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ABSTRACT
In thispaper, wepresentthenecessaryandsufficientcriteria

for finite selfmotionandfinite dwell of thepassivelinks of apar-
allel manipulatoror aclosed-loopmechanism.Westudythefirst
orderpropertiesof the constraintequationsassociatedwith the
kinematicconstraintsinherentin a closed-loopmechanismor a
parallelmanipulator, andarriveat thecriteriafor themechanism
to gaina degree-of-freedomat a singularpointof its workspace.
By analyzingthesecondorderpropertiesof theconstraintequa-
tions, we show that the gain of degree-of-freedommay leadto
finite self motion of the passive links if certainconfigurational
andarchitecturalcriteriaaremet. Specialconfigurationsandar-
chitecturemayalsoleadto finite dwell of thepassive links, and
thecriteria for thesamehasbeenderived. Theresultsareillus-
tratedwith thehelpof severalclosed-loopmechanisms.

Intr oduction
Parallel manipulatorsand closed-loopmechanismsshow

very complicatedanddiversebehavior at singularitiesor singu-
lar configurations.It is well known that in serialmanipulators,
singularitiesleadto the lossof oneor moredegree-of-freedom.
However, a fully in-parallel device can only gain degree-of-
freedomas shown by Hunt et al. (Hunt, SamuelandMcAree,
1991),a hybrid parallelmanipulatormayboth loseor gain one
or moredegree-of-freedomatasingularconfiguration.Thisgain
or loss hasbeenattributed to the degeneracy of two different

�
Addressall correspondenceto thisauthor.

Jacobianmatricesoriginating from the time derivative of the
input-outputequationof the manipulatoror closed-loopmech-
anism(GosselinandAngeles,1990;Zlatanov, FentonandBen-
habib,1995).Severalresearchershave alsostudiedsingularities
in termsof statics(see,for example,(Merlet,1991;Agarwal and
Roth,1992;DasguptaandMruthyunjaya,1998;Choudhuryand
Ghosal,2000)),andhave madeuseof the force transformation
matrix. They have shown thatat singularconfigurations,a par-
allel manipulatoror a closed-loopmechanismcannotwithstand
external forcesor torquesin certaindirections. Irrespective of
theapproach,theproblemof finding thegeneralcriteriafor sin-
gularconfigurationsis adifficult one,andafew resultsexist only
for certainrestrictedclassesof mechanisms.For example,Basu
andGhosal(BasuandGhosal,1997)have obtainedthe general
singularconfigurationfor platformtypeclosed-loopmechanism
containingsphere-spherelinks.

While mostof the existing work on singularity in a paral-
lel manipulatoror closed-loopmechanismfocusonidentification
andclassificationof singularitiesarisingoutof theconfiguration
of thedevice, therehasbeensomework relatedto theeffect of
architectureon singularities(GosselinandAngeles,1990). The
configurationleadingto thegainof degree-of-freedomat a sin-
gularity may persistover a finite domainof the workspaceof
themechanismandallow thepassivejoints to movefinitely even
whenall active joints arelocked, if certainarchitecturalcriteria
aremet. Similarly, specialarchitectureandconfigurationsmay
resultin apassivelink losingmotionevenwhentheactuatorsare
moved.Thepresentwork dealswith thesetwo casesof degener-
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atemotion.
In thispaper, wefocusontheconstraintequationsassociated

with the kinematicconstraintsinherentin a parallelmanipula-
tor or closed-loopmechanism.In thesemechanisms,thereexist
holonomicconstraints in the form of loop-closure equations.A
parallelmanipulatordescribedby n configurationvariableswith
m loop-closureconstraintequationswill haveonlyn � mdegrees-
of-freedom– only n � m of the configurationvariablescanbe
actuatedandm of themarepassive. The motion of the m pas-
sive joints is governedby theconstraintforceswhicharenormal
to the configurationmanifold,anddo not do any work. We re-
late theseforceswith the first orderpropertiesof theconstraint
equations,andidentify thegainof degree-of-freedomatasingu-
lar point with the degeneracy of theseforces. This is different
from theconceptof analyzingthelossandgainof velocities,in
the tangent spaceof the configurationmanifold, doneby most
researchers.The main contribution of this paper, obtainedasa
resultof analyzingthesecondorderpropertiesof theconstraint
equations,is a set of resultsregardingthe architectural singu-
larity describedby GosselinandAngeles(GosselinandAngeles,
1990).In particular, weareableto derive thenecessaryandsuf-
ficientanalyticalcriteria for finite self-motionandfinite dwell of
links associatedwith thepassive joints of a closed-loopmecha-
nismor a parallelmanipulator.

Thepaperis organizedasfollows: In section2, we present
the mathematicalapproachfor the analysisof constraintforces
and configuration-spacesingularitiesof parallel manipulators
andclosed-loopmechanisms.In section3,wepresentthederiva-
tionsof thenecessaryandsufficientcriteriafor finiteself-motion,
finite dwell of the passive links. In section4, we illustrateour
theoreticalresultswith thehelpof planar4-barand5-barmech-
anisms,anda three-degree-of-freedom planarmulti-loop mech-
anism.Finally, in section5, wepresenttheconclusions.

Singularities in the Configuration Space
In this section,we discussthe first orderpropertiesof the

constraintequations,andrelatethemwith the constraintforces
andsingularitiesleadingto gainof degree-of-freedom.In gen-
eral,theforwardkinematicsof a parallelmanipulatoror closed-
loopmechanismcanbeexpressedasa setof relations

X � ψ
�
q1 �����	�	� qn 
 (1)

where,X1 representstheoutputvariableandqi � i � 1 �����	�	� n is a
setof n joint variables,whichdeterminetheconfigurationof the
mechanismcompletely, andform theconfiguration-spaceof the
mechanismor manipulator. The vectorfunction ψ dependson
thechosenoutputlink, thegeometryandstructureof themanip-
ulator andits dimensions.In the caseof parallelmanipulators

1Theoutputmaybepositionandorientationof achosenoutputlink.

andclosed-loopmechanisms,notall then joint variablesareac-
tuatedandm of themmaybepassive. In sucha case,thedegree
of freedomof theparallelmanipulatoror theclosed-loopmecha-
nismis

�
n � m
 , andin additionto theaboveequations,wehave

m independentconstraintequationsof theform

η
�
q1 ���	���	� qn 
 � 0 (2)

whereη
��� 
 � 0 denotesthem constraintfunctions,ηi

�� 
 � 0 � i �
1 � 2 ���	�	� m.2 Suchconstraintsarisefrom the loop-closure equa-
tionsof theparallelmechanisms,andasψ, they alsodependon
thearchitectureandgeometryof themechanism.Thesetof equa-
tions,η

�
q1 ���	�	��� qn 
 � 0, in generalrepresentm constrainthyper-

surfacesin the configurationspaceon which all configuration
variablesareforcedto lie by theloop-closureequations.Differ-
entiatingthe m constraintequations(2) with respectto time, t,
weget

∂η
∂t

� m

∑
i � 1

∂η
∂qi

q̇i � 0 (3)

In closed-loopmechanismsandparallelmanipulators,the con-
straintequations,typically, havenoexplicit dependenceontime,
andhencewecanwrite

m

∑
i � 1

∂η
∂qi

q̇i � 0 (4)

Theaboveequationmaybewritten in matrix form as�
N � q̇ � 0 (5)

whereq̇ denotesthe time derivativesof theconfigurationspace
variables,andis givenby thevector

�
q̇1 � q̇2 ���	�	��� q̇n 
 . We canalso

write the matrix
�
N � as

�
N ��� �

NT
1 � NT

2 ���	���	� NT
m 
 T whereNi , the

ith row vectorof
�
N � , is the gradientvector to the ith constraint

hyper-surfacein the configurationspace.This implies that the
motionof thesystemin theconfigurationspaceis orthogonalto
thenormalsto all theconstraintsurfaces.

Geometric Description of the Constraint Forces
It is well known that associatedwith m kinematic con-

straints,asin equation(2), thereexist m constraintforceswhich
do not do any work(see,for example,pp. 218-224in (Haug,

2In this paper, we restrict ourselves to non-redundantmanipulatorsand
closed-loopmechanisms,i.e., � n � m��� 3.
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1989)). Denotingtheconstraintforcesby thevectorFc, we can
write

FT
c q̇ � 0 (6)

By comparingequation(6) with equation(5), weget

Fc � m

∑
i � 1

λiNi � �
N � Tλ (7)

whereλi ’sarethecomponentsof anon-nullm � 1 vector, λ. The
significanceof λ andits connectionswith singularitiesin closed-
loopmechanismsandparallelmanipulatorsarediscussednext.

Relationship between λ,
�
N � and Singularity

Sincetheconstraintforcesarecompletelydeterminedby λ
and

�
N � , it is instructiveto considerthesituationwhenthematrix�

N � losesrank.Mathematically, it impliesthattherowsof thema-
trix

�
N � becomelinearlydependentat thatpoint,andat leastone

of the gradientvectors,Ni , may be expressedasa linear com-
binationof the others. This implies that the contribution to Fc

from this constraintgetsalgebraicallyaddedto thecontribution
from theothers.Equivalently, we cansaythatat thatpoint, one
or morekinematicconstraintsis no longeractive. This intuitive
notioncanbemorerigorouslyexplainedasfollows:
Fromequation(7),thesquareof thenormof Fc is computedas

FT
c Fc � λT �N � �N � Tλ � λT � gf � λ (8)

where
�
gf � is a symmetric,positive definitematrix of dimension

m � m if
�
N � is of full rank. Undera constrainton λ of theform

λTλ � k2 � k � ℜ, theadmissibledistributionof Fc maybeshown
to be an m-dimensionalellipsoid, whosesemi-axislengthsare
equal to the square-rootsof the eigenvaluesof

�
gf � , and axis-

orientationsaregivenby thecorrespondingeigenvectors.When
N losesrank,

�
gf � alsolosesrank,andoneormoreof theeigenval-

uesof
�
gf � become(s)zero. Correspondingly, theFc distribution

losesoneor moredimensionandwe now have an ellipsoid of
dimension

�
m � 1
 or less.In suchdegeneratecases,theadmis-

sibledistribution of Fc is restrictedto thereducedrow-spaceof�
gf � , spannedby theeigenvectorscorrespondingto thenon-zero
eigenvaluesof

�
gf � . Equivalently, we cannothave any constraint

force in the null-spaceof
�
gf � . From the well-known duality of

forcesandvelocities,weexpectthemechanismto gainadegree-
of-freedomdueto thislocal relaxationof constraintsatasingular
point. Thismeansthatthereexistsavelocityin theconfiguration
space,even if theactuatorsareall locked. We now analyzethe
gainedvelocitywith all theactuatorsin a lockedcondition.

Gained Velocity with Actuator s Loc ked
Equation(5) may be decomposedinto active and passive

partsas �
K � θ̇ � �

K
� � φ̇ � 0 (9)

wherewedenotethe
�
n � m
 activevariablesby thevectorθ and

them passive variablesby thevectorφ, suchthatq � �
θT � φT 
 T ,

and θ̇, φ̇ are the time-derivativesof θ andφ respectively. The
columnsof

�
K � and

�
K
� � containthepartialderivativesof η with

respectto θ andφ respectively. Hence,
�
N � is of theform�

N ��� ���
K �� �K � ��� (10)

With actuatorslocked ( θ̇ � 0), the relevantpart of equation(9)
is
�
K
� � φ̇ � 0, and effectively,

�
K
� � plays the role of

�
N � . All

the above observationsmadein termsof
�
N � areequallyvalid

for
�
K
� � , andindeed,the rows of

�
K
� � maybevisualizedasthe

projectionsof Ni ontothepassive subspaceof theconfiguration
manifold. Hencethe gainof degree-of-freedomin theconfigu-
rationspacerequirestherowsof

�
K
� � to becomelinearlydepen-

dent,i.e.,singularitycriterion is givenby3

det
�
K
� ��� 0 (11)

Fromequation(9),wecanstill haveanonzerȯφ whendet
�
K
� ���

0. This gainedvelocityin theconfigurationspaceis in thenull-
spaceof

�
K
� � , andthe total motion in theconfigurationspaceis

in thenull-spaceof
�
N � . Sincetheconstraintforcesarerestricted

to the row-spaceof
�
N � , the constraintforcesareorthogonalto

theconfigurationalvelocity. In otherwords,theloss-spaceof Fc

is thegainspacefor φ̇.

Second Order Anal ysis of Constraint Equations
In theprevioussection,we have analyzedthematrices,

�
N � ,�

K � and
�
K
� � whicharisefrom thefirst derivativeof theconstraint

equations.In thissection,weanalyzethesecond-orderproperties
relatedto the derivativesof det

�
K
� � and elementsof

�
N � . We

show that the second-orderanalysisleadsto analyticalcriteria
for finite selfmotionandfinite dwell.

Gain Singularity and Finite Self Motion
Finite self motion(FSM) of a mechanismrefers to finite

movementof thepassivepartsof themechanism,with theactua-
tors held fixed. This clearly forms a subsetof gain-singularity,

3It may be notedthat �K ��� is always a m  m matrix, as thereare always
m constraintequationsandm passive variablesφ in a n � m degree-of-freedom
closed-loopmechanismor parallelmanipulator.
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with the distinction that the configurationresponsiblefor the
gain-singularityis maintainedovera finitespanof motionof the
correspondingpassive parts. It is known that FSM imposesre-
strictionsonthearchitectureof themechanism(GosselinandAn-
geles,1990),andin thefollowingdiscussion,weshow how these
architecturalrequirementsmaybeobtainedfrom theanalysisof
the constraintequationsalongwith the singularitycriteria. We
startby makingthefollowing observations:

1. At non-singularconfigurations,with all actuatedjoints
locked,all passive jointsarealsolocked. This follows from
equation(9).

2. For gainsingularity, with all actuatedjointsθ locked,a nec-
essarycondition is that det

�
K
� � mustbe zero. det

�
K
� �!� 0

implies that at gain singularity, oneor moreof the passive
joints arenot locked. Thenumberof unlockedor indepen-
dent passive joints is equalto the " ���

K
� � 
 , the nullity of�

K
� � . From equation(9),we know that the corresponding

passivemotionliesin thenull-spaceof
�
K
� � . For thepurpose

of analysis,wepartitionφ in two parts,namelyφi of dimen-
sion " �

K
� 
 andφd of dimensionm �#" ���

K
� � 
 , which de-

notethe independentanddependentpartsof φ respectively.
3. In additionto thenecessarycondition,det

�
K
� ��� 0, for FSM,

two sufficientconditionsarethata) theconstraintequations
shouldbe independentof the unlockedpassive joints φi ’s,
andb) det

�
K
� � shouldbe independentof theφi ’s. Hence,we

have to look at the second-orderpropertiesobtainedfrom
thefirst derivativesof elementsof

�
K
� � .

To derive themathematicalconditionsfor FSM, we expressthe
constraintequation(2) in the form η

�
θ � φi � φd � φi 
�
 � 0. Noting

that theactive variableθ is heldfixed,the total derivativesof η
maybewrittenas

dη
dφi

j
� m

∑
k� 1

∂η
∂φk

∂φk

∂φi
j

(12)

Notethat ∂η
∂φk

givesthekth columnof
�
K
� � , andata non-singular

point,wehave ∂φk
∂φi

j
� δ jk, whereδ jk is 1 for j � k and0 otherwise,

sincethepassive variablesdo not have any explicit dependence
on eachother. It canbealsonotedthat the total derivativeof η
coincideswith thepartial derivative at a non-singularpoint. At
asingularpoint,φd is dependentonφi , andthequantities∂φk

∂φi
j

are

no longerzerofor φk $� φi
j , andwehave theequation

m

∑
k� 1

∂η
∂φk

∂φk

∂φi
j

� 0 (13)

Equation(13)gives " ���
K
� � 
 � m scalarequationsin m φ’s, and�

m �%" ���
K
� � 
�
 �&" ���

K
� � 
 ∂φk

∂φi
j
’s. We also have the following

second-orderrelationship,

d

dφi
j

�
det

�
K
� � 
 � 0 � j � 1 � " ���

K
� � 
 (14)

which gives " ���
K
� � 
 individual relationships.Hencewe have

a total of " �
K
� 
 � � m �

1
 equations.After eliminating
�
m �" ���

K
� � 
�
 �'" ���

K
� � 
 ∂φk

∂φi
j
’s from them, we can get " ���

K
� � 
 �" 2 ���K � � 
 equationsin the m φ’s and linkageparameters.Out

of theseequations," ���
K
� � 
 equationsreproducesamenumber

of individual singularity relationshipsbetweenthe elementsof
φ, andtherest " 2 ���K � � 
 yield anequalnumberof relationships
betweenthelinkageparametersof thepassive partof themech-
anism,which governthecriteriaof FSM. Substitutingthesere-
lationshipsandthe singularitycriteria in the original constraint
equation(2),weobtaintheconfigurationalandarchitecturalcon-
straintson theactivepart of themechanismwhich allows FSM.
Note : In literature,the criteria for FSM hasbeenstatedasthe
meetingof thebranchesof forwardkinematicsaswell asinverse
kinematics(GosselinandAngeles,1990).We notethatthemeet-
ing of the branchesoccurswhen the matrix

�
K
� � is rank defi-

cient, andoneor morerow(s) of
�
K
� �)( 1 � � �K � 
 is(are)null re-

spectively. However, this simultaneousdegeneracy of
�
K
� � , and�

K
� �)( 1 � � �K � 
 is only a specialcase.Theabove procedureis il-

lustratedin section4 with theexamplesof threesingleandmulti-
loopplanarmechanisms.

Dwell of Passive Links : Instantaneous and Finite
Dwell of a passive link refersto a situationwhenthelink is

at restfor instantaneousor finitemotionof theactuators.While
instantaneousdwell (ID) is the more frequentof the two and
canoccurfor general architectureof themechanism,finite dwell
(FD) requiressomeconstraintson thearchitecture,asin thecase
of FSM. In the following discussion,we explain the methodol-
ogyto derivethecriteriafor bothID andFD in amechanism.We
observethefollowing factsaboutID andFD:

1. From equation(9),if
�
K
� � is non-singular, we have a non-

zerovectorφ̇ givenby

φ̇ � �
K
� � ( 1 � � �K � 
 θ̇ (15)

While all of the φ̇i ’s maynot be independentof eachother,
ata general configuration,all of themarenonzero.

2. Velocity of the ith passive joint, φ̇i , maybezero,if it is not
influencedby any of the actuatedjoints. This may be ex-
plainedasfollows. Assumingthe passive variablesφi ’s as
explicit functionsof θ, wecanwrite thefollowing equation.

φ̇i � ∂φi

∂θ j
θ̇ j j � 1 � n � m (16)
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From the above, we find that dwell, or lossof mobility of
a passive link associatedwith joint i will occurwith arbi-
trary input θ̇, if we have ∂φi

∂θ j
� 0 � j � 1 � n � m. Compar-

ing thelast two equations,we notethattheelement
�
i � j 
 of�

K
� �*( 1 � � �K � 
 maybewrittenas���

K
� � ( 1 � � �K � 

 i j � ∂φi

∂θ j
(17)

and � ���K � �)( 1 �K � 
 i j givesthekinematicinfluenceof θ j onφi .

Since ∂φi
∂θ j

� j � 1 � n � m givesthe ith row of
�
K
� �*( 1 � � �K � 
 ,

wearriveat thefollowing necessaryandsufficientcondition
for ID:
Thelink associatedwith theith joint of a mechanismdwells
instantaneouslywith arbitrary input θ̇, if the ith row of the
matrix

�
K
� � ( 1 � � �K � 
 , denotedbyRi , becomesnull.

3. Finite dwell (FD) impliesthattheabove conditionfor ID is
maintainedover a finite spanof motionof the input joints,
whichimpliesthesecond-orderpropertiesof theconstraints,
in the form of derivativesof Ri , have to bestudied.Hence
wehavethefollowing criteriafor FD.

(a) TheID criteriais satisfied,i.e.,

Ri � 0 (18)

(b) Theconstraintequationsareindependentof θ, overthe
spanof FD, i.e.,

dη
dθ

� 0 (19)

(c) TheID criteriais maintainedoverthespanof FD, i.e.,

dRi

dθ
� 0 (20)

The equations(18), (19) and (20) give the necessaryand suf-
ficient criteria for FD. We now investigatethe structureof the
above equations,andextract the architecturalrequirementsfor
FD from them.Expandingequation(19)by chainruleof deriva-
tives,weget

dη
dθi

� ∂η
∂θi

� m

∑
k � 1

∂η
∂φk

∂φk

∂θi
� 0 i � 1 � n � m (21)

The lastequationgivesa setof m � � n � m
 scalarequationsin
anequalnumberof partialderivativesof theform ∂φk

∂θi
. Similarly,

X     

2

3

0

Y

l

l

θ

l

l

1

1

φ3

φ2

Figure 1. PLANAR 4-BAR MECHANISM

if wehavend numbersof passive links in finite dwell, weobtain
nd � � n � m
 2 scalarequationsin ∂φk

∂θi
’s from equation(20). Com-

bining them, we obtain a set of
�
n � m
 � � m �

nd � � n � m
�

equationsin

�
m � nd 
 � � n � m
 unknowns4, ∂φk

∂θi
’s. Hencewe

can eliminate all the partial derivatives from the above over-
constrained equations,and obtain nd � �

n � m
 � � n � m
�

1

homogeneousequationsin thearchitectural andconfigurational
parametersof themechanism.Theseequationsyieldnd � � n � m

conditionsgiving theID criteria,andtherestN of themgive an
equalnumberof relationshipsbetweenthe architecturalparam-
etersinvolved in the mobilepartof themechanism,whereN is
givenby

N � nd � � n � m
 2 (22)

Substitutingrelationshipsobtainedabove in the original con-
straintequation(2),we obtain the configurationalandarchitec-
tural constraintson thedwellingpartof themechanism.
Note: ThequantityN givesanupperboundonthenumberof ar-
chitecturalconstraintsthatcanbeextractedusingtheabovepro-
cedure.The actualnumber, however, will dependon the struc-
tureof the constraintequations,hencemay be lessthanN (see
examplesin section4).

Theabove theoreticaldevelopmentis illustratedin thenext
sectionwith thehelpof severalplanarmechanisms.

Illustrative Examples
In this section,we illustratethetheorydevelopedin section

3 with theexamplesof threeplanarclosed-loopmechanisms.

Planar 4-Bar Mechanism
Figure1 showsthegeometryof a general4-barmechanism.

Thefirst link is thedriving link, andits positionis givenby the
activevariable,θ1, while φ � �

φ2 � φ3 
 T givesthepassivevariable
respectively. Hencewehaveq � �

θ1 � φ2 � φ3 
 T . Theloop-closure

4Thenumberof unknown partialderivativesis reducedby nd  +� n � m� , since
thesemany partialderivativeswill beidenticallyzero.
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equationsfor the4-barmechanismaregivenby 5

η1 � l1c1
�

l2c2
�

l3c3 � l0 � 0

η2 � l1s1
�

l2s2 � l3s3 � 0 (23)

Thematrices[K ] and
�
K
� � arecomputedfrom equation(23)as

[K ] � , � l1s1

l1c1 -�
K
� �.� , � l2s2 � l3s3

l2c2 � l3c3 - (24)

Fromequation(11),theconditionfor gainsingularityis givenby

l2l3sin
�
φ2
� φ3 
 � 0 (25)

Geometrically, this meansthat thetwo passive links of lengthl2
andl3 getaligned.

Finite Self Motion of 4-Bar Mechanism It is known
thatthe4-barmechanismcanshow FSM,if thefollowing condi-
tionsaresatisfied(GosselinandAngeles,1990):

1. Architecturalrequirement: l2 � l3 � l1 � l0
2. Configurationalrequirement: θ1 � 0

We now derive the above conditions,following the methodde-
scribedin section3. In this case," ���

K
� � 
 � 1, we have only

one independentpassive variable,which we chooseto be φ2.
According to the notationsintroducedin section3, we have
φi � φ2 � φd � φ3. Substitutingη � �

η1 � η2 
 T from equation(23)
into (12),wegetthefollowing equations:� l2s2 � l3s3

∂φ3

∂φ2
� 0

l2c2 � l3c3
∂φ3

∂φ2
� 0 (26)

Applying equation(14) to thesingularitycriteriagivenby equa-
tion (25), we get ∂φ3

∂φ2
�/� 1. Substitutingfor ∂φ3

∂φ2
into equation

(26),weget � l2s2 �/� l3s3

l2c2 � l3c3 (27)

Squaringandaddingtheabove lastequations,we caneliminate
φ2 � φ3 to obtainthearchitectural requirementon thepassive part

5ci 0 si indicatecos� qi � 0 sin� qi � respectively in thispaper.

Y

X     

l
l

l

l

1
2

3

0

Figure 2. CONFIGURATION OF THE 4-BAR MECHANISM FOR FSM

for FSMasl2 � l36. Notethattheequation(27)alsoyield thesin-
gularity criteria,if we considerthemashomogeneousequations
in the link-lengthsl2 andl3, andapplytheconsistency criterion
to theseequations.Theaboveresultsverify our claim regarding
thenumberof architecturalconstraintswhen " ���

K
� � 
 is 1.

Thearchitecturalandconfigurationalrequirementontheac-
tivepartof themechanismmayalsobededucedasfollows. Sub-
stituting the equation(27) into theoriginal constraintequations
(23), we get l1s1 � 0 and l1c1 � l0 � 0, wherefrom we obtain
the only physicallymeaningfulsolutionasθ1 � 0, and l1 � l0.
Thesearethe configurationalandarchitecturalrequirementson
theactivepartof themechanismrespectively. Theconfiguration
of themechanismat thispoint is shown in figure2.

Finite Dwell of 4-Bar Mechanism Theoutputlink of
a 4-barmechanismcanshow FD, if thefollowing conditionsare
satisfied(GosselinandAngeles,1990).

1. Architecturalrequirement: l1 � l2 � l3 � l0
2. Configurationalrequirement: φ3 � 0

Theserelationsarederived in the following discussion.In this
case,wehavend � 1, astheonly link in dwell is theoutputlink.
Fromequations(24),wegetthematrix

�
K
� � ( 1 � � �K � 
 as�

K
� � ( 1 � � �K � 
 � 1

l2l3sin
�
φ2
� φ3 
 , l1l3sin

�
θ1
� φ3 


l1l2sin
�
θ1 � φ2 
 - (28)

Applyingequation(18)to theaboveequation,wefind thecriteria
for theID of thethird link as

sin
�
θ1 � φ2 
 � 0 (29)

assumingthe configurationto be non-singular, i.e., sin
�
φ2
�

φ3 
 $� 0. To find conditionsfor FD we begin by applyingequa-
tion (19) to equation(23). We get� l1s1 � l2s2

∂φ2

∂θ1
� l3s3

∂φ3

∂θ1
� 0

6Thepositive rootsareconsidered,sincethelengthsarepositive quantities.
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l1c1
�

l2c2
∂φ2

∂θ1
� l3c3

∂φ3

∂θ1
� 0 (30)

Applying equation(20) to equation(29),we get ∂φ2
∂θ1

� 1 Substi-

tuting for ∂φ2
∂θ1

into equation(30), andnotingthat ∂φ3
∂θ1

� 0 by the
definitionof FD, weget

� l1s1 � l2s2

l1c1 �1� l2c2 (31)

Squaringandaddingthesetwo equations,wecaneliminateθ1 � φ2

to obtainoneof thearchitectural requirementsas l1 � l2. Note
that theequations(31) alsoyield the ID criteria, if we consider
themashomogeneousequationsin thelink-lengthsl1 andl2, and
apply the consistency criterion to theseequations. The above
resultsverify our claim regardingthe maximumnumberof ar-
chitecturalconstraintswhennd is 1 (seesection3).

The architecturaland configurationalrequirementon the
dwellingpartof themechanismmayalsobededucedasfollows.
Substitutingtheequations(31) into theoriginal constraintequa-
tions (23), we get l3s3 � 0 and l3c3 � l0 � 0. The physically
meaningfulsolution of theseequationsis φ3 � 0, and l3 � l0,
which aretheconfigurationalandarchitecturalrequirementson
thedwellingpartof themechanismrespectively. Theconfigura-
tion of themechanismat thispoint is shown in figure3.

Planar 5-Bar Mechanism
Figure4 shows thegeometryof a planar5-barmechanism.

Link 1 andlink 4 aretheactuatedlinks, andtheactivevariable
is given by θ � �

θ1 � θ4 
 T , while passive variableare given by
φ � �

φ2 � φ3 
 T . Hencewehaveq � �
θ1 � φ2 � φ3 � θ4 
 T . Loop-closure

equationsfor the5-barmechanismis

η1 � l1c1
�

l2c2
�

l3c3
�

l4c4 � l0 � 0

η2 � l1s1
�

l2s2 � l3s3 � l4s4 � 0 (32)

Y

X     

l1

θ1

φ1 φ2

θ4

l 2 l 3

l4

l 0

Figure 4. PLANAR 5-BAR MECHANISM WITH REVOLUTE JOINTS

Thematrices
�
K � and

�
K
� � arecomputedas�

K �.� , � l1s1 � l4s4

l1c1 � l4c4 -�
K
� �2� , � l2s2 � l3s3

l2c2 � l3c3 - (33)

Theconditionfor gain-singularityis sameasthepreviouscase,
i.e., l2l3sin

�
φ2
� φ3 
 � 0, implying that the passive links get

aligned.

Finite Self Motion of 5-Bar Mechanism Wenotethat
the instantaneouskinematicsof thepassive partof a mechanism
is determinedby thematrix

�
K
� � , andsince

�
K
� � is thesamefor

boththe4-barmechanismandthe5-barmechanism,thearchitec-
turalrequirementfor thepassivepartof themechanismis l2 � l3,
i.e., sameasthat in thecaseof the4-barmechanism.Usingthis
resultalongwith equation(27),we find out therequirementson
the active partsof the mechanism.Substitutingequations(27)
into theoriginalconstraintequations(32),weget

l1s1 � l4s4 � 0

l1c1
�

l4c4 � l0 � 0 (34)

Eliminatingθ1 from theabove equations,we getafter somere-
arrangement

c4 � l20
�

l24 � l21
2l0l4

(35)

Theabove equationimpliesthat the links 1 � 0 and4 constitutea
triangle,in which θ4 is theanglecontainedby thelinks 0 and4.
Thecorrespondingconfigurationis shown in figure5.

Planar 3-degree-of-freedom Parallel Manipulator with
Revolute Actuator s

In this section,we analyzea planar 3-loop, 3-degree-of-
freedommanipulatordiscussedin(GosselinandAngeles,1990).
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Figure6 shows thegeometryof theplanar3-degree-of-freedom
manipulator. The pivots are locatedat the verticesof an equi-
lateraltriangle,calledthebasetriangle.All theactive links, l i ’s
areconnectedto therespective pivots,wherethemotorsarelo-
cated.Thegrippedobjectis modeledasanequilateraltriangular
platform, and the contactsbetweenthe tips of the fingersand
the objectaremodeledasno-slip contacts.Hencethe connec-
tion betweenthetip of a fingerandtheplatformis kinematically
equivalentto a rotaryjoint.

Theactivevariablesin thiscasearegivenby θ � �
θ1 � θ2 � θ3 
 ,

andthe passive variablesby φ � �
φ1 � φ2 � φ3 � α 
 T , whereθi � φi ’s

have beenshown in the figure 6. Note that the orientationof
theplatform,denotedby α, hasalsobeenincludedin φ, andwe
require4 independentequationsto solve for these4 quantities.

We canwrite the loop-closureconstraintequationsexplic-
itly in termsof the configurationalvariables,and architectural
parametersas

η1 � l1c1
�

r1cφ1

�
acα � r2cφ2 � l2c2 � x2 � 0

η2 � l1s1
�

r1sφ1

�
asα � r2sφ2 � l2s2 � 0

η3 � x2
�

l2c2
�

r2cφ2

�
ac3 2π

3 4 α 5 � r3cφ3 � l3c3 � x3 � 0

η4 � l2s2
�

r2sφ2

�
as3 2π

3 4 α 5 � r3sφ3 � l3s3 � y3 � 0 (36)

where
�
xi � yi 
 give thecoordinatesof the ith pivot. Thematrices

[K ] and
�
K
� � aregivenas

[K ] �76889 � l1s1 l2s2 0
l1c1 � l2c2 0
0 � l2s2 l3s3

0 l2c2 � l3c3

:<;;=
�
K
� �2� 68889 � r1sφ1 r2sφ2 0 � asα

r1cφ1 � r2cφ2 0 acα
0 � r2sφ2 r3sφ3 � as3 2π

3 4 α 5
0 r2cφ2 � r3cφ3 ac3 2π

3 4 α 5
:<;;;= (37)

From equation(11), the condition for gain singularity for the
manipulatoris givenby

sin
�
φ1 � α 
 sin

�
φ2 � φ3 
 � sin

�
φ1 � φ2 
 sin

�
α � 2π

3
� φ3 
 � 0

(38)
Two classesof singularconfigurationmaybeidentifiedfrom the
aboveexpression:

1. All passive links areparallel,and
2. All thepassive links, or their hypotheticalextensions,inter-

sectata point.

In both the above cases," ���
K
� � 
 � 1, andand the null-space

of
�
K
� � is spannedby a singlenon-nullvector φ̇. However, the

vectorφ̇ hasdifferentcomponentsin thetwo cases.

1. If all passive links areparallel,then

φ̇1

r1

� φ̇2

r2

� φ̇3

r3
� 0

α̇ � 0 (39)

2. If the passive links intersectat a point, the componentsof
φ̇n dependon the configuration.In particular, whenall the
passivelinks,or theirhypotheticalextensionsintersectat the
centerof themobileplatform,thecomponentsof thegained
passivevelocitysatisfytheequation

φ̇1

r1

� φ̇2

r2

� φ̇3

r3
�?> 3

α̇
a
� 0 (40)

Finite Self Motion Notethat for thefirst caseof gained
motion,theangularvelocityof themobileplatform,givenby α̇,
is zero. However, in thesecondcase,themobileplatformis al-
lowed to have an angularvelocity instantaneouslyat a singular
configuration.In addition,if thearchitecturesatisfiescertainre-
quirements,themanipulatorshowsFSM,asthemobileplatform
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canundergofinite rotationsevenwhenall theactuatorsareheld
fixed. We derive theconditionfor suchmotion in the following
discussion.

In this casealso, we have " ���
K
� � 
 � 1, and the only in-

dependentpassive variableis α. Hencewe have φi � α � φd ��
φ1 � φ2 � φ3 
 T . Equatingthetotalderivativeof theconstraintequa-

tionswith respectto α to zero,wegetthefollowing equations

� r1sφ1

∂φ1

∂α
�

r2sφ2

∂φ2

∂α
� asα � 0

r1cφ1

∂φ1

∂α
� r2cφ2

∂φ2

∂α
�

acα � 0� r2sφ2

∂φ2

∂α
�

r3sφ3

∂φ3

∂α
� as3 α 4 2π

3 5 � 0 (41)

r2cφ2

∂φ2

∂α
� r3cφ3

∂φ3

∂α
�

ac3 α 4 2π
3 5 � 0

Solvingthefirst two equationssimultaneously, weget

∂φ1

∂α
� a@ sin

�
φ1 � φ2 


r1 @ sin
�
φ2 � α 


∂φ2

∂α
� a@ sin

�
φ1 � φ2 


r2 @ sin
�
φ1 � α 
 (42)

Similarly, solvingthelasttwo equationssimultaneously, weget

∂φ2

∂α
� a@ sin

�
φ2 � φ3 


r2 @ sin
�
φ3 � α � 2π

3 

∂φ3

∂α
� a@ sin

�
φ2 � φ3 


r3 @ sin
�
φ2 � α � 2π

3 
 (43)

It may be verified that equatingthe two expressionsof ∂φ2
∂α , we

recover thesingularitycriteriongivenby equation(38). Differ-
entiatingequation(38)with respectto α, weget

cos
�
φ1 � α 
 � ∂φ1

∂α
� 1
 sin

�
φ2 � φ3 
 � sin

�
φ1 � α 
 cos

�
φ2 � φ3 
� ∂φ2

∂α
� ∂φ3

∂α 
 � cos
�
φ1 � φ2 
 � ∂φ1

∂α
� ∂φ2

∂α 
 sin
� 2π

3
� α � φ3 
�

sin
�
φ1 � φ2 
 cos

� 2π
3
� α � φ3 
 � 1 � ∂φ3

∂α 
 � 0 (44)

It maybeseenthatthelastequationis satisfiedby

∂φi

∂α
� 1 � i � 1 � 2 � 3 (45)

We now checkif equation(45) is consistentwith equations(42),
and(43). Usingequation(45)in equations(42) and(43),weget

a
sin

�
φ1 � φ2 
 � r1

sin
�
φ2 � α 
 � r2

sin
�
φ1 � α 
 (46)

The last equationindicatesthat the links of length r1 � r2 and
a side of the mobile platform form a triangle, where the an-
glesoppositeto the sidesr1 � r2 anda are relatedto the angles�
φ2 � α 
A� � φ1 � α 
 and

�
φ1 � φ2 
 respectively( seefigure7). Simi-

larly, from equation(43),wefind thatthelinks r2 � r3 formanother
trianglewith anothersideof themobileplatform.Geometrically,
the above conditionsrequirethat the endsof the passive links
r1 � r2 � r3 meetat a point, and in this configuration,the passive
links canrotatefinitely with theplatformaboutthis point at the
samerate,evenwhentheactuatorsareheldfixed. Thisobserva-
tion verifiesequation(45).

We now find out the configurationof the active links for
FSM. Using equation(45)in equation(41), andsubstitutingin
theoriginalconstraintequation(36),weget

l1c1 � l2c2 � x2 � 0

l1s1 � l2s2 � 0

x2
�

l2c2 � l3c3 � x3 � 0

l2s2 � l3s3 � y3 � 0 (47)

Eliminatingθ1 from thefirst two of theaboveequations,we get
aftersomerearrangement,

cos
�
π � θ2 
 � l22

�
x2

2 � l21
2l2x2

(48)

whichshowsthatthelinks l1 � l2 form atrianglewith asideof the
basetriangle,of which, π � θ2 is the angleoppositeto the link
l1. Similarly, from thelasttwo equationsof (47),wefind thatthe
links l2 � l3 form a trianglewith anothersideof thebasetriangle.
Combiningthesetwo conditions,we find that thetips of theac-
tive links alsomeetata point,which is alsothepointof meeting
of theendsof thepassive links, hencetheresultsareconsistent.
Notethatin thiscase,thearchitecturalrequirementis notunique,
andany setof link lengthsthatwill allow themanipulatorto get
into thespecialconfigurationshown in figure7 canleadto FSM.

Finite Dwell The mobile platform of the 3-degree-of-
freedomparallelmanipulatorcanalsoshow finitedwell(Gosselin
andAngeles,1990). The architecturalrequirementsfor this is
derivedbelow usingthemethoddescribedin section3.
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The row of thematrix
�
K
� � ( 1 � � �K � 
 correspondingto α̇ is

givenby

�
K
� � ( 1 � � �K � 
 � r1r2r3

det
�
K
� � 69 l1 sin

�
φ1 � θ1 
 sin

�
φ2 � φ3 


l2 sin
�
φ2 � θ2 
 sin

�
φ3 � φ1 


l3 sin
�
φ3 � θ3 
 sin

�
φ1 � φ2 


:= T

(49)

We assumedet
�
K
� � to be non-zero,hencefrom equation(38),

we musthave theφi ’s all different.This givesthefollowing cri-
teria for ID: sin

�
φi � θi 
 � 0 � i � 1 � 2 � 3. Differentiatingthese

equationswith respectto the active variablesθ j ’s, andsolving

for thepartial derivatives ∂φi
∂θ j

, we get ∂φi
∂θ j

� δi j . Differentiating

theconstraintequationswith respectto θ1, andnoting ∂φi
∂θ j

� δi j ,

we obtain � l1s1 � r1sφ1 � 0 and l1c1
�

r1cφ1 � 0, wherefrom
we recover the ID criterion for this fingerof themanipulatoras
sin

�
φ1 � θ1 
 � 0,andthearchitecturalrequirement,l1 � r1. Sim-

ilarly, wecanobtainl2 � r2 � l3 � r3. Thusthearchitecturalcon-
strainton thelinks of theith fingeris l i � r i . Notethatthereis no
relationshipbetweenthe link-lengthsof differentfingers. Also
notethatmaximumnumberof architecturalrequirementson the
non-dwellingpart of the manipulator, aspredictedby equation
(22) is 1 � � 7 � 4
 2 � 9. In thiscase,however, theactualnumber
is only 3.

To find the constrainton the platformsizea, we substitute
l1 � r1, andφ1 � θ1

� π in theconstraintequation(36)andobtain
acα � x2 � 0 andasα � 0. From theseequations,we find the
orientationand the size of the platform as α � 0 and a � x2.
Geometrically, it meansthat the mobile platform hasthe same
sizeasthebaseplatform,andrestson top of it for finite dwell.
All thepassive links fold backon thecorrespondingactive links,

suchthattheir tipscoincidewith thepivots.

Conc lusion
In thispaper, wehavepresentedananalysisof theconstraint

equationsgoverningthe motion of the passive or non-actuated
part of a closed-loopmechanismor parallel manipulator, and
shown that the singularitiesleadingto the gainof degree(s)-of-
freedomareassociatedwith thedegeneracy of theseforces.The
first order propertiesgovern the instantaneousbehavior of the
mechanismat a singularity, while the secondorder properties
yield criteriafor singularmotionoverfinite spanof theconfigu-
rationspace.Secondorderpropertiesalsohelpobtainingthear-
chitecturalrequirementof finite self-motionat a singularityand
finite dwell. Thethetheorydevelopedin this paperhasbeenil-
lustratedwith the examplesof threerepresentative closed-loop
mechanismsandparallelmanipulators.
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