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Abstract

A dynamically isotropic Modified Gough-Stewart platform (MGSP), with equal
first six natural frequencies, is well-suited for micro-vibration isolation as it allows
for the utilization of identical dampers resulting in effective vibration isolation.
In an earlier work, a novel geometry-based approach was developed to deduce the
design parameters of a dynamically isotropic MGSP with conventional kinematic
joints. In spacecraft applications, kinematic joints may introduce friction, back-
lash errors, and lubrication-related issues can negatively impact the vibration
isolation characteristics of the MGSP. In this work, an MGSP with flexural joints
is considered and different designs are evaluated by considering their dynamic
isotropic index (DII), manufacturing feasibility, and static and dynamic char-
acteristics. The DII is a critical metric, representing the ratio of the largest to
the smallest natural frequency among the first six modes, quantifying the fre-
quency spread. Simulations of the developed designs were performed in a finite
element analysis software ANSYS. A prototype of the MGSP with flexural joints
was built, and experiments were conducted to extract the frequencies associated
with the X, Y , and Z modes. The natural frequencies obtained through simu-
lation range from 43 to 45 Hz and matched very closelly with the experiemental
results. Additionally, a damping of 6-7 % across all modes was achieved. The
agreement between the analytical, simulation, and experimental results validates
our design approach and demonstrates its suitability for micro-vibration isolation
applications in spacecraft.

Keywords: Dynamic isotropy, Modified Gough-Stewart Platform, Flexural Joint,
Damping
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1 Introduction

Rotating, reciprocating components and spacecraft operations often generate micro-
vibrations with frequencies of up to 250 Hz [1]. These micro-vibrations have a
detrimental impact on the performance of optical payloads installed on the spacecraft’s
structure. The implementation of a six Degree of Freedom (DOF) Gough-Stewart plat-
form (GSP) is suggested in the literature to isolate these micro-vibrations from the
sensitive payloads [2–5]. To achieve effective vibration isolation, the equivalence of the
first six natural frequencies for translation and rotation is an ideal design [2, 6, 7].
To achieve this optimal condition, the use of a dynamically isotropic GSP with first
six natural frequencies being equal has been advocated. A Modified GSP (MGSP) is
suggested in this work since conventional GSP designs fail to achieve the dynamic
isotropy [8–10]. In an MGSP, the connection points are distributed along two radii on
both platforms (as shown in Fig. 1a), as opposed to the single radius arrangement in
conventional GSPs. In dynamically isotropic MGSP configurations, tuning dampers
for passive vibration isolation becomes straightforward, as identical dampers can be
employed across the given frequency bandwidth. Additionally, achieving dynamic
isotropy simplifies active vibration control, as it enables the use of a decoupled
control strategy – a multi-input-multi-output (MIMO) GSP is converted into six
single-input-single-output (SISO) systems, streamlining the control process [11].

In a design that lacks isotropy, the isolation region for a specific DOF (for exam-
ple, mode X as shown in Fig. 1b ) can be negatively influenced by the presence of
peaks of cross-DOFs (such as Rot(X) in Fig. 1b) overlapping over it. To achieve a
well-defined isolation region (after

√
2ω) without interference from other modes, a

design of an MGSP should ideally consolidate all the peaks ideally in a single loca-
tion. Previous research has attempted to provide closed-form solutions for dynamic
isotropy [8–10], but the procedure to obtain the design parameters are coupled and
complex, making the design process challenging or confined to some specific sym-
metrical configuration [12]. Our prior work introduced an innovative geometry-based
approach that simplifies the MGSP dynamic isotropy problem in three-dimensional
space into a two-dimensional geometry problem [6]. It was shown that all the design
variables for an MGSP exhibited certain relationships through a pair of triangles. This
approach allowed us to derive general analytical closed-form solutions for the design
variables in explicit forms, making the design process significantly more streamlined
and straightforward along with ensuring practical feasibility.

In the context of spacecraft applications, the use of conventional joints, such as
spherical or universal joints, introduces issues related to friction, backlash errors,
and lubrication [3, 5, 11]. These issues can potentially disrupt the vibration isolation
characteristics of the MGSP. To address these challenges, conventional joints are sub-
stituted with flexural hinges, albeit with the trade-off of introducing some additional
parasitic stiffness. While some researchers, including Hanieh in [5], Preumont et al.
in [3], and others, have proposed designs incorporating flexural joints into conven-
tional cubic GSPs, and Yun et al. in [11] suggested the integration of flexural joints
in a specific variant of the MGSP for telescope secondary mirrors, none of the papers
have provided comprehensive insights into the development of an MGSP with flexu-
ral joints to the best of our knowledge. This paper fills this knowledge gap by first
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Fig. 1 a) Two-radii or Modified Gough-Stewart platform �b) Transmissibility curve in a non isotropic
design.

discussing a geometry-based approach to achieving a dynamically isotropic design for
an MGSP. Subsequently, the design is extended to incorporate flexural joints, relax-
ing certain analytical assumptions. Finally, experimental results from a prototype of
the MGSP featuring flexural joints are presented. Close agreement observed among
analytical, simulation, and experimental results validates the approach of this work.

2 Analytical formulation

AModified Gough-Stewart Platform (MGSP) consists of a mobile top platform, a fixed
base platform, and six actuated legs in between them. The payload (micro-vibration-
inducing element) will be mounted on the top platform for spacecraft applications with
passive damping. The fixed base will be mounted on the spacecraft bus, and the six legs
will provide the necessary damping/stiffness. The legs are conventionally connected
to the mobile platform through a spherical joint and to the bottom platform through
a spherical or an universal joint. The mechanism thus provide 6-DOF high-precision
pointing and positioning.

With reference to Fig. 1a, the coordinates of a point on the base frame {B} are
denoted by {xb, yb, zb} and on the top or moving frame {P} by {xp, yp, zp}. In an
MGSP, the connecting points are placed at two radii on each platform, as shown in
Fig. 1a. The variables Rbo and Rbi denote the outer and inner radii of the bottom
platform, while the variables Rto and Rti denote the outer and inner radii of the top
platform. There are two sets of three legs with identical lengths, and each leg in a
set is uniformly spaced from each other by an angular spacing of 120◦ angle along
the circumference. The vector OB1 (magnitude equal to Rbo) is chosen along Xb

direction. The vectors CoA1, OB4, and CoA4 makes an angle αto, αbi, αti with
Xb. The variable H denotes the vertical distance between centers of the two platforms
at the neutral position.
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Each leg is assumed to have an axial stiffness of k in its joint space. The stiffness
matrix [KT ] in the task space [5, 6] is given by:

[KT ] = k[B][B]T (1)

The force transformation matrix ([B]) is a transpose of an inverse Jacobian ([J]) and

is given by [B]=([J−1])
T
where [B] is given by:

[B]6×6 =

[
s1 ... s6

(B [R]P (
Pp1))× s1 ... (B [R]P (

Pp6))× s6

]
(2)

with sj =
Bt+B [R]P

Ppj −B bj
lj

, j = 1, . . . , 6.

The vector sj is a unit vector along the leg j and the variable lj is the length of
the respective leg. The vector Bt connects the centers of two platforms, Ppj is the
location of the connection points on the top platform with respect to the moving frame
{P}, and Bbj is the location of the connection points at the base with respect to the
fixed frame {B}. The rotation matrix B [R]P represents the orientation of the mobile
platform with respect to the fixed base. If the orientation of the payload’s principal
axes is chosen to be coincident with the coordinate system, then the diagonal structure
of the mass matrix [M] can be obtained as:

[M] = diag[mp, mp, mp, Ixx, Iyy, Izz] (3)

where mp represents the mass of the payload (including the mobile platform) and Ixx,
Iyy, and Izz represents its moment of inertia along each direction with respect to its
center of mass (COM). From Eqs. (1), (2) and (3), the natural frequency matrix [G]
in the task space [6, 8–10] can be obtained as:

[G]6×6 = [M]−1[KT] = [M]−1k[B][B]T (4)

The natural frequency matrix [G] will be function of the design variables of an
MGSP, i.e., Rbo, Rto, Rbi, Rti, H, a, αto, and (αbi −αti), where a is the leg length
ratio a = lo2/lo1 (Note lo1 = l1 = l2 = l3 and lo2 = l4 = l5 = l6 ). For dynamic isotropy,
all the six eigenvalues of the natural frequency matrix [G] must be equal and we can
write

λ1 = λ2 = λ3 = λ4 = λ5 = λ6 = ω2 (5)

where, ω is the natural frequency of the MGSP and λ1 to λ6 are the six eigenvalues
of the matrix [G]. Designing MGSP in its neutral position is a practically feasible
approach in an application requiring precise control and a small workspace such as
vibration isolation. At this neutral position, the two platforms are parallel to each
other with their centres on the same vertical line ( B [R]P = [I] and Bt = [ 0 0 H ]T ).
The MGSP operating around its neutral position offers the advantage of obtaining
closed-form solutions for dynamic isotropy due to its geometrical symmetries.

Using the methodology described above for obtaining dynamic isotropy conditions,
the analytical closed-form solution for all the design variables was obtained in explicit
form in our previous work [6, 7]. The solution for a 3-dimensional dynamically isotropic
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Fig. 2 Geometrical interpretation of design variables of an MGSP [6]

MGSP was obtained using a 2D geometry-based approach. The observations made by
simplifying the obtained transcendental equation led to a geometric-based approach
where the design variables were seen to be related by a pair of triangles, as shown in
Fig. 2. Each triangle pair with a certain geometrical relationship represents a dynam-
ically isotropic configuration, and all the design variables can be deduced by finding
the sides of any triangle pair. Since the dynamic isotropy problem of an MGSP has
multiple solutions, the selection of a particular triangle pair (or, in turn, design vari-
ables) depends on space and the loading constraints for the application it is to be
designed for. The in-depth development of the mentioned geometry-based approach is
available in references [6, 7].

Simulations were performed in ANSYS with the dynamically isotropic design of
an MGSP obtained using the geometry-based approach, and the first six natural fre-

quencies were found very close to each other in each case (i.e., all ω =
√

2k
mp

). These

simulations had similar assumptions as in the analytical formulation, i.e., the legs have
ideally zero mass and only the axial stiffness k while the platform has a high stiff-
ness to push the modes of the platforms to very high frequencies above the required
isolation region.

3 MGSP Design

A conventional joint (spherical or universal) can introduce friction, backless error,
and lubrication-related issues that can alter the vibration isolation characteristics of
the MGSP in spacecraft applications. To overcome this, the conventional joints are
replaced by flexural hinges at the expense of some additional parasitic stiffness. An
ideal flexural joint for this application should have high axial stiffness, high shear
stiffness, low bending and torsional stiffness [3, 5, 11]. Each leg must have high axial
stiffness to bear the distributed launch loads. In the case of active vibration isolation,
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Fig. 3 Various flexural joints investigated

a high axial stiffness is required to pass the control loads to the mobile platform.
Similarly, high shear stiffness of the joints will push the local modes of the legs to a
higher frequency, preventing its interference in the region of isolation of MGSP in our
application. Low bending and torsional stiffness ensure that the spread of six natural
frequencies confines to a very narrow bandwidth. In the case of active control, the
rotary stiffness of the flexural joint determines the zeros of the system. The dimensions
of the flexural joint are capped by load-bearing capacity (static) and displacement
characteristics required for any application. The contribution of small bending stiffness
[Kb] in the analytical model [5] would practically modify the overall stiffness matrix
in Eqn (1) as:

[KT ] = k[B][B]T + [Kb] (6)

However, the effect of the [Kb] term is small and is generally not considered for
analytical-based design. Considering the above design philosophy for a flexural joint,
various flexural joints were investigated, as shown in Fig. 3. The selection of a flexural
joint is based on the dynamic isotropic index (DII), manufacturing feasibility, and its
static and dynamic characteristics. As already discussed, that complete isotropy con-
dition in the original analytical model will now be perturbed due to various types of
stiffness in a flexural hinge. A DII parameter is used to quantify the natural frequen-
cies spread around the dynamically isotropic natural frequency

√
2k/mp – DII is the

ratio of the largest to the smallest natural frequency among the first six modes and is
expected to be as close to one or ideally one.

A finite element (FE) model of the MGSP with flexural joints, as shown in Fig. 4,
has the following components:
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Fig. 4 FE model of MGSP based on one of the flexural joints

Fig. 5 a) Simulation results for X,Y , andZ DOFs b) Simulation results for rotational X,Y , andZ
DOFs

� All the flexural joints (shown as Component 1 in Fig. 4 ) explored are made of
Aluminium alloy. This relaxes some of our assumptions during formulation that the
legs are massless with only axial stiffness. A small value of mass (as compared to
payloads’) and bending stiffness will slightly increase the value of DII ≈ 1, but the
effect is expected to be small.

� Component 2 in Fig. 4 made of the Aluminium alloy provides the necessary stiffness
after the static analysis under the launch load conditions. As per the analytical
model, two sets of legs have different lengths but must have an equal axial stiffness.
The following can be done by adjusting the cross-section area according to EA/l .

� Component 3, i.e., the mobile platform, is designed for very high stiffness to push
the plate’s local mode to higher values.

� The payload mass/inertia is shown as lumped mass (see Component 4).

All the legs (treated as continuous metal structures with flexural joints) are given
an equivalent viscous damping ζ = 3.5 % (within standard range) pertaining to their
inherent material/hysterics damping properties. The introduction of damping will not
affect the resonance frequencies, and our analytical result for dynamic isotropic natural
frequencies remains intact.
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Table 1 Comparison of natural frequencies for MGSP obtained via analytical
solution, Simulation, and Experiment in hertz

Modes X Y Z Rot X Rot Y Rot Z
Analytical 43.3 43.3 43.3 43.3 43.3 43.3
Simulation 43 43 43 45.5 43.5 44.5
Experiment 43 43 45 - - -

Table 2 Comparison of damping for MGSP obtained via Simulation and
Experiment

Damping % X Y Z Rot X Rot Y Rot Z
Simulation 7.50 7.44 7.44 6.50 7.38 5.00
Experiment 7.80 7.80 5.30 - - -

4 Results and observations

A typical spacecraft wheel with mass properties mp = 5 Kg, Ixx = 2.5448921166 ×
10−2 Kg m2, Iyy = 2.5448921166× 10−2 Kg m2, and Izz = 4.3068973334× 10−2 Kg
m2 is used. The simulation using the dynamically isotropic configuration gave a DII =
1.09 for Flexural 1 (See Fig. 3a), DII = 1.13 for flexural 2 (See Fig. 3b), and DII=1.15
(See Fig. 3c) for flexural 3. An equivalent stiffness of 1.85 – 2.0×105 N/m for each leg
is maintained in each case. After studying the manufacturing feasibility, the flexural
joint, as shown in Fig. 3d, is being used, which can be realized through electrical
discharge machining. The amplitude vs. frequency curves obtained from the simulation
for X,Y , and Z DOFs are shown in the Fig. 5a. A unit displacement/rotation was
given to the base plate’s nodes, and the response was noted at the lumped mass. It
can be observed that all three curves for translational modes overlap each other with
a natural frequency of around 43 Hertz. A similar result is obtained analytically using
dynamically isotropic natural frequency (i.e.,

√
2k/mp = 43.3 Hertz). This validates

our simulation and analytical results for dynamically isotropic MGSP, as shown in
Table 1. A slight deviation of 0.3 hertz is expected due to a step size of 0.5 hertz taken
for computational purposes. The overall structural damping obtained using the half-
power bandwidth method for the MGSP has the same damping in all three directions,
as summarized in Table 2 (ζ ≈ 7.5%). This also implies that the dynamically isotropic
configuration equally distributes the damping. A similar observation can be seen in
Fig. 5b for rotational modes as well and is summarized in Table 1.

A prototype of MGSP with flexural joints is built along similar lines and the first
three modes were captured in the initial experimentation at the ISRO test facility.
The lateral modal survey test (XandY ) was done by mounting the fixed base on the
slip table and the longitudinal (Z axis) test was done on mounting the base to a 4-
ton electrodynamic shaker, as shown in Fig. 6. The base platform was excited with
an acceleration sine sweep of the constant amplitude of 0.5 g sweeping from 10-500
Hz. The response was measured using tri-axial accelerometers (make: B & K model).
The resonance peaks obtained for X,Y , and Z DOFs are 43, 43, and 45 Hz, respec-
tively, further verifying our analytical and simulation results. The slight deviation of
resonance peak 1 Hz is due to the difference in stiffness of the legs from the intended
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Fig. 6 MGSP Prototype based on flexural joints with experimental setup

Fig. 7 Amplitude vs. frequency curve for X and Y modes obtained using simulation and
experimentation

value due to a slight variation in the actual material properties. Figure 7 shows a close
resemblance of the Amplitude vs. frequency curve for X andY modes obtained using
simulation and experimentation. The analytical, simulation, and experimental results
are summarized in Table 1 and 2, validating our design for the micro-vibration isola-
tion application where all six natural frequencies are nearly the same. It is to be noted
that a structural damping system has a better isolator performance in the isolation
region than a viscous damper with the same amplification/resonance peak.

5 Discussion and future work.

The results obtained with the current design are encouraging for our application,
but a discussion on scopes of improvements from the authors’ observation may be
insightful for future explorations. The initial simulation results with flexural joints
made of Ti alloys (instead of Al alloys) offer better DII, however, at the expense of cost
associated with the titanium. Another way to reduce DII and, hence, the frequency
bandwidth is by adjusting the offset of the flexural joint. As shown in Fig. 8, the
calculated anchoring points (conventional joints in analytical formulation) are A1 and
B1; however, the position of the flexural bending point is slightly adjusted to A1

′ and
B1

′ points, respectively, to avoid interference of leg with the platform during operation.
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Fig. 8 Adjustment of attachment points suggested to improve DII

To modify the flexural joint bending point to A1 and B1 and resemble the analytical
model with even higher precision, we must design the MGSP for A1

′′ and B1
′′ as the

platform attachment point lying along the same line and extended beyond A1 − B1

such that flexural joints offset is equal to A1A1
′′. It will not alter the current dynamic

isotropy configuration and can be seen from Eqn. (1). As we move along sj (say δsj
along the leg), the cross product, i.e., (Ppj+δsj)×(sj) ≈ Ppj×sj almost remains the
same. This means we have the same [B] matrix and hence the same set of solutions.
Moreover, incorporating active vibration control in a dynamically isotropic MGSP will
improve the damping performance at peak along with better isolator performance in
the isolation region. However, the cost and high-power requirement factor must be
considered in active vibration isolation for spacecraft applications.

6 Conclusion

The research demonstrates the effectiveness of a dynamically isotropic Modified
Gough Stewart platform (MGSP) for micro-vibration isolation. The study’s findings,
including the convergence of analytical, simulation, and experimental results, provide
compelling support for this conclusion. Specifically, the first six natural frequencies and
damping characteristics closely align with one another, thus validating the rationale for
choosing a dynamically isotropic configuration for micro-vibration isolation purposes.
Such a configuration ensures a well-defined isolation region within the micro-vibration
frequency spectrum.
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