −F1

−F2

−F3

 (30)

25

where, A = ∇2
xt
g(xt) +

m∑
i=1

∇2
xt
λifi(xt) is a 3× 3 symmetric matrix, B = ∇xtf(xt) is a m× 3

matrix of the gradient of the m constraint functions, and F1, F2, and F3 are the left hand

sides of equation (29). Following Wright and Nocedal [36] and Chakraborty et al. [37] we

can obtain the Newton directions as:

4xt = G−1(−F1 −BT (S−1L)(F2 + L−1F3))

4λ = (S−1L)(B4xt − F2 + L−1F3) (31)

4s = −L−1(F3 + S4λ)

where, G = A + BT (S−1L)B, a 3× 3 matrix (for a 3D case) which can be inverted symbol-

ically, also, S and L are diagonal matrices so their inverse can be calculated in linear time

(O(m)). Overall, the asymptotic complexity of solving equation (31) is O(m3) as the calcu-

lation of G−1, 4x and 4λ are O(m3). This would result in a total asymptotic complexity

of the implementation to be O(m3.5) – O(m3) from Newton iterations and O(
√
m) due to

the self-concordant nature of the optimization problem. However, the computation time of

a single iteration does not depend on the number of links of the hyper-redundant robot or

the number of path steps, hence the proposed method is linear in these – it maybe recalled

that the motion planning algorithm in absence of obstacles is also linear in the number of

links. The linear nature is observed from figure 16a.

As discussed in section 3.6, in our implementation of the motion planning problem inside

a polyhedral domain, we use a separate algorithm to determine whether to use the constraints

of the form [A]m×3xt + Bm×1 ≤ 0 in equation (25). Algorithm 2 discusses an O(m) scheme

to do the same in case of a polyhedron with m faces. Therefore, the total asymptotic

complexity of our implementation should be about O(m1.5). Figure 16b shows that actual

complexity of the implementation of our algorithm scales as (m1.43), with room for further

improvement8. Furthermore, the formulations involving parametric shapes (super ellipses

and super ellipsoids) are even faster because the classification of a point with respect to the

domain is available as a closed form expression. It may also be noted that this analysis is

not applicable to cylinders since they require iterative methods to solve the in-out classifier.

To summarize, the choice amongst the three methods to represent 3D ducts can be based

on the computational time and required modelling effort. In the first method of representing

ducts by a collection of ellipsoids, modelling time is significant as a separate utility is required

to identify the points on surface and to fit the ellipsoids on the data points. However, the

8Computation times in figure 16 was obtained using the ‘tic-toc’ function in MatlabR2016b running on
a workstation with dual 8 core Intel XEON (2.1GHz), 32 GB RAM and Windows 10.

26

N: Number of links or P: Number of path points
0 50 100 150 200 250

T
:
T
im

e
in

se
cs

-50

0

50

100

150

200

250

N vs T

Fit over N Vs T

P vs T

Fit over P vs T

T = 0:8144N ! 1:1380

T = 1:6433P + 8:089

(a) Our implementation is time-linear in num-
ber of path points and link numbers

f:] faces #104

0 1 2 3 4 5 6 7

t:
T
im

e
in

se
cs

0

200

400

600

800

1000
Fit
t

t = 0:0001133f 1:434 + 47:12

(b) Our implementation scales as (m1.43).
Times are for a 20 link robot.

Figure 16: Complexity of our implementations. We plan the motion of the robot through a
cylindrical duct of radius 7 and length 80 units and the path was [3θ, 0, 5 sin θ], θ = [0, 24π]

Representation Pre-processing Model flexibility Computational time Scope

Ellipses/Ellipsoids Slow Low Very fast High
Quadrilaterals/Cylinders Slow High Slow Moderate

2-D analytical curves Very fast High Fast Very low
Point clouds Very fast Low Fast Low

Table 1: Comparison between different representations in 2D and 3D

solution method is quite fast due to the availability of a closed form function for the in-

out classification. The second method of fitting cylinders also involve significant amount of

pre-processing to identify cylinders that fit the duct. The implementation time is also high

due to the non-analytical nature of the in-out classifier. However, the provision of having

a constant clearance from the wall makes it particularly attractive for formulating motion

plans for which the thickness of the robot has to be taken into account. Finally, the method

of using convex polyhedra to represent ducts requires the least pre-processing time, and is

easier to implement with the worst case complexity of O(m1.5).

Table 1 shows a comparison between different representations discussed in this paper and

how they differ from each other in terms of 1) Pre-processing time, 2) Flexibility of model

(such as updating and manipulation), 3) Computational time and 4) Scope of implementation

27

5.3 Limitations of the tractrix based scheme

In spite of the certain advantages regarding formulation and computational aspects of the

tractrix based motion planning approach, there are a few limitations which are of impor-

tance. A main limitation is that the ducts represented by analytical curves and cylinders

would require an in-out classifier to demarcate the feasible space of the posed optimization

problem. Often, this would involve numerical formulations which are computationally ex-

pensive. Secondly, it can be seen that a given hyper-redundant robot with a particular link

length will not be able to negotiate a path with a “very high” curvature. This is shown

schematically in figure 17a. In figure 17a, the points 1,2,...,8 denote the coordinates of xh

across successive iterations. From iteration 6 onwards, the constraints demarcating the fea-

sible space S and the one guaranteeing a constant link length cannot be simultaneously

satisfied unless the tail xt (the result of equation (3)), backtracks its own path. Soon after,

the optimization problem stops as the link seems to be “locked” at the trough of ζ(u)9.

For an initial attempt at quantifying the locking effect, we borrow the concept of “traversabil-

ity” from literature on wheeled mobile robots (see e.g. [38]). A curve ζ(u) is traversable by a

circle Ci, Ci :

(
Ri cos(v)
Ri sin(v)

)
, 0 ≤ v ≤ 2π if Ci can roll over the curve ζ(u) while maintaining

“only one” point of contact at all times. Traversability for planar curves can be described

by the relative curvature κR of the circle and the curve at the point of contact. For a planar

curve and a circle of radius Ri, the relative curvature can be given as

κR =
ζuu

(1 + ζ2u)3/2
− 1

Ri

A curve is traversable if the relative curvature is greater than 0, just traversable if it is equal

to zero and not traversable if it is negative. This is explained in figure 17b. This concept

would generalize to traversable surfaces when the minimum of the two eigenvalues of the

relative curvature matrix10 is positive for traversability or vice versa. Based on this result,

we hypothesize that if curve is traversable by a circle of diameter Di, then a hyper-redundant

robot of link length Di can move below the curve without intersecting the curve as shown

in figure 17c. This would also give us an idea about the largest link length that can be used

9In backbone curve approach, this problem is addressed, but at the cost of a very large displacement of
the tail point.

10The relative curvature matrix of a parametric surface S(u, v) : S2 → R3 and a sphere of radius R at the
point of contact P = S(u∗, v∗) and on the Gaussian frame attached to the sphere(or S) at P is given as:

κR|P =

[
Suu.N− 1/R Suv.N

Suv.N Svv.N− 1/R

]
(u=u∗,v=v∗)

where N is the normal vector to S at P

28

in a hyper-redundant robot traversing a given duct. This concept can also be extended to

tessellated surfaces with information about the principal curvatures of the surface at a point

(e.g. see Meyer et al. [39]).

ζ(u)

1 2 3
4
5
6

7
8

path

S

(a) Infeasible link length

(u, ζ(u))

C1

C2

C3

Not Traversable. κR < 0

Just Traversable. κR ∼ 0

Traversable. κR > 0

P

(b) Traversability of a curve

(u, ζ(u))
C1

C2

C3
P

D
1 :

N
on

traversab
le

D
2
:
Ju
st
tr
av
er
sa
bl
e

D3: Traversable

(c) Feasible link lengths

Figure 17: Feasibility of motion planning with a given link length for a given curve.

6 Conclusions

This paper deals with motion planning for hyper-redundant robots in narrow ducts and

confined spaces using a tractrix based redundancy resolution scheme. Motion generated

using the methods discussed in this paper emulates realism as opposed to the backbone-based

redundancy resolution schemes due to the attenuation of displacement from head to tail of

the robot. As opposed to obstacle avoidance problems, the constraint equations used in the

minimization scheme for redundancy resolution is not straightforward and they depend on

the representation of the ducts. To this end, we explored three different methods to represent

ducts in 2D plane–as a combination of ellipses, as a series of connected quadrilaterals and

as a bounded planar surface formed from two non-intersecting analytical curves. Methods

to formulate inequality constraints which will impose all the joints in the robot to always lie

inside the duct are investigated for all the cases. In 3D, the representations of ducts as series

of ellipsoids, series of connected cylinders and using point clouds are discussed. The basic

formulation as well as formulation for efficient practical implementation are also explained.

The methods discussed are demonstrated using three examples of motion planning of 1)

a hyper-redundant inspection robot through an industrial pipeline, 2) a highly articulated

endoscopic robot through a GI tract and 3) a hyper-redundant robot in search and rescue

operation. From the examples, it is shown that the methods developed in the paper can

29

be effectively used in motion planning of a hyper-redundant robot maneuvering in confined

bounded spaces while emulating realism.

In this paper, we have also addressed the computational complexity for the proposed

methods. The complexity of the methods scale linearly with the number of links as well as

the number of path points for a given problem for all our implementations. For ducts modeled

as polyhedra, the worst case complexity has been shown to beO(m1.5), in contrast toO(m3.5)

while naively using interior point solvers with m planar constraints. A qualitative comparison

has been carried out between the different representations based on pre-processing time,

flexibility, computational time and scope of implementation. The locking condition for links

in negotiating ducts of very high radius of curvature is discussed. A maximum link length

which could overcome the issue, based on the curvature of the duct walls is suggested. In spite

of the efficiency of the formulations, in all our implementations we could not reach real time

or near real time performances. We believe that this is attributed to our implementation in

Matlab which has in-built overheads. A stand alone and a leaner version of an interior point

solver tailor made for constrained least norm problems is planned as future work. Finally,

research on more efficient algorithms to overcome the locking problem while maintaining

motion realism is also currently underway.

Appendix

A Analytical expressions for u, v for quadrilateral patch

v =
k1 − k2 ±

√
(k2 − k1)2 − 4k3k4

2k3
, u =

(x− xPi−1 + v)

(a2 + va3)
(32)

where, k1 = (b1b2 + b0b3) , k2 = (a1a2 + a0a3) , k3 = (a1a3 − b1b3) , k4 = (a0a2 − b0b2)
a0 = y − yPi−1, a1 = yPi−1 − yPi, a2 = xQi−1 − xPi−1, a3 = (xQi − xPi)− (xQi−1 − xPi−1)

b0 = x− xPi−1, b1 = xPi−1 − xPi, b2 = yQi−1 − yPi−1, b3 = (yQi − yPi)− (yQi−1 − yPi−1)

If xPi−1 = xPi and xQi−1 = xQi,

u =
b0
a2
, v =

a0a2 − (a3 + a2)

a1 (b0 − a2) + b0 (b3 − b2)
(33)

30

r1

r2

θ

u
t

(a) Parameters of a general cylinder

S

∂S
O1

O2

C

Z

X
Y

Ai

~Ai
n

fi

f3i

f2i

f1i

(b) Schematic of algorithm 2

Figure 18

B Parametric equation of solid cylinder

The parametric cylinder, as shown in figure 18a, with the parameters u, θ and v is given as:

x = C1(u, v, θ) = (r1m1u cos θ +m2) (1− v) + (r2n1u cos θ + n2) v (34)

y = C2(u, v, θ) = (r1m3u cos θ + r1m4u sin θ +m5) (1− v) + (r2n3u cos θ + r2n4u sin θ + n5) v
(35)

z = C3(u, v, θ) = (r1m6u cos θ + r1m7u sin θ +m8) (1− v) + (r2n6u cos θ + r2n7u sin θ + n8) v
(36)

where

m1 = cos 1φ2, m2 = 1xc, m3 = sin 1φ1 sin 1φ2, m4 = cos 1φ1,

m5 = 1yc, m6 = − cos 1φ1 sin 1φ2, m7 = sin 1φ1, m8 = 1zc

n1 = cos 2φ2, n2 = 2xc, n3 = sin 2φ1 sin 2φ2, n4 = cos 2φ1,

n5 = 2yc, n6 = − cos 2φ1 sin 2φ2, n7 = sin 2φ1, n8 = 2zc

The quantity 1 (·) and 2 (·) represent the corresponding parameters of the circles at the ends

of the cylinder. φ1 and φ2 are the angles about the Y and X-axes which the plane of the

circle is rotated, (xc, yc, zc) is the co-ordinate of the center of the circle.

C An algorithm for classifying a point with respect to

a polyhedron

Classification a point with respect to a triangulated domain is a very well known problem and

many methods exist, which offer various advantages in terms of computational complexities.

31

In algorithm 2, we describe a method, to classify a given set of points O with respect to a

polyhedron P as inside (Oin) and outside (Oout). The implementation of our algorithm11 is

O(m). The algorithm can be visualized from figure 18b.

Purpose : To classify a set of points O with respect to boundary ∂P
Input: The set O, O ∈ <3 and O ≡ Oin ∪Oout

Output: Oin, Oout

1: Obtain C, the center of P by taking the mean of the vertices of the N facets
constituting ∂P

2: for i = 1, 2, ..., N do
3: Calculate the normal to the ith facet, Ain = (f 1

i − f 2
i)× (f 2

i − f 3
i)

4: Choose a point Ai on the ith facet and move Ain to Ai

5: Ensure that Ain is directed inside, towards C

6: H(i) = 〈 ~Oi − Ai, Ain〉
7: end for
8: if H(i) ≥ 0 ∀i then
9: Classify O1 ∈ Oin as inside, otherwise classify O1 ∈ Oout

10: end if
Algorithm 2: Algorithm for classifying points as inside (Oin) or outside (Oout) of a trian-
gulated domain.

7 Acknowledgements

The second author would like to acknowledge ISRO-IISc Space Technology Cell for partially

funding the research through the grant ISTC/MME/AG/0394.

References

[1] G. S. Chirikjian, J. W. Burdick, Hyper-redundant robot mechanisms and their appli-

cations, in: Intelligent Robots and Systems’ 91.’Intelligence for Mechanical Systems,

Proceedings IROS’91. IEEE/RSJ International Workshop on, IEEE, 1991, pp. 185–190.

[2] A. Wolf, H. B. Brown, R. Casciola, A. Costa, M. Schwerin, E. Shamas, H. Choset, A

mobile hyper redundant mechanism for search and rescue tasks, in: Intelligent Robots

and Systems, 2003.(IROS 2003). Proceedings. 2003 IEEE/RSJ International Conference

on, Vol. 3, IEEE, 2003, pp. 2889–2895.

11We have used a modified version of the Matlab function inhull.m, made available by John D’Errico for
free usage.

32

[3] R. R. Murphy, S. Tadokoro, D. Nardi, A. Jacoff, P. Fiorini, H. Choset, A. M. Erkmen,

Search and rescue robotics, in: Springer Handbook of Robotics, Springer, 2008, pp.

1151–1173.

[4] A. B. Slatkin, J. Burdick, W. Grundfest, The development of a robotic endoscope, in:

Intelligent Robots and Systems 95.’Human Robot Interaction and Cooperative Robots’,

Proceedings. 1995 IEEE/RSJ International Conference on, Vol. 2, IEEE, 1995, pp. 162–

171.

[5] R. D. Howe, Y. Matsuoka, Robotics for surgery, Annual Review of Biomedical Engi-

neering 1 (1) (1999) 211–240.

[6] G.-B. Cadiere, J. Himpens, O. Germay, R. Izizaw, M. Degueldre, J. Vandromme,

E. Capelluto, J. Bruyns, Feasibility of robotic laparoscopic surgery: 146 cases, World

Journal of Surgery 25 (11) (2001) 1467–1477.

[7] J. Burgner-Kahrs, D. C. Rucker, H. Choset, Continuum robots for medical applications:

A survey, IEEE Transactions on Robotics 31 (6) (2015) 1261–1280.

[8] E. Paljug, T. Ohm, S. Hayati, The JPL serpentine robot: a 12-DoF system for in-

spection, in: Robotics and Automation, 1995. Proceedings., 1995 IEEE International

Conference on, Vol. 3, IEEE, 1995, pp. 3143–3148.

[9] R. L. William II, J. B. Mayhew IV, Obstacle-free control of the hyper-redundant NASA

inspection manipulator, in: Proc. of the Fifth National Conf. on Applied Mechanics and

Robotics, 1997, pp. 12–15.

[10] L. Gargiulo, P. Bayetti, V. Bruno, J.-C. Hatchressian, C. Hernandez, M. Houry,

D. Keller, J.-P. Martins, Y. Measson, Y. Perrot, et al., Operation of an ITER rele-

vant inspection robot on Tore Supra tokamak, Fusion Engineering and Design 84 (2-6)

(2009) 220–223.

[11] S. Ma, S. Hirose, H. Yoshinada, Development of a hyper-redundant multijoint manipu-

lator for maintenance of nuclear reactors, Advanced Robotics 9 (3) (1994) 281–300.

[12] A. Liegeois, Automatic supervisory control of the configuration and behaviour of multi-

body mechanisms, IEEE Transactions on Systems, Man and Cybernetics 7 (12) (1977)

868–871.

33

[13] J. Baillieul, J. Hollerbach, R. Brockett, Programming and control of kinematically re-

dundant manipulators, in: Decision and Control, 1984. The 23rd IEEE Conference on,

Vol. 23, IEEE, 1984, pp. 768–774.

[14] A. A. Maciejewski, C. A. Klein, Obstacle avoidance for kinematically redundant ma-

nipulators in dynamically varying environments, The International Journal of Robotics

Research 4 (3) (1985) 109–117.

[15] Y. K. Hwang, N. Ahuja, Gross motion planning—a survey, ACM Computing Surveys

(CSUR) 24 (3) (1992) 219–291.

[16] S. Chiaverini, Singularity-robust task-priority redundancy resolution for real-time kine-

matic control of robot manipulators, IEEE Transactions on Robotics and Automation

13 (3) (1997) 398–410.

[17] L. Sciavicco, B. Siciliano, A solution algorithm to the inverse kinematic problem for

redundant manipulators, IEEE Journal on Robotics and Automation 4 (4) (1988) 403–

410.

[18] Z. Mao, T. C. Hsia, Obstacle avoidance inverse kinematics solution of redundant robots

by neural networks, Robotica 15 (1) (1997) 3–10.

[19] G. Antonelli, S. Chiaverini, Fuzzy redundancy resolution and motion coordination for

underwater vehicle-manipulator systems, IEEE Transactions on Fuzzy Systems 11 (1)

(2003) 109–120.

[20] B. Dasgupta, A. Gupta, E. Singla, A variational approach to path planning for hyper-

redundant manipulators, Robotics and Autonomous Systems 57 (2) (2009) 194–201.

[21] O. Khatib, Real-time obstacle avoidance for manipulators and mobile robots, in: Au-

tonomous Robot Vehicles, Springer, 1986, pp. 396–404.

[22] V. J. Lumelsky, A. A. Stepanov, Path-planning strategies for a point mobile automaton

moving amidst unknown obstacles of arbitrary shape, Algorithmica 2 (1-4) (1987) 403–

430.

[23] H. Choset, Coverage for robotics–a survey of recent results, Annals of Mathematics and

Artificial Intelligence 31 (1-4) (2001) 113–126.

34

[24] J.-C. Latombe, Robot motion planning, Vol. 124, Springer Science & Business Media,

2012.

[25] S. Sreenivasan, P. Goel, A. Ghosal, A real-time algorithm for simulation of flexible

objects and hyper-redundant manipulators, Mechanism and Machine Theory 45 (3)

(2010) 454–466.

[26] M. S. Menon, G. Ananthasuresh, A. Ghosal, Natural motion of one-dimensional flexible

objects using minimization approaches, Mechanism and Machine Theory 67 (2013) 64–

76.

[27] M. S. Menon, V. Ravi, A. Ghosal, Trajectory planning and obstacle avoidance for hyper-

redundant serial robots, Journal of Mechanisms and Robotics 9 (4) (2017) 041010.

[28] S. Boyd, L. Vandenberghe, Convex Optimization, Cambridge University Press, 2004.

[29] H. Edelsbrunner, E. P. Mücke, Three-dimensional alpha shapes, ACM Transactions on

Graphics (TOG) 13 (1) (1994) 43–72.

[30] D.-T. Lee, B. J. Schachter, Two algorithms for constructing a Delaunay triangulation,

International Journal of Computer & Information Sciences 9 (3) (1980) 219–242.

[31] MATLAB, version 9.1 (R2016b), The MathWorks Inc., Natick, Massachusetts, 2016.

[32] Blender Online Community, Blender - a 3D modelling and rendering package, Blender

Foundation, Blender Institute, Amsterdam (2018).

URL http://www.blender.org

[33] V. M. Spitzer, D. G. Whitlock, The visible human dataset: the anatomical platform for

human simulation., The Anatomical Record: An Official Publication of the American

Association of Anatomists 253 (2) (1998) 49–57.

[34] J. Cao, A. Tagliasacchi, M. Olson, H. Zhang, Z. Su, Point cloud skeletons via Laplacian

based contraction, in: Shape Modeling International (SMI 2010), IEEE, 2010, pp. 187–

197.

[35] H. Ananthanarayanan, R. Ordóñez, Real-time inverse kinematics of (2n+ 1) DoF hyper-

redundant manipulator arm via a combined numerical and analytical approach, Mech-

anism and Machine Theory 91 (2015) 209–226.

35

http://www.blender.org
http://www.blender.org

[36] S. Wright, J. Nocedal, Numerical optimization, Springer Science 35 (67-68) (1999) 7.

[37] N. Chakraborty, J. Peng, S. Akella, J. E. Mitchell, Proximity queries between convex

objects: An interior point approach for implicit surfaces, IEEE Transactions on Robotics

24 (1) (2008) 211–220.

[38] N. Chakraborty, Modeling of wheeled mobile robots on uneven terrain, MSc (Engg.)

Thesis, Dept. of Mechanical Engg., IISc Bangalore, 2003.

[39] M. Meyer, M. Desbrun, P. Schröder, A. H. Barr, Discrete differential-geometry operators

for triangulated 2-manifolds, in: Visualization and Mathematics III, Springer, 2003, pp.

35–57.

36

	1 Introduction
	2 Overview of tractrix based motion planning
	2.1 Nature of the optimization problem

	3 Representation of ducts in 2D and 3D
	3.1 Duct using super-ellipses
	3.2 Duct as set of connected quadrilaterals
	3.3 Duct as two non-intersecting continuous curves
	3.4 Duct in 3D using combination of super-ellipsoids
	3.5 Duct as a set of connected cylinders
	3.6 Duct as point clouds

	4 Examples of motion planning
	4.1 Motion planning for inspection robots
	4.2 Motion planning through a GI tract
	4.3 Motion planning for search and rescue operations

	5 Optimization method
	5.1 Method
	5.2 Complexity analysis
	5.3 Limitations of the tractrix based scheme

	6 Conclusions
	A Analytical expressions for u,v for quadrilateral patch
	B Parametric equation of solid cylinder
	C An algorithm for classifying a point with respect to a polyhedron
	7 Acknowledgements

