Proceedings of DETC'01

2001 ASME Design Engineering Technical Conferences

September 9-12, 2001, Pittsb urg, Pennsylv ania, USA

DETC2001/DAC-21024

ANALYSIS OF FINITE SELF MOTION AND FINITE DWELL IN CLOSED-LOOP
MECHANISMS AND PARALLEL MANIPULATORS

Sandipan Bandyopadh yay*
Department of Mechanical Engineering
University of Pennsylvania
Philadelphia, Pennsylvania 19104
Email: sandipan@seas.upenn.edu

ABSTRACT

In this paperwe presenthe necessargndsuficient criteria
for finite selfmotionandfinite dwell of thepassielinks of apar
allel manipulatoior a closed-loopnechanismWe studythefirst
order propertiesof the constraintequationsassociatedvith the
kinematicconstraintsnherentin a closed-loopmechanisnor a
parallelmanipulatoyandarrive atthe criteriafor the mechanism
to gaina degree-of-freedonat a singularpoint of its workspace.
By analyzingthe secondrderpropertiesof the constraintequa-
tions, we show that the gain of degree-of-freedonmay leadto
finite self motion of the passie links if certainconfigurational
andarchitecturatriteriaaremet. Specialconfigurationsandar-
chitecturemay alsoleadto finite dwell of the passie links, and
the criteriafor the samehasbeenderived. Theresultsareillus-
tratedwith the helpof severalclosed-loopmechanisms.

Intr oduction

Parallel manipulatorsand closed-loopmechanismsshav
very complicatedanddiversebehaior at singularitiesor singu-
lar configurations.lt is well known thatin serialmanipulators,

singularitiesleadto the lossof oneor moredegree-of-freedom.

However, a fully in-parallel device can only gain degree-of-
freedomas shovn by Hunt et al. (Hunt, Samueland McAree,
1991),a hybrid parallelmanipulatormay both lose or gain one
or moredegree-of-freedonat a singularconfiguration.This gain
or loss hasbeenattributed to the degenerag of two different
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Jacobianmatricesoriginating from the time derivative of the
input-outputequationof the manipulatoror closed-loopmech-
anism(Gosselimnd Angeles,1990; Zlatanos, FentonandBen-
habib,1995). Severalresearcherbave alsostudiedsingularities
in termsof statics(seefor example,(Merlet,1991;Agarwal and
Roth,1992; DasguptandMruthyunjaya,1998; Choudhuryand
Ghosal,2000)),andhave madeuseof the force transformation
matrix. They have shavn thatat singularconfigurationsa par
allel manipulatoror a closed-loopmechanisntannotwithstand
externalforcesor torquesin certaindirections. Irrespectve of
the approachthe problemof finding the generalkriteriafor sin-
gularconfigurationss adifficult one,andafew resultsexist only
for certainrestrictedclasse®f mechanismsFor example,Basu
and Ghosal(Baswand Ghosal,1997) have obtainedthe general
singularconfiguratiorfor platformtype closed-loopmechanism
containingsphere-sphernks.

While most of the existing work on singularityin a paral-
lel manipulatoior closed-loopmechanisnfocusonidentification
andclassificatiorof singularitiesarisingout of the configuration
of the device, therehasbeensomework relatedto the effect of
architectureon singularities(Gosselinand Angeles,1990). The
configurationleadingto the gain of degree-of-freedonat a sin-
gularity may persistover a finite domainof the workspaceof
themechanisnandallow the passie jointsto movefinitely even
whenall active joints arelocked, if certainarchitecturakriteria
aremet. Similarly, specialarchitectureand configurationamay
resultin apassve link losingmotionevenwhentheactuatorare
moved. The presenivork dealswith thesetwo case®f degener
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atemotion.

In thispaperwefocusontheconstrainequationgssociated
with the kinematicconstraintanherentin a parallel manipula-
tor or closed-loopmechanismIn thesemechanismshereexist
holonomicconstaintsin the form of loop-closue equations.A
parallelmanipulatordescribedby n configuratiorvariableswith
mloop-closureconstrainequationwill have only n—mdegrees-
of-freedom- only n — m of the configurationvariablescan be
actuatecand m of themare passve. The motion of the m pas-
sivejointsis governedby the constrainforceswhicharenormal
to the configurationmanifold, anddo not do ary work. We re-
late theseforceswith the first orderpropertiesof the constraint
equationsandidentify thegainof degree-of-freedonata singu-
lar point with the degenerag of theseforces. This is different
from the conceptof analyzingthe lossandgain of velocities,in
the tangent spaceof the configurationmanifold, doneby most
researchersThe main contritution of this paper obtainedasa
resultof analyzingthe secondorderpropertiesof the constraint
equationsjs a setof resultsregardingthe architectural singu-
larity describedy GosselirandAngeles(GosseliandAngeles,
1990).In particular we areableto derive thenecessargndsuf-
ficientanalyticalcriteria for finite self-motionandfinite dwell of
links associatedvith the passie joints of a closed-loopmecha-
nismor a parallelmanipulator

The paperis organizedasfollows: In section2, we present
the mathematicabpproactfor the analysisof constraintforces
and configuration-spaceingularitiesof parallel manipulators
andclosed-loopnechanismsln section3, we presenthederiva-
tionsof thenecessargndsuficientcriteriafor finite self-motion,
finite dwell of the passie links. In section4, we illustrate our
theoreticakesultswith the help of planar4-barand5-barmech-
anisms,andathree-dgree-of-freedm planarmulti-loop mech-
anism.Finally, in section5, we presentheconclusions.

Singularities in the Configuration Space

In this section,we discussthe first order propertiesof the
constraintequationsandrelatethemwith the constraintforces
andsingularitiesleadingto gain of degree-of-freedomln gen-
eral,theforward kinematicsof a parallelmanipulatoror closed-
loop mechanisntanbe expressedsa setof relations

X ZUJ(QL---;Qn) (1)

where, X! representshe outputvariableandg;, i = 1,...,nis a
setof n joint variableswhich determinethe configurationof the
mechanisntompletely andform the configuation-spacef the
mechanisnmor manipulator The vectorfunction Y dependon
thechoseroutputlink, the geometryandstructureof the manip-
ulator andits dimensions.In the caseof parallelmanipulators

1Theoutputmaybe positionandorientationof a choseroutputlink.

andclosed-loopmechanismsyotall then joint variablesareac-
tuatedandm of themmay be passve. In sucha casethedegree
of freedomof the parallelmanipulatoror theclosed-loopmecha-
nismis (n— m), andin additionto the above equationsye have
mindependentonstrainequationf theform

n(d,...,0n) =0 2

wheren(-) = 0 denotegshem constrainfunctions,ni(-) = 0,i =

1,2,..,m? Suchconstraintsarisefrom the loop-closue equa-
tions of the parallelmechanismsandasy, they alsodependon

thearchitectureandgeometnof themechanismThesetof equa-
tions,n(qs,.-.-,0n) = O, in generalrepresentn constrainthyper

surfacesin the configurationspaceon which all configuration
variablesareforcedto lie by theloop-closureequationsDiffer-

entiatingthe m constraintequationg2) with respecto time, t,

we get

on &on.
a2 a_qiql—o 3

In closed-loopmechanismsand parallel manipulatorsthe con-
straintequationstypically, have no explicit dependencentime,
andhencewe canwrite

T an .
—q =0 4

Theabove equationmaybewrittenin matrix form as
[NJg=0 ®)

where( denoteghetime derivativesof the configurationspace
variablesandis givenby thevector(qs, gy, ---,0n). We canalso
write the matrix [N] as[N] = (N],NJ,...,NJ)T whereN;, the

i" row vectorof [N], is the gradientvectorto the " constraint
hypersurfacein the configurationspace. This implies that the

motionof the systemin the configurationspacds orthogonako

thenormalsto all theconstraintsurfaces.

Geometric Description of the Constraint Forces

It is well known that associatedvith m kinematic con-
straints,asin equation(2), thereexist m constrainforceswhich
do not do ary work(see,for example,pp. 218-224in (Haug,

2In this paper we restrict ourseles to non-redundanmanipulatorsand
closed-loopnechanisms,e.,(h—m) < 3.
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1989)). Denotingthe constrainforcesby the vectorF¢, we can
write

Flg=0 (6)

By comparingequation(6) with equation(5), we get
U T
Fe=S AiNi=[N]'A (7)
(] i; iINj

where;'sarethecomponentsf anon-nullmx 1 vector A. The
significanceof A andits connectionsvith singularitiesn closed-
loop mechanismsndparallelmanipulatorsarediscusseahext.

Relationship between A, [N] and Singularity

Sincethe constraintforcesarecompletelydeterminecby A
and[N], it is instructve to considetthesituationwhenthe matrix
[N] losesrank. Mathematicallyit impliesthattherows of thema-
trix [N] becomdinearly dependenat thatpoint, andatleastone
of the gradientvectors,N;, may be expressedasa linear com-
bination of the others. This implies that the contritution to F¢
from this constraintgetsalgebraicallyaddedto the contribution
from the others. Equivalently, we cansaythatat thatpoint, one
or morekinematicconstraintss no longeractive. This intuitive
notioncanbe morerigorouslyexplainedasfollows:
Fromequation(7)thesquareof thenormof F¢ is computedas

FeFe=AT[N]N]"A = AT[gf]A (8)

where[gs] is a symmetric,positive definitematrix of dimension
mx mif [N] is of full rank. Undera constrainton A of theform

AA= k2, k € O, theadmissiblaistribution of F¢ maybeshavn

to be an mdimensionalellipsoid, whosesemi-axislengthsare
equalto the square-root®f the eigervaluesof [g], and axis-
orientationsaregivenby the correspondin@igervectors.When
N losesrank,[gr] alsolosesrank,andoneor moreof theeigerval-

uesof [gf] become(s¥ero. Correspondinglythe F. distribution

losesone or more dimensionandwe now have an ellipsoid of

dimension(m— 1) or less.In suchdegenerateasesthe admis-
sible distribution of F is restrictedto the reducedrow-spaceof

[0r], spannedy the eigervectorscorrespondingo the non-zero
eigervaluesof [g]. Equivalently we cannothave ary constraint
forcein the null-spaceof [g;]. Fromthe well-known duality of

forcesandvelocities,we expectthemechanisnto gainadegree-
of-freedomdueto thislocal relaxationof constaintsatasingular
point. Thismeanghatthereexistsavelocityin the configuration
spacegvenif theactuatorsareall locked. We now analyzethe

gainedvelocitywith all theactuatorsn alocked condition.

Gained Velocity with Actuator s Locked
Equation(5) may be decomposednto active and passie
partsas

[K]8+[K*]e=0 9)

wherewe denotethe (n — m) active variablesby thevector and
them passve variablesby the vectorg, suchthatq = (87,¢")T,
and 6, ¢ arethe time-derivativesof 8 and ¢ respectiely. The
columnsof [K] and[K*] containthe partialderivativesof n with
respecto 8 and@respectiely. Hence [N] is of theform

[N] = [[KI[K™]] (10)

With actuatordocked ( 8 = 0), the relevant part of equation(9)
is [K*]o= 0, and effectively, [K*] plays the role of [N]. All
the above obsenationsmadein termsof [N] are equally valid
for [K*], andindeed,the rows of [K*] may be visualizedasthe
projectionsof N; ontothe passie subspacef the configuration
manifold. Hencethe gain of degree-of-freedonin the configu-
rationspacerequiresherows of [K*] to becomdinearly depen-
dent,i.e., singularitycriterion is givenby®

det[K*] =0 (11)

Fromequation(9), we canstill ha/eanonzerdpwhendet[K*] =

0. This gainedvelocityin the configurationspaces in the null-

spaceof [K*], andthe total motionin the configurationspaceis

in thenull-spaceof [N]. Sincetheconstrainforcesarerestricted
to the row-spaceof [N], the constraintforcesare orthogonalto

theconfigurationalelocity. In otherwords,theloss-spacef Fc

is thegain spacefor @.

Second Order Analysis of Constraint Equations

In the previous section,we have analyzedhe matrices|N],
[K] and[K*] whicharisefrom thefirst derivative of theconstraint
equationslin thissectionwe analyzehesecond-ordgproperties
relatedto the derivatives of det{K*] and elementsof [N]. We
shav that the second-ordeanalysisleadsto analyticalcriteria
for finite self motionandfinite dwell.

Gain Singularity and Finite Self Motion

Finite self motion(FSM) of a mechanismrefersto finite
movemenbf the passie partsof themechanismwith theactua-
tors held fixed. This clearly forms a subsetf gain-singularity

31t may be notedthat [K*] is aways a mx m matrix, as thereare aways
m constraintequationsand m passie variablesg in a n — m degree-of-freedom
closed-loopmechanisnor parallelmanipulatar
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with the distinction that the configurationresponsiblefor the
gain-singularityis maintainecobver a finite spanof motionof the
correspondingpassie parts. It is known that FSM imposesre-

strictionsonthearchitecturef themechanism(GosselamdAn-

geles1990),andin thefollowing discussionywe shav how these
architecturalrequirementsnay be obtainedfrom the analysisof

the constraintequationsalongwith the singularity criteria. We

startby makingthefollowing obsenations:

1. At non-singularconfigurations,with all actuatedjoints
locked,all passve joints arealsolocked. This follows from
equation(9).

2. For gainsingularity with all actuatedoints 0 locked,a nec-
essaryconditionis thatde{K*] mustbe zero. defK*] =0
implies that at gain singularity one or more of the passie
joints arenot locked The numberof unloded or indepen-
dent passie joints is equalto the A ([K*]), the nullity of
[K*]. From equation(9),we know that the corresponding
passvemotionliesin thenull-spaceof [K *]. Forthepurpose
of analysiswe partition@in two parts,namelyg of dimen-
sion A(K*) and¢” of dimensionm— A(([K*]), which de-
notetheindependenanddependenpartsof @ respectiely.

3. In additionto thenecessargondition,de{K*] = 0, for FSM,
two suficientconditionsarethata) the constraintequations
shouldbe independentof the unlocked passie joints ¢’s,
andb) defK *] shouldbeindependentf the@’s. Hence we
have to look at the second-ordepropertiesobtainedfrom
thefirst derivativesof elementsf [K*].

To derive the mathematicatonditionsfor FSM, we expressthe
constraintequation(2) in the form n(8,¢,¢"(¢)) = 0. Noting
thatthe active variable® is held fixed, the total derivativesof n
maybewritten as

dn 2 an ag
=y (12)
d(\dj & 00 a(\dj

Notethat 5-- n glvesthekth columnof [K*], andatanon-singular

point,we ha/e = Ojk, wheredjk is 1 for j = kandO otherwise,

g
sincethe passie varlablesdo not have ary explicit dependence

on eachother It canbe alsonotedthatthetotal derivativeof n
coincideswith the partial derivative at a non-singulampoint. At

asingularpoint, ¢f is dependenon ¢, andthequantitlesa—‘g— are

nolongerzerofor @ # (dj, andwe have theequation
——=0 (13)

Equation(13)gives A(([K*]) x m scalarequationsn m ¢'s, and
(m—AL([K*])) x AL([K*]) a‘“"s We also have the following

second-orderelationship,

d

g @tk =

j=17(K")) (14)

which gives A_([K*]) individual relationships.Hencewe have
atotal of A(K*) x (m+ 1) equations.After eliminating(m—

A(K*])) x ALK a“"’s from them, we can get A_([K*]) +

A?([K*]) equationsin the m ¢@'s and linkage parameters.Out
of theseequations A ([K*]) equationgeproducesamenumber
of individual singularity relationshipsbetweenthe elementsof
@ andtherestA(?([K*]) yield an equalnumberof relationships
betweerthe linkage parametersf the passie part of the mech-
anism,which governthe criteria of FSM. Substitutingthesere-
lationshipsandthe singularity criteriain the original constraint
equation(2)we obtainthe configurationabndarchitecturaton-
straintson the active part of the mechanisnwhich allows FSM.
Note: In literature,the criteriafor FSM hasbeenstatedasthe
meetingof the branche®f forwardkinematicsaswell asinverse
kinematics(GosseliandAngeles,1990). We notethatthe meet-
ing of the branchesoccurswhen the matrix [K*] is rank defi-
cient, and one or more row(s) of [K*]~1(—[K]) is(are)null re-
spectvely. However, this simultaneousiegenerag of [K*], and
[K*]71(—=[K]) is only a specialcase.The above procedurés il-
lustratedn sectiond with theexamplesof threesingleandmulti-
loop planarmechanisms.

Dwell of Passive Links : Instantaneous and Finite
Dwell of a passie link refersto a situationwhenthelink is
atrestfor instantaneousor finite motion of the actuatorsWhile
instantaneousiwell (ID) is the more frequentof the two and
canoccurfor geneal architecturef themechanismfinite dwell
(FD) requiressomeconstraintonthearchitectureasin thecase
of FSM. In the following discussionwe explain the methodol-
ogyto derivethecriteriafor bothID andFD in amechanismWe
obsenethefollowing factsaboutlD andFD:

1. From equation(9),f [K*] is non-singularwe have a non-

zerovector@ givenby
= [K'T7H(=[K])8 (15)

While all of the ¢¢’s may not be independenof eachother,
atageneal configurationall of themarenonzero.

2. Velocity of thei" passie joint, (n may be zero,if it is not
influencedby ary of the actuatedoints. This may be ex-
plainedasfollows. Assumingthe passie variablesq’s as
explicit functionsof 8, we canwrite thefollowing equation.

0@ ;

7, GJ j=1,n—m (16)

¢ =
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Fromthe above, we find that dwell, or loss of mobility of
a passie link associatedvith joint i will occurwith arbi-
trary input 0, if we have gé“ =0, j=1,n—m Compar
ing thelasttwo equatmnswe notethattheelement(i, j) of
[K*]~Y(=[K]) maybewrittenas

(] (KD = g—;ﬁ 17)

and—([K*]~1[K))i; givesthekinematidnfluenceof 8 ong.
Sinceg%, j = 1,n—mgivestheit" row of [K*]71(=[K]),
we arrive atthefollowing necessargndsuficientcondition
for ID:
Thelink associateawith theit™ joint of a mehanismdwells
instantaneouslyvith arbitrary input 6, if theit" row of the
matrix [K*]~1(—[K]), denotedoy R;, becomeswll.

3. Finite dwell (FD) impliesthatthe above conditionfor ID is
maintainedover a finite spanof motion of the input joints,

whichimpliesthesecond-ordepropertieof theconstraints,

in the form of derivativesof R;, have to be studied. Hence
we have thefollowing criteriafor FD.

(a) ThelD criteriais satisfiedj.e.,
Ri=0 (18)

(b) Theconstrainequationsireindependentf 0, overthe
spanof FD, i.e.,

dn
@ 0 (19)

(c) ThelD criteriais maintainedbverthe spanof FD, i.e.,

dR;
o= 0 (20)
The equationg(18), (19) and (20) give the necessaryand suf-
ficient criteria for FD. We now investigatethe structureof the
above equationsand extract the architecturalrequirementgor
FD from them.Expandingequation(19) by chainrule of deriva-
tives,we get

dn _ z o 6cn< =1n-m (21)

a6 ae. .0 06

The lastequationgivesa setof mx (n— m) scalarequationsn
anequalnumberof partialderivativesof theform g—é‘”i‘. Similarly,

<

S

Figure 1. PLANAR 4-BAR MECHANISM

if we have ng number=f passie links in finite dwell, we obtain
Ng x (N—m)>? scalarequationsn g %5 from equation(20). Com-
bining them, we obtain a setof (n —m) x (M+ng x (n—m))

equationsn (m—ng) x (n—m) unknovns’, a‘gl"s Hencewe
can eliminate all the partial derivatives from the above over

constained equations,and obtainng x (n—m) x (n— m+ 1)

homaeneousquationsn the architectuial and configuational
parametersf themechanismTheseequationyield ng x (n—m)

conditionsgiving the ID criteria,andtherestN of themgive an
equalnumberof relationshipsetweerthe architecturaparam-
etersinvolvedin the mobile part of the mechanismwhereN is
givenby

N = ng x (n—m)? (22)

Substitutingrelationshipsobtainedabove in the original con-
straintequation(2) we obtainthe configurationaland architec-
tural constrainton thedwelling partof themechanism.
Note: ThequantityN givesanupperboundonthenumberof ar-
chitecturalconstraintghatcanbe extractedusingthe above pro-
cedure. The actualnumber however, will dependon the struc-
ture of the constraintequationshencemay be lessthanN (see
examplesn sectiord).

The above theoreticaldevelopments illustratedin the next
sectionwith thehelpof severalplanarmechanisms.

lllustrative Examples
In this sectionwe illustratethe theorydevelopedin section
3 with theexamplesof threeplanarclosed-loopmechanisms.

Planar 4-Bar Mechanism

Figurel shavsthe geometryof a generak-barmechanism.
Thefirst link is the driving link, andits positionis givenby the
active variable 81, while = (@, 3) " givesthepassie variable
respectiely. Hencewe have q = (81, @, @)". Theloop-closure

4Thenumberof unknavn partialderivativesis reducedy ng x (n—m), since
thesemary partialderivativeswill beidenticallyzero.
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equationdor the 4-barmechanisnaregivenby °

N1 =lici+1co+13c3—1g=0
N2=hsi+ls—l3z=0 (23)

ThematricegK] and[K*] arecomputedrom equation(23) as

= ()

K*] = (—'252 —|353) (24)

loco —lac3

Fromequation(11),theconditionfor gainsingularityis givenby

lol3sin(@z + @3) = 0 (25)

Geometricallythis meanghatthetwo passve links of lengthl,
andl3 getaligned.

Finite Self Motion of 4-Bar Mechanism It is known
thatthe 4-barmechanisntanshav FSM, if thefollowing condi-
tionsaresatisfied GosselinrandAngeles,1990):

1. Architecturalrequirement I, = 13,11 =g
2. Configurationatequirement 8; =0

We now derive the above conditions,following the methodde-
scribedin section3. In this case, A[([K*]) = 1, we have only
oneindependentpassie variable,which we chooseto be @,.
According to the notationsintroducedin section3, we have
¢ = @, = @. Substitutingn = (n1,n2)" from equation(23)
into (12), we getthefollowing equations:

o
—losp — |333E =0
0gs
|202 — |3C3E =0 (26)
Applying equation(14) to the singularitycriteriagivenby equa-
tion (25), we get g—g = —1. Substitutingfor g—g into equation
(26), we get
—ls = —lI3s
|202 = |303 (27)

Squaringandaddingthe above last equationsyve caneliminate
(», (3 to obtainthe architectural requirrmenton the passie part

5ai, s indicatecogq; ), sin(q;) respectiely in this paper

Figure 2. CONFIGURATION OF THE 4-BAR MECHANISM FOR FSM

for FSMasl, = 13%. Notethattheequation(27)alsoyield thesin-
gularity criteria, if we considethemashomogeneousquations
in thelink-lengthsl, andlz, andapplythe consisteng criterion
to theseequations.The above resultsverify our claim regarding
thenumberof architecturatonstraintsvhen Al ([K*]) is 1.

Thearchitecturabndconfigurationatequiremenbntheac-
tive partof themechanisrmayalsobededucedsfollows. Sub-
stituting the equation(27) into the original constraintequations
(23), we getlis; = 0 andlic; — lg = 0, wherefrom we obtain
the only physicallymeaningfulsolutionas6; = 0, andl; = lo.
Thesearethe configurationalndarchitecturakequirement®n
theactivepartof the mechanismiespectiely. The configuration
of themechanisnatthis pointis shovnin figure 2.

Finite Dwell of 4-Bar Mechanism Theoutputlink of
a4-barmechanisntanshav FD, if thefollowing conditionsare
satisfied(GosseliandAngeles,1990).

1. Architecturalrequirement |1 = 1l2,13 =19
2. Configurationatequirement @3 =0

Theserelationsare derived in the following discussion.In this
casewe have ng = 1, astheonly link in dwell is the outputlink.
Fromequationg24), we getthe matrix [K*]™*(—[K]) as

1 (Illgsin(91+(p3)>
(28)

x1—1 —
KT =KD = s 1 o9 \lilzsin(6; — ¢2)

Applying equation18)to theabore equationwe find thecriteria
for thelD of thethird link as

sin(B1—@) =0 (29)
assumingthe configurationto be non-singulay i.e., sin(q, +
@) # 0. To find conditionsfor FD we begin by applyingequa-
tion (19) to equation(23). We get

d 0
—lis — IzSza—(gi - Is%a—(g"’l =0

8The positive rootsareconsideredsincethelengthsarepositive quantities.
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Figure 3. CONFIGURATION OF THE 4-BAR MECHANISM FOR FINITE
DWELL

0 0
[1C1 4+ 12Co % %

30, —l3c3—— 30, =0 (30)

Applying equatior‘(20) to equation(29), we get ge“’z = 1 Substi-

tuting for 22 into equation(30), and notlngthat 3. = =0 by the
deflmtlonoleD we get

—hs = 2
|1C;|_ = —|202 (31)

Squaringandaddingthesewo equationsye caneliminated1, ¢,

to obtainoneof the architectural requirrmentsasl; = . Note
thatthe equationg31) alsoyield the ID criteria, if we consider
themashomogeneousquationsn thelink-lengthsl, andl,, and
apply the consisteng criterion to theseequations. The above

resultsverify our claim regardingthe maximumnumberof ar

chitecturalconstraintavhenny is 1 (seesection3).

The architecturaland configurationalrequirementon the
dwelling partof themechanisnmayalsobededucedsfollows.
Substitutingthe equationg31) into the original constraintequa-
tions (23), we getlsss = 0 andlzcs — lg = 0. The physically
meaningfulsolution of theseequationss @3 = 0, andlz = I,
which arethe configurationabndarchitecturakequirement®n
thedwelling partof the mechanisnmrespectiely. The configura-
tion of themechanisnat this pointis shavn in figure 3.

Planar 5-Bar Mechanism

Figure4 shavs the geometryof a planar5-barmechanism.

Link 1 andlink 4 arethe actuatedinks, andthe activevariable

is givenby 8 = (81,04)T, while passie variableare given by

©= (g, )". Hencewehaveq = (81, @, ¢3,084)T. Loop-closure
equationgor the5-barmechanisnis

N1 = lic1+ 1262+ 13c3+14€4 —lp =0
N2 = l1S1+ 128 — 353 — 1484 =0 (32)

Figure 4. PLANAR 5-BAR MECHANISM WITH REVOLUTE JOINTS

ThematricegK] and[K*] arecomputedas

K] = —l1s1 :|4S4
|1C1 |4C4

K*] = <—|282 —|3%) (33)

Ioco —lac3

The conditionfor gain-singularityis sameasthe previous case,
e., lalzsin(@ + @3) = 0, implying that the passve links get
aligned.

Finite Self Motion of 5-Bar Mechanism We notethat
theinstantaneoug&inematicof the passve partof a mechanism
is determinedy the matrix [K*], andsince[K*] is the samefor
boththe4-barmechanisnandthe5-barmechanismthearchitec-
turalrequirementor the passie partof themechanisnis |, = I3,
i.e., sameasthatin the caseof the 4-barmechanismUsingthis
resultalongwith equation(27), we find out the requirementsn
the active partsof the mechanism.Substitutingequationg27)
into the original constraintequationg32), we get

l151—lass = 0
l1c1+14ca—1g =0 (34)

Eliminating 81 from the above equationswe getafter somere-
arrangement

12+12-12
=——"= 35
2lplyg (35)
The above equationimpliesthatthelinks 1,0 and4 constitutea
triangle,in which 8,4 is the anglecontainedy thelinks 0 and4.
Thecorrespondingonfigurationis shovn in figure5.

Planar 3-degree-of-freedom Parallel Manipulator with
Revolute Actuator s

In this section,we analyzea planar 3-loop, 3-degree-of-
freedommanipulatodiscussedn(GosselirandAngeles,1990).
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Figure 6. PLANAR 3-DEGREE-OF-FREEDOM PARALLEL MANIPULA-
TOR

Figure6 shawvs the geometryof the planar3-degree-of-freedom
manipulator The pivots are locatedat the verticesof an equi-
lateraltriangle,calledthe basetriangle. All theactive links, I;’'s
are connectedo the respectie pivots, wherethe motorsarelo-
cated.Thegrippedobjectis modeledasanequilaterakriangular
platform, and the contactsbetweenthe tips of the fingersand
the objectare modeledas no-slip contacts. Hencethe connec-
tion betweerthetip of afingerandtheplatformis kinematically
equialentto arotaryjoint.

Theactivevariablesn thiscasearegivenby 6 = (81, 62,03),
andthe passve variablesby @ = (@1, @, @,0)", where;,@’s
have beenshowvn in the figure 6. Note that the orientationof
the platform,denotedby a, hasalsobeenincludedin ¢, andwe
require4 independengquationgo solve for these4 quantities.

We canwrite the loop-closureconstraintequationsexplic-
itly in termsof the configurationalvariables,and architectural
parameteras

ni= |1Cl+r1C(pl+va—r20(p2—|2CZ—X2:O

N2 = 1151+ 1Sy, +aS —r2Sy, — 128 =0

N3 = X2+|2C2+r20(p2 +aC(2%r+q)—r3C(p3—|3C3—)(3:0

Na = 2%+ T2Sy, + a3 21, ) — M35 — I3 —y3=0  (36)

where(x;,y;) give the coordinatesf theit" pivot. The matrices
[K] and[K*] aregivenas

—lis1 s, O
|1C1 —|202 0
K] =
[K] 0 -l lIzsg

0 |2C2 —|303
—I1Sy, 25y, 0 —ag
K] = r1Cy —r2Cp, O acy
= 0 —roSp I3Sy —aS 2, q)
0 2Cy, —I3Cy, ac(%gw)

37)

From equation(11), the condition for gain singularity for the
manipulatoris givenby

sin(qr — o) Sin(@ — @3) + sin(@L — @) sin(a + %ﬂ -@®)=0
(38)
Two classe®f singularconfiguratiormaybeidentifiedfrom the
above expression:

1. All passielinks areparallel,and
2. All thepassie links, or their hypotheticalextensionsjnter
sectata point.

In both the above cases A'([K*]) = 1, andandthe null-space
of [K*] is spannedy a singlenon-nullvector@. However, the
vector@ hasdifferentcomponentén thetwo cases.

1. If all passvelinks areparallel,then

g+%+%:0
r I rs
a=0 (39)

2. If the passie links intersectat a point, the componentsf
@, dependon the configuration.In particular whenall the
passielinks, or theirhypotheticakxtensionsntersecttthe
centerof themobile platform,the component®f the gained
passve velocity satisfytheequation

o ® B B% g (40)
r I rs a

Finite Self Motion Notethatfor thefirst caseof gained
motion,the angularvelocity of the mobile platform,givenby a,
is zero. However, in the secondcase the mobile platformis al-
lowed to have an angularvelocity instantaneouslyt a singular
configuration.In addition,if thearchitecturesatisfiecertainre-
guirementsthemanipulatoishovs FSM, asthe mobile platform
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canundego finite rotationsevenwhenall the actuatorsareheld
fixed. We derive the conditionfor suchmotionin the following
discussion.

In this casealso, we have A ([K*]) = 1, andthe only in-
dependentpassve variableis a. Hencewehave ¢ = a, ¢f =
(o1, @, @) . Equatingthetotal derivative of theconstramEqua—
tionswith respecto a to zero,we getthefollowing equations

0 o
s G 2S5 3% =0
oQ o
rlc(plﬁ—rzc(pzﬁ+acq =0

0 0
_rzs(m%+rgs%%—as(q+%n) =0 (42)

0P 03
o R A
Solvingthefirst two equationsimultaneouslywe get

Op _ a/sin(@r — @)
90 ri/sin(g—a)
)

0 _ a/sin(¢r— @

Jda rz/sin(gr — o (42)

Similarly, solvingthelasttwo equationsimultaneouslywe get

o a/sin(g2— @)
00~ r/sin(gs—a—2)
s _ a/sin(g2— @)

00 ra/sin(g2—a—2)

(43)

It may be verified that equatingthe two expressionof %‘gz, we
recover the singularity criterion given by equation(38). Differ-

entiatingequation(38) with respecto a, we get

o

cog(@r —a)(5 - — 1) sin(@z — g3) + sin( — &) cop2 — @)
o  0@s 0 0@
(O %) | cogor - @)(32 - 9% sin T 10— )
: 2 0
+S|n((pl—cm)cos(§n+u —@3)(1- 0—(23) =0 (44)
It maybeseenthatthelastequations satisfiedby
o . .
6_0(_1’ i=12,3 (45)

We now checkif equation(45)is consistentvith equationg42),
and(43). Usingequation(45)n equationg42) and(43), we get

a B r B r2
sinlg—@)  sin(@—a)  sin(g; —a)

(46)

The last equationindicatesthat the links of lengthry,ro and
a side of the mobile platform form a triangle, where the an-
glesoppositeto the sidesri,r, anda arerelatedto the angles
(@—0a), (g —0a) and(@ — @) respectiely ( seefigure?). Simi-
larly, from equation(43)wefind thatthelinks ro, r3 formanother
trianglewith anothersideof themobile platform. Geometrically
the above conditionsrequirethat the endsof the passie links
ri,rz,r3 meetat a point, andin this configuration,the passie
links canrotatefinitely with the platform aboutthis point at the
samerate,evenwhenthe actuatorsaareheldfixed. This obsera-
tion verifiesequation(45).

We now find out the configurationof the active links for
FSM. Using equation(45)n equation(41), and substitutingin
theoriginal constraineequation(36)ywe get

|1C1—|202—X2 =0

l1s1—ls, =0
X2+ 122 —13c3—x3 = 0
losp —l3ss—y3 =0 (47)

Eliminating6; from thefirst two of the above equationsyve get
aftersomerearrangement,

2 2 2
I54+x5—15

coqmn—6,) = Paxs

(48)

whichshavsthatthelinks |1,1, form atrianglewith asideof the
basetriangle, of which, t— 6, is the angleoppositeto the link

I1. Similarly, from thelasttwo equation®f (47), wefind thatthe
links 2,13 form atrianglewith anotherside of the basetriangle.
Combiningthesetwo conditions,we find thatthetips of the ac-
tive links alsomeetata point, whichis alsothe point of meeting
of the endsof the passie links, hencethe resultsareconsistent.
Notethatin thiscasethearchitecturatequirements notunique,
andary setof link lengthsthatwill allow the manipulatorto get
into the specialconfiguratiorshavn in figure 7 canleadto FSM.

Finite Dwell The mobile platform of the 3-degree-of-
freedomparallelmanipulatorcanalsoshaw finite dwell(Gosselin
and Angeles,1990). The architecturarequirementdor this is
derivedbelow usingthe methoddescribedn sections3.
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Figure 7. CONFIGURATION OF THE 3-DEGREE-OF-FREEDOM PAR-
ALLEL MANIPULATOR FOR FSM

The row of the matrix [K*]™*(—[K]) correspondindo & is
givenby

[K)7H(=[K]) =

= Qo] l2sin(g2 — 82) sin(gz — @1) | (49)

. . T
F1rafs ( l1sin(@; — B1) sin(@ — @s) >
[3sin(@s — B3) sin(@1 — @)
We assumedet[K*] to be non-zero,hencefrom equation(38),
we musthave the @’s all different. This givesthe following cri-
teriafor ID: sin(@ — 6;) = 0, i = 1,2,3. Differentiatingthese
equationswith respecto the active variablesd;’s, and solving

for the partial derivativeng‘“j, we get 3—5"} = §;j. Differentiating

the constrainiequationswith respecto 61, andnoting g—a = &ij,
we obtain —I1s; — r1Sy, = 0 andlicy + ricy, = 0, wherefrom
we recoverthe ID criterionfor this finger of the manipulatoras
sin(g; —61) = 0, andthearchitecturatequirementl; =r1. Sim-
ilarly, we canobtainl, =r», I3 = r3. Thusthearchitecturakton-
straintonthelinks of theith fingeris|; = ri. Notethatthereis no
relationshipbetweenthe link-lengthsof differentfingers. Also
notethatmaximumnumberof architecturatequirement®sn the
non-dwellingpart of the manipulator as predictedby equation
(22)is 1 x (7—4)? = 9. In this case however, theactualnumber
isonly 3.

To find the constrainton the platform size a, we substitute
I1 =r1, and@ = 61 + 1tin theconstrainequation(36andobtain
acy — X2 = 0 andasy, = 0. Fromtheseequationswe find the
orientationand the size of the platformasa = 0 anda = xp.
Geometrically it meansthat the mobile platform hasthe same
sizeasthe baseplatform,andrestson top of it for finite dwell.
All thepassielinks fold backonthe correspondingctive links,

10

suchthattheirtips coincidewith the pivots.

Conclusion

In this paperwe have presente@dnanalysif theconstraint
equationsggoverningthe motion of the passve or non-actuated
part of a closed-loopmechanismor parallel manipulator and
shawvn thatthe singularitiesleadingto the gain of degree(s)-of-
freedomareassociateavith the degenerag of theseforces.The
first order propertiesgovern the instantaneousehaior of the
mechanismat a singularity while the secondorder properties
yield criteriafor singularmotionover finite spanof the configu-
rationspace.Secondrderpropertiesalsohelp obtainingthe ar-
chitecturalrequiremenbf finite self-motionat a singularityand
finite dwell. Thethetheorydevelopedin this paperhasbeenil-
lustratedwith the examplesof threerepresentatie closed-loop
mechanismandparallelmanipulators.

REFERENCES

GosselinC. andAngeles,J., Singularityanalysisof closed
loop kinematicchains IEEE Journalof Roboticsand Automa-
tion, Vol. 6, No. 3, pp.281-290,1990.

D. Zlatanw, R. G. Fenton,and B. Benhabib,A unifying
framavork for classificationand interpretation of medanism
singularities, Journalof MechanicalEngineeringDesign,Vol.
117,No. 4, pp.566-572,1995.

Merlet, J. P, Singularity configuations of parallel manip-
ulators and Grassmangeometry The InternationalJournalof
RoboticsResearchyol. 10,No. 2, pp.123-134,1991.

Agrawal, S.K. andRoth,B., Staticsof in-parallel manipula-
tor systemgsTrans.of ASME, Journalbf MechanicaEngineering
Design,Vol. 114,pp.564-568,1992.

DasguptaB. andMruthyunjaya,T. S., Forceredundancyn
parallel manipulatos: theoetical and practical issuesMecha-
nismandMachineTheory Vol. 33,No. 6, pp.727-742,1998.

Chowdhury, P. and Ghosal,A., Singularity and contmolla-
bility analysisof parallel manipulatos and closed-loopmed-
anisms Mechanismand MachineTheory Vol. 35, No. 10, pp.
1455-14792000.

Hunt,K. H., SamuelA. E.,andMcAree,P. R., Specialcon-
figuration of multi-finger multi-freedomgripper - A kinematic
study The InternationalJournalof RoboticsResearchYol. 10,
No. 2, pp.123-134,1991.

Basu,D. andGhosal,A., Singularityanalysisof platform-
type multi-loop spatial medanisms Mechanismand Machine
Theory Vol. 32,No. 3, pp.375-389,1997.

Haug, E. J., ComputerAided Kinematicsand Dynamicsof
Mecdhanical SystemsBasic Methods Allyn andBacon,Vol. 1,
1989.

Copyright 0 2001by ASME



