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Abstract 
 
Ferdinand Freudenstein (1926-2006) is widely acknowledged to be the father of modern 
kinematics of mechanisms and machines. His Ph. D. thesis in 1954 and subsequent 
research papers by him and his students have influenced academic and industrial 
research, teaching and practice related to the analysis and design of mechanisms and 
machines throughout the world. In this article, we revisit Freudenstein’s thesis and the 
equation named after him. The Freudenstein equation results from an analytical approach 
towards analysis and design of four-link mechanisms which, along with its variants, are 
present in a large number of machines used in daily life. 
 
1 Introduction 
 
Mechanisms and machines have been used since ancient times to reduce human effort, 
and, since the Industrial Revolution, they have entered and impacted almost all aspects of 
human society. In their most simplistic description, a mechanism is an assemblage of 
rigid links (or bars) connected by joints which allow relative motion between the 
connected links. One (input) link of the mechanism is actuated and another (output) link 
can be made to perform a desired, often intricate, motion. One of the first well-known 
examples of a mechanism is the Watt’s straight-line linkage. This mechanism was 
designed by James Watt to pull and push the piston-rod in a double acting steam engine 
he had invented and which is credited to have started the Industrial Revolution (for 
details about James Watt and his linkages, see a recent article by Deepak and 
Ananthasuresh[1] and the references contained therein).  In modern times, mechanisms 
are present in a huge variety of gadgets, devices and systems – in bottle cork openers, in 
bicycles, in garage door opening system, in steering and braking system of a car, in 
construction equipment for moving dirt and other material, to move control surfaces of 
aircrafts, in spacecrafts to deploy solar panels and other appendages, in laparoscopic 
surgical tools, artificial prosthetic knees and other medical devices, to name a few. In the 
last 50 years mechanisms have been combined with advanced electronics, sensors, 
control systems and computing technologies, and this marriage has resulted in devices 
such as robots, micro-electro mechanical systems (MEMS) and other so-called intelligent 
products. 
 
In the nineteenth century and prior to 1950’s, most mechanism analysis and design was 
done graphically. During the 1950’s computers and algorithms for computing were being 
rapidly developed in USA and elsewhere. Freudenstein was amongst the first person to 
realize the potential of computers for analysis and design of mechanisms and machines 
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and his analytical approach fitted perfectly well with the rapidly developing computing 
technologies. In the next section, to put his work in perspective, the key concepts and 
steps of the then prevalent graphical approach are presented. In the section 3, the 
analytical approach developed by Freudenstein in his Ph. D. thesis [2] and initial research 
publications [3, 4] will be presented. Finally, in section 4 a numerical example of the 
design of a four-link mechanism based on the Freudenstein equation is presented.   
 
2 Before Freudenstein 
 
Consider the four-link mechanism shown in figure 1. It consists of three movable rigid 
bars or links and a fixed frame (according to convention, the fixed frame is also counted 
as a link giving rise to the number four in a four-link or a four-bar  mechanism). As 
shown in figure 1, two consecutive links are connected by a rotary joint which allows 
relative rotation between the links. By using geometry, it can be shown that for known 
link lengths a, b, c, d, and for a known rotation angle at any rotary joint, the four-link 
mechanism can be fully described – by this we mean that the position and orientation of 
all links in the mechanism can be completely determined and the mechanism can be 
drawn on a plain sheet of paper. The steps, for the case of  the known angle Φ  made by 
link AB with the frame, are as follows: with A as the centre, draw a circular arc of radius 
b. Mark the point B on the circular arc such that the line AB makes the given angle Φ  
with the fixed frame1. With D as the centre, draw a circular arc of radius d. With point B 
as centre draw a circular arc of radius c. The two circular arcs centered at B and D can 
intersect at most at two possible points – let they be denoted by C and C’. The two 
possible four-link mechanisms for the given link lengths and angle Φ are ABCD and 
ABC’D as shown in figure 1. 

 
 
   Figure 1: A four-link mechanism showing two possible configurations at a given Φ 

                                                 
1 We will use the same notation in this article as used by Freudenstein in references [2, 3 and 4]. 
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In the language of kinematics of mechanisms, the four-link mechanism has one degree of 
freedom2 and it is possible to obtain a complete description of the four-link mechanism 
when the rotation at any rotary joint is given. Prior to 1954, the prevalent method to 
obtain the two possible rotations, ψ, of the output link DC, for a given rotation Φ of input 
link AB, was essentially graphical and similar to the procedure described above. 
Freudenstein in 1954 [2] introduced a simple and elegant algebraic expression relating 
the input angle Φ and the output angle ψ in terms of the link lengths, a, b, c, and d. 
 
In addition to solving the analysis problem, namely obtain values of ψ  for a given Φ and 
link lengths, it is often of engineering importance to design3 a four-link mechanism which 
can give desired value(s) of ψ  for given value(s) of  Φ. To design such a mechanism, we 
need to determine the link lengths and other design variables. Before Freudenstein’s work 
there existed graphical approaches for the design of four-link mechanisms where the 
desired characteristics could be satisfied at a finite number of configurations, also called   
precision points, in the range of motion of the mechanism.  The error is zero at the 
precision points and effort was made to minimize the error at other configurations. 
Typically design was done for three or four precision points. To understand the graphical 
approach, we review the design of a four-link function generation mechanism for three 
precision points.  
 
The top half of figure 2 shows three prescribed rotations of input link and the 
corresponding rotations of the output link. To obtain the four-link mechanism for the 
given three precision points, we proceed as follows: Fix the output link and rotate the 
fixed link -- this process is called inversion and in inversion the relative motion between 
various links is not altered. The first movement from DC1 to DC2 can be obtained by 
rotating the fixed link (frame) through – ψ12 about point D. This results in the point A 
going to A2. The inverted position of B2, denoted by B2

1, can be obtained by constructing 
the angle Φs + Φ12 from the point A2  where Φs is an unspecified arbitrary starting Φ. 
Likewise the movement from DC1 to DC3 can be obtained by rotating fixed link through 
– ψ13 and the point A goes to A3. The inverted position of B3, denoted by B3

1, is obtained 
by constructing the angle Φs + Φ13 at A3.  The moving point C is obtained as the centre of 
the circle passing through B1, B2

1 and B3
1 and the desired four-link mechanism AB1CD, 

with all the graphical construction steps, is shown in bottom part of figure 2.  It can be 
seen that the graphical construction is fairly simple and reduces to obtaining the centre of 

                                                 
2 The degree of freedom of a mechanism can be obtained (except for so-called over-constrained 
mechanisms) by the well known Grübler-Kutzback criteria. For a planar mechanism, the Grübler-Kutzback 
criteria is given by the equation DOF=3(n-j-1) +Σj

i=1 fi,  where DOF is the degree of freedom, n is the 
number of links including the fixed link, j is the number of joints and fi is the degree of freedom for the ith 
joint. For more details see the review article by Gogu [5]. 
3 This is known as function generation in design or synthesis of mechanisms. A mechanism with four or 
more links can also be designed for motion generation and path generation. In motion generation a link of 
the mechanism has to be guided in a prescribed manner. In path generation, the floating or coupler link 
(link not connected to the fixed frame -- link 2 in the four-link mechanism) has to be guided along a 
prescribed path. For details about design of mechanisms for different tasks, see [6]. 
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a circle passing through three points. For four precision points, the graphical construction 
is much more complex (see [6] for details).  

Figure 2: Graphical method for three precision point design of a four-link mechanism  
 
3 Analytical Approach of Freudenstein 
 
In contrast to the graphical approach, Freudenstein developed an analytical approach for 
analysis and design of four-link mechanisms. In his thesis [2] on page VI-15, he presents 
an equation (equation 6.19) which relate the rotation angles Φ and ψ in terms of the link 
lengths a, b, c and d. This equation also appears in reference [3] and [4] in author’s 
closure and equation (2), respectively. The scalar equation, which is now known as the 
Freudenstein equation, essentially is the condition for the assembly of the links (also 
called the loop-closure constraint) in a four-link mechanism at a given Φ. We follow the 
development of the Freudenstein equation using figure 3 which appears as figure 1 in 
reference [4]. 
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Figure 3: A four-link mechanism for function generation  
 
In paper [4], the frame is normalized to unity and the other lengths are denoted by b, c 
and d, and the input and output angle are Φ and ψ, respectively. The vector AB locating 
point B with respect to A can be obtained in terms of b and angle Φ, likewise the vector 
AC = AD + DC can be obtained in terms of  1, d and angle ψ. Since the vector equation  
 
AB + BC = AD + DC                                                   (1)  
 
must be always satisfied to assemble the four-link mechanism, Freudenstein wrote the 
scalar equation   
 
BC· BC = (AB + CD + DA) · (AB + CD +DA)          (2) 
 
In the above equation, the vectors CD and DA are equal to the negative of DC and AD, 
respectively, and the symbol `·’ represents the vector dot product operation. Simplifying 
equation (2), Freudenstein obtained a simple scalar equation4  
 
R1 cos Φ − R2 cos ψ + R3 = cos (Φ − ψ)                         (3) 

                                                 
4 A derivation of equation (3) is as follows: With A as the origin of a X-Y coordinate system, the [x, y] 
coordinates of B and C can be written as [ - b cos (Φ),  b sin (Φ) ] and  [1 - d cos (ψ), d sin (ψ ) ], 
respectively. The negative signs arise due to the choice of Φ and ψ by Freudenstein in figure 3. In this 
derivation, the input and output angles are measured counter-clockwise positive from a horizontal X axis 
and are thus π - Φ and π - ψ, respectively. Substituting the [x, y] coordinates of B and C, equation (2) 

becomes c2 = [1 - d cos(ψ) + b cos(Φ), d sin(ψ) - b sin(Φ)] · [1 - d cos(ψ) + b cos(Φ), d sin(ψ) - b 

sin(Φ)]. On performing the vector dot product, we get 1+ d2 + b2 + 2b cos (Φ) – 2d cos(ψ) – 2bd (cos (Φ – 
ψ) ) = c2.  Rearranging and dividing both sides by 2 bd, we get equation (3). 
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where  
R1 = 1/d                                                                         (4)  
R2 = 1/b                                                                         (5) 
R3 = (1 + b2 – c2 + d2)/ (2bd)                                        (6) 
 
Equation (3) is known as the Freudenstein Equation and is readily applicable to 
kinematics analysis of four-bar mechanisms – from known links lengths and the input 
angle Φ, the output angle ψ can be found. Using the well known tangent half-angle 
trigonometric formulas for sine and cosine of angle ψ, it is possible to show that there are 
two possible ψ’s for a given angle Φ  – a fact consistent with the graphical results 
obtained earlier.   
 
Equation (3) can also be directly used for three precision point synthesis for a function 
generating four-link mechanism. Given three values of input Φi, i=1, 2, 3, and the 
corresponding three values of output ψi, i=1, 2, 3, one can substitute these angle pairs in 
equation (3) to obtain three linear equations in R1, R2 and R3. Once R1, R2 and R3 are 
obtained from the solution of the linear equations, one can easily obtain the link lengths 
b, d, and c from equations (4), (5) and (6), respectively. It is interesting to compare the 
graphical approach and the analytical approach for three precision point design of a four-
link mechanism. In the former the centre of a circle is to be determined from three points 
in a plane whereas in the latter three linear equations need to be solved – both are very 
straight forward!  A second difference is in the choice of the design variables  – in the 
graphical approach the starting rotation of output link ψs is determined from the 
construction  (Note: in figure 2, C1  is not the same as C ) where as in the analytical 
approach this is inherently assumed  which in turn yields the three linear equations. 
Finally, in the analytical approach, the solution of the linear equations may give negative 
values of R1 and R2. Since the link lengths d and b cannot be negative, d and b must be 
thought of as vectors, and when R1, R2 are negative π must be added to the initial angles 
ψs, Φs, respectively. 
 
For designing with larger number of precision points, Freudenstein introduced two new 
variables pi and qi denoting the rotation angles from unspecified and arbitrary starting 
positions Φs and ψs. Setting Φ = Φs + pi and ψ = ψs + qi, equation (3) now can be 
written as  
 
R1 cos (Φs + pi) − R2 cos (ψs + qi) + R3 = cos[(Φs + pi ) − (ψs + qi)], i = 1, 2, 3, 4, 5 (7) 
 
The above equation (7) can be used for four and five precision point synthesis. In his 
thesis [2] and his paper [4], Freudenstein develops a detailed solution for function 
generation with four and five-precision point synthesis for a four-link mechanism. 
Finally, to extend the equation for six and seven precision-point synthesis, Freudenstein 
introduced scale factors rΦ and rψ to convert the input and output angles into functional 
variables x and y related by y = f(x), and pi and qi were rewritten as pi = rΦ (xi - xs) and 
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qi = rψ(yi - ys). Since the scale factors are unspecified, two new variables are added to 
equation (7) and Freudenstein could achieve up to seven precision point synthesis for a 
function generating four-link mechanism.  It may be noted that for more than three 
precision points non-linear transcendental equations (7) need to be solved – in fact 
solution of non-linear equations goes hand-in-hand with modern kinematics of 
mechanisms and machines!  
 
In addition to finite precision point synthesis, Freudenstein also derived detailed 
formulation to design four-link mechanisms when only one precision point together with 
a number of derivatives, such as velocity and acceleration, are prescribed. One can 
clearly see the power and elegance of the Freudenstein analytical approach when four or 
more precision points are to be used or when derivative information is required to be used 
– in the graphical approach, the geometry constructions become very complex whereas 
Freudenstein’s approach can be easily programmed in a computer.  In the next section, 
we present a numerical example to illustrate the design of a four-link mechanism for 
function generation given three precision points. 
 
4 Numerical Example 
 
In this example, the aim is to design a four-link mechanism to approximate the function 
ψ = sin (Φ) in the range π/6 < Φ < π/3 with Φ in radians. We are given 3 precision points, 
namely, (0.5587, 0.5301), (0.7854, 0.7071) and (1.0121, 0.8479)5.  Using these sets of 
values of Φ and ψ in equation (3), we get R1 = 0.1890, R2 = 0.2337, and R3 = 1.0410. 
From equations (4) through (6), the link lengths for the four-link mechanism are obtained 
as a = 1, b = 4.2790, c = 0.4123 and d = 5.2921. To test how accurate is our design, we 
plot the values of ψ from equation (3) versus Φ in the range π/6 < Φ < π/3 in steps of 
π/60 radians. In the same plot, we also plot ψ obtained from an electronic calculator for 

the same values of Φ. In figure 4(a), the symbol ‘·’ shows values obtained using a 
calculator, the symbol ‘+’ and ‘o’ show the two values obtained from the Freudenstein 
equation (3), and the symbol ‘*’ are the given three precision points. In figure 4(b), we 
plot the error between the‘·’ values and the ‘+’ values of ψ as a function of Φ.  We can 
make the following observation from figure 4:  
 

• As mentioned earlier, there are two possible solutions for ψ for a given Φ and the 
solutions lie on two branches. Except at a singularity, where the two branches 
meet, the output angle ψ of a four-link mechanism cannot switch from one branch 
to another. In this numerical example, the 3 precision points lie on a single branch 
(see figure 4 (a)) and in this sense, the design does not suffer from the so-called 
branch defects. This does not happen always and the reader can verify that for a 
desired range 0 < Φ < π/2 and three precision points given by (0.1052, 0.1050), 
(0.7854, 0.7071) and (1.4656, 0.9945), both the branches of the output angle ψ, 
for the designed mechanism, does not contain all the three precision points.   

                                                 
5 Obtaining precision points to minimize error over the full range of input variable has been a research 
topic. The values used in this example were obtained by using Chebyshev spacing (see [6] for details). 
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• The error between the values of output angle ψ obtained from an electronic 

calculator and Freudenstein’s equation (3) is quite small, of the order of 10-2, in 
the entire range.  This may not be so for other desired ranges of the input or for 
other function generators. For better approximation one can use a four or higher 
precision point synthesis.  

 
• In this example, the two branches of the output angle are close to meeting near π/3 

and hence the four-link mechanism is close to a singularity at the end of the range. 
This is, however, not by choice. 

 
                       (a)                                                     (b) 
Figure 4: Generation of function ψ = sin (Φ) using Freudenstein equation  
 
5 Conclusions 
 
Freudenstein’s contribution to the theory of mechanisms and machines is now widely 
recognized and the equation named after him is now present in almost all textbooks on 
analysis and design of mechanisms. It is interesting to note that when his seminal papers 
appeared, researchers immediately realized the importance of his work. This can be seen 
from the discussions accompanying the papers. A. S. Hall Jr.  in his commentary writes 
``… that the author has succeeded in reducing the analytical approach to the 4-bar 
problem to as uncomplicated a form as possible…..analytical treatment may not be any 
more difficult or time-consuming than the older graphical-geometric methods…’’[4, page 
860]. His continuing influence on the mechanisms and machines community and its 
offshoots, such as robotics, can be seen from the list of more than 575 names (as of June 
2010 and growing!) in the Freudenstein academic family tree available at the website 
http://my.fit.edu/~pierrel/ff.html. Interested readers are referred to reference [7] for an 
account of the numerous other contributions of Ferdinand Freudenstein and his students. 
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