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ABSTRACT

This paper describes a method for constructing circular

blends using geometric tools. The algorithm presented in this

paper is based on marching along a characteristic direction on

the tangent plane to the Voronoi surface of the two surfaces

being considered for blending. Starting from any point on the

edge to be blended, the algorithm converges to the spine curve.

The characteristic direction of marching lies on the plane con-

taining the points in assignment and the tangent plane to the

Voronoi surface. The spine curve generation algorithm presented

in this paper, does not require computing o�sets of surfaces or

an explicit evaluation of surface-surface intersection (SSI). The

algorithm presented is computationally simple and fast, and can

be used for constant and variable radius circular blending of sur-

faces, each of which is G2 continuous. The algorithm can also be

used to obtain the surface-surface intersection curve by setting

the radius of blend to zero.

KEYWORDS

Edge blending, Voronoi surface, variable radius blend-

ing

INTRODUCTION

Blending is one of the most important editing tool pro-

vided by CAD systems for local modi�cations of primary

models. It is often used in computer aided geometric de-

sign for aesthetic or functional reasons. Of all the blending

1Address all correspondence to this author.

techniques, radius blends are the most popular blends be-

cause of it's simple geometric description. A radius blend

can be imagined as the trimmed envelope of a rolling ball

of constant or variable radius swept along a spine curve

such that the rolling ball always touches the base surfaces

to be blended. From an algorithmic point of view, blend-

ing one or more edges of solid model can be divided into

two subtasks. The �rst is to create a surface that provides

smooth transition between the adjacent surfaces de�ning

the edge. Secondly, the surfaces need to be trimmed prop-

erly and integrated into the body such that a valid solid

model is maintained. While the �rst step is a purely ge-

ometric problem, the second one involves both geometric

and topological operations. This paper addresses the �rst

subtask.

Boundary surfaces meeting along tangent discontinuous

edges are quite common in the design of mechanical com-

ponents. Hence the problem of blending in computer aided

geometric design has a fairly long history. Vida et. al(Vida

et al., 1994) provide a comprehensive review of work to date

on parametric and algebraic blending. `Rolling-ball' method

was employed by Rossignac and Requicha (Rossignac and

Requicha, 1984), so that the blends are approximated by a

sequence of torus segments. For constant radius rolling-ball

blends, most authors (see for example (Barnhill et al., 1993;

Choi and Ju, 1989; Klass and Kuhn, 1992; Varady et al.,

1989) ) have tried to obtain the spine curve by tracing the

intersection of o�sets with an equal radius from the base

surfaces. However, �nding intersection of o�set surfaces is
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a computationally intensive task, as o�set surfaces have no

exact representation (Farouki, 1986).

Finding surface-surface intersection(SSI) has been dis-

cussed by various authors such as Bajaj et. al(Bajaj et al.,

1987), Barnhill and Kersey(Barnhill and Kersey, 1989), Heo

et. al(Heo et al., 1999) and others. Chang et. al(Chang et

al., 1994) have discussed surface-surface intersection using

parallelism to achieve speed and precision simultaneously.

In all these methods, determining the starting points of

intersection is very crucial. Karim and Yeh(Abdel-malek

and Yeh, 1997) have presented two numerical algorithms

for computing starting points on the curve of intersection

of parametric surfaces. The o�set surfaces can be repre-

sented more accurately, as a procedural surface when the

parameterization is identical, but evaluation of surface in-

tersection is not a very easy task for such procedurally de-

�ned surfaces. Hartmann(Hartmann, 1998) has presented a

numerical implicitization scheme to �nd SSI for procedural

surfaces.

Farouki and Sverrisson(Farouki and Sverrisson, 1996)

have presented another approximation of constant radius

rolling-ball blends for parametric surfaces where they have

derived the spine curve by tracing the intersection of o�-

set curves directly on the original surfaces. Their method

does not require explicit representation of the o�set sur-

faces, which are, in general non-rational.

The theoretical foundations of variable radius rolling-

ball (VRRB) blends are described in Pegna(Pegna, 1987)

and Pegna and Wilde(Pegna and Wilde, 1990). The spine

curve of variable radius rolling-ball (VRRB) blends can also

be obtained as an intersection of o�set surfaces with vary-

ing o�set distances. The o�set distances are prescribed by

using some radius function. In certain cases, the radius

function is assumed to be monotonic between a minimum

and maximum radius, both of which are chosen by the user.

The intersection curve of two o�sets with a radius equal

to the average of the minimum and maximum radius val-

ues is traced and used as a control curve. Chuang and

Hwang(Chuang and Hwang, 1997) propose several geomet-

ric constraints to specify the variable radius that constrains

the variable-radius spine curve. The constraints have been

generalized as r(�) = c=f(�), where � is the angle between

two normals dropped from a point on the spine curve to the

base surfaces. Chandru, Dutta and Ho�mann(Chandru et

al., 1990) use cyclides and other natural quadrics to de�ne

blend surfaces of exact tangent continuity to the base sur-

faces. They were also the �rst to introduce and explicitly

use the concept of Voronoi surfaces.

Singularities of blend surfaces and their di�erential ge-

ometric properties have been discussed by Lukacs(Lukacs,

1998). He has introduced the concept of geodesic blend sur-

face, which avoids local self-intersections if both surfaces

locally enclose the variable radius ball.

Pegna(Pegna, 1987) also categorizes blends as circular

blends and spherical blends. The former type of blends are

obtained by sweeping circles of varying radius whereas the

latter type of blends are generated by the envelope surface

of a rolling ball. In this paper, we focus on the circular

blends where the blend surface is swept by principal circles

of a rolling ball and present a procedure that doesn't require

o�set of surfaces or explicit evaluation of surface-surface in-

tersection(SSI). The procedure �nds the spine curve of the

blend by marching on the Voronoi surface of the two base

surfaces. Properties of the Voronoi surface and o�set sur-

faces are used to �rst �nd a starting point and then to march

on the Voronoi surface. This approach is well suited for con-

stant as well as variable radius circular blends of surfaces

that are G
2 continuous. As a by-product, our algorithm

can be also used to obtain the surface-surface intersection

curve. Before we proceed further, we present, in the rest of

this section, the blending terminology that has been used in

this paper followed by some results that establish proper-

ties of Voronoi surfaces that will be used by the algorithm.

The algorithm for circular blending of edges is presented in

detail next. Results of implementation involving blending

of surfaces using constant and variable radii are presented.

We also present a result on obtaining the SSI curve. Finally,

we present our conclusions.

Blending terminology

a

b

e

a b

c

d

f

g

Figure 1. Terminology : (a) base surfaces, (b) trimlines, (c) blending surface,

(d) pro�le curve, (e) pair of points in assignment, (f) spine curve, (g) plane

of reference.

In the �gure 1 the base surfaces are to be blended

smoothly. The blending surface is considered as a swept

surface, generated by sweeping a ball along a given or eval-

uated longitudinal trajectory. Such a trajectory is called
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spine curve and projection of the spine curve on the base

surfaces gives trimlines or the linkage curve. At each point

of the spine curve, a cross sectional pro�le curve is associ-

ated with it which locally de�nes the shape of the blend.

Any point on spine curve can be projected onto the base

surfaces and thus on the trimlines. We refer to this pro-

cess as assignment and the two points under consideration

are called points of assignment. The plane containing the

normals at the points of assignment is called the plane of

reference.

THEORETICAL BACKGROUND

Rolling-ball blend can be visualized as a family of balls

centered on a three dimensional curve called spine curve

and maintaining contact with both the base surfaces simul-

taneously. It implies that the spine curve is a set of points

which are locally equidistant from both the base surfaces.

The spine curve in turn can be visualized as a curve lying

on a surface which is locally equidistant from the both the

surfaces. Such a surface is called Voronoi surface(Chandru

et al., 1990). Usually we don't have any closed form repre-

sentation for a Voronoi surface.

Let S(u; v) be a smooth parametric surface. Then the

o�set surface of S(u; v) by distance r is given by

So(u; v) = S(u; v) + r n̂(u; v): (1)

where r is the distance of the o�set surface from the original

surface and n̂ is the unit surface normal of S. The normal

is given by

n̂(u; v) =
@S

@u
� @S

@v����@S@u � @S

@v

����
=

N(u; v)

jN(u; v)j
:

The o�set surface de�ned by equation(1) is smooth if the

surface S(u; v) is well parameterized i.e. @S

@u
� @S

@v
6= 0. The

o�set surface can be reparameterized identically if r is less

than the smallest concave principal radius of curvature at

point (u; v) otherwise the parameterization will be degener-

ate. Hence to avoid singularities in blends, the blend radius

at a point should be less than the smallest concave principal

radius of curvature at that point(Lukacs, 1998).

A Voronoi curve/surface for two (para-

metric) curves/surfaces is the locus of those points which

are locally equidistant from both the curves/surfaces. If we

consider P1(u; v) and P2(s; t) as two parametric surfaces,

Voronoi surface of P
1

(u,v) and P2

P1
P

P 2

(s,t)

(u,v)

(s,t)

Figure 2. The Voronoi Surface of a Plane and Cylinder

then we can write pencil of o�set surfaces to P1 and P2 as

Po

1
(u; v; r) = P1(u; v) + r n̂1(u; v);

Po

2
(s; t; r) = P2(s; t) + r n̂2(s; t): (2)

In the above equation, n̂1 and n̂2 are normal to surfaces

P1 and P2 and the Voronoi surface is given as intersection

of these pencil of o�set surfaces with same o�set distance

r. Figure 2 shows a Voronoi surface of an oblique cylinder

intersecting a plane.

For a G
2 continuous surface S it can be shown that the

normal to the o�set surface So is parallel to that of the

original surface S at any parameter value (u; v) (Hermann,

1995). It follows then that the o�set of an o�set surface

is o�set of the original surface, and the o�set distance gets

added algebraically. This is used in the proposed algorithm

to incrementally �nd the centre of the ball (and the point

on the spine curve) at any instance.

The following theorem (Hermann, 1995; Lukacs, 1998)

establishes an important result that is used in the develop-

ment of the blending algorithm.

Theorem: Let P1(u; v) and P2(s; t) be smooth sur-

faces and p be a point on their Voronoi surface which is at

a distance r from both the surfaces. Let p1 and p2 be the

footprints of p on the base surfaces P1(u; v) and P2(s; t)

respectively. If p1 and p2 do not coincide (i.e. p1 6= p2)

and r is less than the smallest concave principal curvature

radii then the Voronoi surface is a plane normal to vector

(p2�p1) in the neighborhood of p, and the Voronoi surface
at a point p is given by vector (p2 � p1) (Hermann, 1995;

Lukacs, 1998).

This is shown schematically in �gure 3.

From the above theorem it is possible to determine the

direction of the march towards the spine curve. To ensure

tangent plane continuity between the blend surface and the

base surfaces, the blending arc through points p1 and p2
on the surfaces, P1(u; v) and P2(s; t), respectively, should

lie on the plane containing the two normals through these
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Figure 3. Tangent plane to the Voronoi Surface

points (note that this is only for circular blends). The inter-

section of this plane with the tangent plane to the Voronoi

surface at the point p, which is center of the blending arc,

will give the tangential direction to march further on the

Voronoi surface to change the o�set distance r.

Let n̂ be the plane containing normals n̂1 and n̂2 at

the points p1 and p2 to the surfaces P1(u; v) and P2(s; t).

Let T̂1 and T̂2 be the tangents at points p1 and p2 to the

surfaces P1(u; v) and P2(s; t) lying on the plane n̂. Then

T̂, the tangential direction to move further, is along the

angle bisector to T̂1 and T̂2 as shown in �gure 4. We can

write

T̂ =
T̂1 + T̂2

jT̂1 + T̂2j
=

n̂1 + n̂2

jn̂1 + n̂2j
(3)

where T̂, T̂1, T̂2, n̂1 and n̂2 are unit vectors.

n

n

T

T

T

1

2
1

2

θ

θ/2

/2

π/2−θ/2

n 1

n 2

Figure 4. Tangent to the Voronoi curve

Based on the above, we formulate the radius blend al-

gorithm in the following section.

BLEND ALGORITHM

The overall blending process involves the following

steps.

� Get an initial point and plane of reference appropri-

ately.

� Trace spine curve by marching along the spine curve.

� Re�ne point on spine curve.

� Terminate blending.

� Construct blend surface.

The steps to get the initial point and tracing of the spine

curve makes use of the two results stated in the previous

section. We describe each of the step in detail in this section.

Obtaining initial point and plane of reference

We start from a point on edge curve and try to obtain a

plane containing the spine curve. However, since we don't

have any a priori information about the spine curve, we

can't decide about the reference plane. In such a situation,

we proceed with any suitable plane, perform some iteration,

get feedback about the plane, and �nally try to converge to

the plane.

To choose a suitable plane, we make use of the following

reasoning: we know that the blend surface always follows

the edge to be blended (i.e. intersection curve of the two

surfaces to be blended). In addition, this intersection curve

always lie on the Voronoi surface. This fact allows us to

choose a suitable plane.

Once a suitable plane is found, we are required to main-

tain tangent plane continuity across the trimline. Hence, to

start with, for the �rst plane of reference we select a plane

which is normal to the intersection curve at any point on

the edge (intersection curve). This point becomes the �rst

input point to start with, and the tangent directions, T̂1

and T̂2, to the curves on the plane can be found by the in-

tersection of the plane with the tangent planes to the base

surfaces at the starting point. In fact T̂1 and T̂2 are the

common vectors as well as the plane of reference, which

contains normal to both the surfaces from that point. Thus

we start with T̂1 and T̂2 and �nd the step vector dT. The

step vector is found directly using the two normals from the

following equation

dT =
(T̂1 + T̂2)q
1� (T̂1 � T̂2)2

dr;

=
(n̂1 + n̂2)

1 + n̂1 � n̂2
dr (4)

The magnitude of the step vector is taken to be

jdT j = dr=sin(�=2), where � is the angle between the

two tangent vectors (�gure 4) and dr is initially chosen to

be (blend radius)/5.

The blending arc on current plane of reference may not

be in a position to maintain G
1 continuity with the two
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base surfaces. Hence, we correct the plane of reference by

dropping normals n1 and n2 to the base surfaces from the

new calculated point p = p+ dT. In each subsequent iter-

ation we correct the plane of reference taking feedback from

the geometry of the original base surfaces. The step vector

considered here lies on the tangent plane of the Voronoi sur-

face at point p. After calculating the step vector we move

to the next point p = p+ dT on the Voronoi surface. It is

worth noting that the new point p will not exactly lie on

the Voronoi surface, and the errors in the subsequent itera-

tions will accumulate. This implies that we also need to do

point re�nements at some stage, and this can be done using

some higher-order predictor corrector method. A point re-

�nement method discussed by Chuang and Hwang(Chuang

and Hwang, 1997) is also very helpful in this case.

The above approach to �nd the initial point on the spine

curve, taking a point on the edge or Voronoi surface as

input, is presented as an algorithm.

ALGORITHM : Spine

INPUT : A point p on the edge curve.

OUTPUT : A point p0 on the spine curve.

Steps :

1. Drop normals n1 and n2 from the point p (lying on the

Voronoi surface) to the base surfaces.

2. Find the step vector dT :

We have used fourth order predictor-corrector method

(Runge-Kutta) for this step. We write four intermedi-

ate step vectors A;B;C and D as

A =
(n̂a1 + n̂a2)

1 + n̂a1 � n̂a2
dr; B =

(n̂b1 + n̂b2)

1 + n̂b1 � n̂b2
dr;

C =
(n̂c1 + n̂c2)

1 + n̂c1 � n̂c2
dr; D =

(n̂d1 + n̂d2)

1 + n̂d1 � n̂d2
dr:

with n̂a1; n̂a2; n̂b1; n̂b2; n̂c1; n̂c2; n̂d1 and n̂d2 being the

unit normals dropped from the points pa;pb;pc and pd
to the base surfaces. The points are given as

pa = p; pb = p+
A

2
;

pc = p+
B

2
; pd = p+C:

and �nally we calculate the step vector as

dT =
1

6
(A+ 2B+ 2C+D):

3. Calculate the next point of iteration on the Voronoi

surface as p = p+ dT.

4. Find the distance r of p from the two base surfaces. r =

(jp�P1(u; v)j+ jp�P2(s; t)j)=2. Taking the minimum

of the two distances would also work.

5. If r > blend radius

rollback one iteration and proceed with a reduced

step size dr (obtained by linear interpolation).

else if (blend radius -r) < dr

dr = (blend radius -r),

if dr < TOL (where TOL is a pre-speci�ed numer-

ical tolerance),

return p0 = p;

else

go to step 1.

From, the above algorithm, we are now able to get a

point which is on the spine curve within a prescribed toler-

ance. By repeating the same routine with di�erent points

on the edge curve, we can get di�erent points on the spine

curve. In this way, we can trace the entire spine curve but

then the computation cost may be too large.

Tracing of the spine curve

To reduce the computation cost, we use the theorem

de�ning the direction of the normal to the Voronoi surface,

to march along the spine curve on the Voronoi surface of the

two surfaces. We �nd the tangent to the spine curve on the

tangent plane of the Voronoi surface at the point p0 on the

spine curve. For constant radius blend, the cross product

of normals to the base surfaces at the foot point of p0 will

give the tangent direction to the spine curve. We now start

marching on the spine curve to the trace the spine curve

completely. In case of variable radius blends the tangent

direction can't be speci�ed easily. In this case, we take any

arbitrary direction on the tangent plane of the Voronoi sur-

face, preferably in the perpendicular direction to the plane

of reference at the spine curve. In the next step the point

is corrected using the algorithm Spine discussed before to

satisfy the radius constraint.
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At each step, the spine curve is traced along the tangent

direction to the spine curve. By moving along the tangent to

the spine curve, we may deviate from Voronoi curve. Hence

we need some correction step in terms of point re�nement

technique.

Point re�nement and blend termination

Since the spine curve and the Voronoi curve discussed

above are linearly approximated along their tangent direc-

tions, the points evaluated above can't be assured to be

lying exactly on the Voronoi surface or lie exactly equidis-

tant from the base surfaces. In addition, the error in such

a marching algorithm adds up, and after a while the points

evaluated will be beyond the tolerance limit. Once, the tol-

erance limit is nearly reached, the points need to re�ned so

as to bring it back within the tolerance limit.

Tangent plane to P

Tangent plane to P 1

2

(u,v)

P

d

’

p

r1

θ

r
1
+dcos θ

r2

(s,t)

Figure 5. Point re�nement

Referring to �gure 5, we have

r1 = jp� p1j, and r2 = jp� p2j:

If jr1 � r2j > � (tolerance);

we re�ne point p to p' as follows:

r1 + d cos(�) = r2 + d:

(r1 � r2) = d(1� cos(�)):

(r1 � r2) = d(1� n̂1 � n̂2)

d =
r1 � r2

1� n̂1 � n̂2

p0 = p� dn̂1:

At any point p evaluated on the spine curve, we project the

point to the base surfaces and if the di�erence of distances

r1 and r2 is beyond tolerance limit, we re�ne the point by

the procedure explained above.

After evaluation of points on spine curve the algorithm

of spine generation needs to be terminated at a certain

point. We know that the blend surface will follow the edge.

Hence, for a closed edge curve the spine curve has to be

closed, and for the open case it has to be open curve. If

the edge is closed then from the starting point on the spine

curve we calculate distance of the next evaluated points on

the spine curve, and when the distance decreases to a min-

imum distance tolerance we terminate the algorithm. For

an open curve, the algorithm is terminated when the foot

prints of point p on the spine curve lies outside the domain

of the respective base surfaces.

Construction of blend surface

While blending free-form parametric surfaces, it is dif-

�cult to get the exact representation of the blend surface.

In this work, we use numerical algorithms to �nd the spine

curve of the blend, and hence we end up with having discrete

set of data points for spine and trim curves. These data

points are required to be �tted in smooth curves. However,

if the set of three dimensional points are �tted to a smooth

curve it may not lie exactly on the surface. Hence �rst a

curve in parametric space is �tted, then corresponding to

that parametric curve which may be a non-isoparametric

curve, a curve in real space is extracted from the surface.

This curve will be more accurate, but it's degree may be

too high. Another approach to construct the blend surface

is to �t a curve in real space with a very low degree (say

piecewise-cubic) and the surface is modi�ed locally to match

the trimming curve with some tangent constraint to ensure

smoothness across the matching boundary(see Hu and Sun

(Hu and Sun, 1997)). From either of the above procedure,

we can get continuous trimline curves a(�);b(�) and the

spine curve c(�).

Farouki and Sverrisson (Farouki and Sverrisson, 1996)

have used some non-standard weight functions to get a ra-

tional blend surface. The blend surface can be expressed

6 Copyright c 2001 by ASME



as

S(�; �) =
â(�)(1� �)2 + ŝ(�)2(1� �)�+ b̂(�)�2

wa(�)(1� �)2 + ws(�)2(1� �)�+ wb(�)�2
(5)

where we take the weight functions as

wa(�) = ws(�) = (a(�) � c(�)) � (b(�) � c(�)) + r
2
;

wb(�) = 2d2:

and

â(�) = [(a(�) � c(�)) � (b(�) � c(�)) + r
2]a(�);

ŝ(�) = r
2(a(�)+b(�))+[(a(�)�c(�))�(b(�)�c(�))�r2 ]c(�);

b̂(�) = 2d2b(�):

and, the parameters`r' and `d' are as de�ned in (Farouki

and Sverrisson, 1996).

From the B-spline control points of â(�); ŝ(�) and b̂(�)

we can �nd the control points of the blend surface S(�; �).

In our algorithm the above described method has been used

for blend surface construction. It may be noted that other

techniques such as lofting can also be used.

Next we describe, the implementation details of our al-

gorithm for constant and variable radius blending.

Constant radius blending

The spine generation in case of constant radius blend

is straight forward. First starting from any point on edge

we get a point on spine curve using the algorithm Spine.

Then we start moving along the spine curve by traversing

along the tangent direction of the spine curve. The tangent

direction of the spine curve in case of constant radius blend

is the cross product of the two normals dropped from the

point on the spine curve. We trace the spine curve using

steps along the arc (of the spine curve) which will generate a

relatively uniform distribution of point data along the spine

and hence along the trimline curves. Hence the next point

on the spine curve is obtained from the following relation

p0k+1 = pk + Æ�
n1 � n2

jn1 � n2j
: (6)

where in the vicinity of point pk, the step size Æ� is con-

trolled by

(p� pk) �
n1 � n2

jn1 � n2j
� Æ� < �; (7)

with p being a point in the neighborhood of the point pk
and � is distance tolerance.

The point p0
k+1 calculated may not exactly lie on the

Voronoi surface i.e. distance from both the base surfaces

may not be same due to complexity of the surface geome-

tries. Hence we need to re�ne the point to ensure that the

point lies on the Voronoi surface. We check the distance of

the point from base surfaces to see if it matches with the

radius of blend. If it does not match then again Spine al-

gorithm is used to get the next point on the spine curve.

Thus the complete spine curve can be traced out.

Variable radius blending

In the case of variable radius blending, the modeler re-

quires more intervention from the users. De�ning a suit-

able radius function along the spine curve for a particular

case requires experience from the designers, since the ge-

ometry along the intersection of two base surfaces can be

complex. Chuang and Hwang(Chuang and Hwang, 1997)

has presented several constraints from which the variable

radius function can be automatically generated. All these

constraints can be generalized as

r(�) =
c

f(�)
; (8)

where c is a user de�ned constant and f(�) is a non-negative

function of �; 0 < � < �. The function f(�) controls varia-

tion of radius with respect to angle �. An appropriate f(�)

can be chosen according to particular design need.

Using any of these constraints, we have the radius as

a function of the angle � between the two normals at any

point on the spine curve. Once we are on the Voronoi sur-

face, we can use the algorithm Spine to �nd a point on the

spine curve with the given radius constraint. Since at the

very �rst instance we don't know the angle � or the radius

of blending, we can start by using the angle between the

normals at any point on the edge. From this angle we ob-

tain the �rst approximation of radius corresponding to the

initial points of assignment. Then we choose a step size dr,

which could be half or one third of the approximate radius.

Using the algorithm Spine we get a next point and at that
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point check if any point re�nement is needed as the step

size dr may be large enough to deviate from the Voronoi

surface of the two base surfaces. Now again we �nd the

radius of blend using the two normals dropped from the

newly evaluated point, and again calculate the step size dr

as dr equal to the di�erence of radius of blend evaluated

at this point and the distance of this point from both the

base surfaces. This iteration is continued till we converge

to radius satisfying the constraint.

The above procedure will give the very �rst point on

the spine curve. From this point onwards we move along

the tangential plane on the Voronoi surface taking the best

direction to move as normal to the plane containing both

the normals. We pick any small step size to move further,

but to have a good convergence we choose a step size based

on the curvature of the base surfaces at the foot points

(i.e. point in assignments) of the current point on the spine

curve.

RESULTS

Tests were performed on blending of free-form surfaces

as shown in �gures below, with our proposed algorithm. It

is found that even for fairly complicated surfaces, the algo-

rithm works well and is able to evaluate the spine curves

within few seconds(< 3s), on a Linux-PC (Pentium III

processor). The complete blending task for two bilinear

surfaces meeting at two edges, was performed in about

1:24secs. For blending of two free-form surfaces, the time

taken is about 2:8secs to compute the spine curve, and

4:37secs for the complete blending operation.

Variable radius blending, requires an extra input from

user, i.e. the radius function along the spine curve. In our

tests we have used some of the constraints discussed earlier

such as constant arc length. Figure 8 shows a typical exam-

ple showing blending of a cylinder intersecting a free-form

surface along some non-isoparametric curve. In the inset

of the �gures we have shown the variation of radius along

the spine curve parameter t. Figure (8a) shows constant

radius blending with r = 0:5 and �gure(8b) shows the case

of variable radius with constraint of constant arc length.

Another good candidate for variable radius blending is the

blending of two cylinders intersecting at an angle. Figure

9 shows an example where two cylinders, intersecting at an

angle � = 60o, has been blended with constant arc length of

1.0 (i:e:; r(�) = �
�1). In the �gure we have also shown the

blend surface along with variation of radius along the spine

curve.

We have also dealt with blending cases having singu-

larities and one of the example of such a problem is when

two cylinders of same radii intersect at an angle. Figure 10

shows an example with two cylinders of same radii (r = 2:0)

0 0.5 1
0

1

2

3

t−>

r(
θ)

−>

Blending Surface
 (Constant arc) 

Figure 9. Blending of two intersecting cylinders

being blended with blend radius r = 1:0. Rendered image

of the blend has been shown to visualize the continuity be-

tween the two blend surfaces.

Figure 10. Radius blending for singular case

0 0.5 1
0.5

1

1.5

2

2.5

3

t−>

r(θ
)−

>

0
2

4 0
1

2−2

0

2

Figure 11. Blending of cylinders with constant range distance as constraint

Test of continuity between surfaces has been done by

checking the visual appearance as in the �gure 10 and by

plotting normals at the trimlines. The �gure 11, shows

variable radius blending between two cylinders intersecting
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Edge to be
Blended 

(a) Bilinear Surfaces for Blending (b) Blended Bilinear Surface (r=0.2)

Blended 
Edge 

Figure 6. Blending of two bilinear surfaces meeting at two edges

(a) Two Free−form Surfaces having
              Sharp  Edge 

Edge to be
 Blended 

(b) Blended Free−form Surface 

Figure 7. Blending of two free-form surfaces

perpendicularly. The constant range constraint i:e:; r(�) =

0:5= tan(�=2) has been used to specify the radius function

as shown in �gure 11. In �gure 12 continuity checks along

the trimlines have been shown. Figures (12a and 12b) show

the plot of the angle between the normals of blend and base

surface along the trimline-I and the vector plot of normals

in 3-D respectively. From the �gure it is found that an

accuracy up to 10�16 has been achieved for the case of �gure

11. Figures (12c and 12d) show similar plots at the trimline

on the second surface.

As mentioned in the previous section, we can obtain the

curve of intersection (SSI)of any two surfaces by performing

a constant radius blending with r = 0. We tested this

approach on two intersecting cylinders of radius 2.0 and 1.5

respectively. As can be seen from �gure 13, our algorithms

gives us the SSI curve. In the inset of �gure 13, we show

9 Copyright c 2001 by ASME



0 0.5 1
−1

0

1

2

t−>

r(
θ
)=

0
.5

(a) Constant radius blending (r=0.5) 

0 0.5 1
0.28

0.3

0.32

0.34

0.36

0.38

t−>

r(
θ)

−
>

(b) Variable radius blending with
   constant arc constrain r(θ)=0.5/θ 

Figure 8. Blending of cylinder with a free-form surface

0 0.5 1
2.4

2.5

2.6

2.7
x 10

−16

t−>

θ 1−
>

−1
0

1

0
0.5

1
−1

0

1

−1
0

1
0x 10

−15

−1

0

1

0 0.5 1
2.2

2.4

2.6

2.8
x 10

−16

t−>

θ 2−
>

(a) (b) 

(c) (d) 

Figure 12. Continuity, (a) Angle between normals at trimline-I, (b) Vector

plot of unit normals at trimline-I, (c) Vector plot of unit normals along the

trimline-II, (d) Angle between the normals at trimline-II.

that the maximum variation of r from zero is about 2�10�4.

CONCLUSION

A geometric approach for circular blending of G2 con-

tinuous free-form surfaces meeting at an edge have been

presented in this paper. The concept of Voronoi surface is

fully exploited to develop an eÆcient algorithm. Compared

to the other existing techniques, the proposed scheme can

0
2

4

0.5
1

1.5

−2

0

2

X−>Y−>

Z
−

>

0 0.5 1
−0.5

0

0.5

1

1.5

2

x 10
−4

t−>

r−
>

Intersection of two cylinders 

Figure 13. (a) 3D plot of the curve of intersection, (b) Variation of r from

zero, (c) Intersection of two unequal cylinders

be faster since we do not have to explicitly compute surface-

surface intersection. It is more accurate, since the point re-

�nement and spine tracing techniques never let the point to

deviate too much from the Voronoi surface of the two base

surfaces. A byproduct of our approach is that we can also

obtain the surface-surface intersection curve by performing

a constant radius blend of zero radius.
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