
Experimental, numerical, and theoretical
analysis of taper belleville spring

Journal Title
XX(X):1–12
©The Author(s) 2023
Reprints and permission:
sagepub.co.uk/journalsPermissions.nav
DOI: 10.1177/ToBeAssigned
www.sagepub.com/

SAGE

Umesh Singh1, Manish Trikha2, K.R.Y Simha3and Ashitava Ghosal3

Abstract
Uniform thickness belleville springs(UBS) are a suitable replacement for coil springs in many applications due to
their ability to take higher loads and their relatively small and compact size. This paper presents an experimental,
numerical and theoretical analysis of the taper belleville spring(TBS). Experimental results on a normal taper
belleville spring (NTBS), fabricated from stainless steel alloy (SS304), are presented. Non linear elastic-plastic
finite element simulations support the experimental behaviour reasonably well. A correction factor based on
Timoshenko’s theory of plates, to match the finite element analysis(FEA) results for NTBS, is presented. Reverse
taper belleville spring (RTBS) analysis shows that it can store more elastic strain energy than UBS and NTBS.
An optimisation study on TBS geometrical parameters is performed to attain maximum energy absorption for the
null stiffness region.
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Introduction

Uniform thickness belleville springs (UBS), also
commonly called disc springs, are frequently used
automotive components such as transmission in
passenger vehicles and in the braking systems for off-
highway equipment (1; 2). UBS stacked in series or
parallel arrangements are also suitable for vibration
isolation during shock loading (3; 4).

Almen & Laszlo (5) were the pioneers in the study
of non-linear UBS behavior and presented results with
various height and thickness combinations. Exploiting
non-linear behaviour, UBS can be used as a positive,
negative, and null stiffness spring. The null stiffness
of the UBS spring makes it useful in situations where
sudden load transfer is restricted. Kobelev (6) presented
a closed-form solution for forces and stresses in an
UBS using the variation method. Du et al. (7) derived
a new analytical formula concerning geometric and
material parameters to characterize the non-linear load
versus deflection properties using the Galerkin method.
There have been also extensive studies on non-uniform
belleville springs – Rosa et al. (8) analyzed a TBS with
linearly varying thickness and obtained its load versus
deflection characteristics. It was shown that the null
stiffness region is improved compared to the UBS (5)
and there were constant stress state conditions on
both the spring surfaces thereby making it favourable
for fluctuating loads. Saini et al. (9) studied the
parabolically varying thickness belleville spring and
showed further improvement in the span of the null
slope zone in the stiffness curve compared to a TBS (8).
Fawazi et al. (10) derived an improved equation for a
coned slotted disc spring with a lever arm, developed the

load versus deflection equation using the energy method
and the result was compared with a straight slotted disc
spring. Pederson et al. (11) studied the stiffness and
stress distribution of the uniform as well as the variable
thickness belleville spring using the non-linear three-
dimensional finite element analysis. Dubey et al. (12)
numerically analyzed the behaviour of the stresses on
the inner and outer surface of the spring with the
variation of outer and inner diameter ratio and height to
thickness ratio. Ramhormozian et al. (13) demonstrated
the use of slotted UBS, within the elastic region of the
bolt, used for the retention of the beam to a column
using a sliding hinge joint bolt under tension. Venkatesh
et al. (14) analyzed the stresses for different types of
UBS – inside slotted, outside slotted, and holes with
slotted UBS and proposed the best UBS according to
their uses. Zhu et al. (15) studied the negative stiffness
region of the grooved disk spring with numerical analysis
and presented experimental data. Chaturvedi et al. (16)
explored the mechanical behaviour of stepped section
disk springs and an analytical derivation for the load
as a function of deflection is presented. Leininger et
al. (17) proposed a new formula, based on four edge
radii and two angles of the inner and outer faces, and
presented finite element simulations of disk springs with
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rounded edges and a non-rectangular cross-section to
model the fillet at the edges in the manufactured disk
spring. Ferrari et al. (18) presented an approach to
determine the load-deflection plot for disk springs with
contact flats and reduced thickness. The contact flats
are shown to improve the definition of the point where
the load is applied. Moreover, particularly for spring
stacks, it reduces the friction at the guide rod of the
stacking. Optimisation tools have been developed for
designers to select UBS geometry and the arrangements
of belleville springs to obtain a desired load-deflection
characteristics (19).

In addition to the load-displacement characteristics,
the friction in a belleville spring, especially in a
stack, plays an important part in their usage and
several researchers have studied the friction aspect of
a belleville spring. Maharjan et al. (20) explored the
area of frictional loss during spring loading and its
effect on the stiffness curve. This is done by calculating
the displacement of different points of UBS during
the event of loading and unloading using a linear
interpolation method and experiments were conducted
to support the analytical derivation. Xiao et al. (21)
developed a non-linear regression method to obtain the
friction and torque relationship for UBS with friction
material. Mastricola et al. (22) discuss the effect of the
asymmetric friction condition of edges on the stiffness
curve of a coned disk spring with square edges. Although
there is a significant amount of literature on belleville
springs, there is a need for extending theoretical,
numerical, and experimental analysis for optimizing
taper configurations. Comparing RTBS with NTBS is
essential to validate the conclusion drawn by Rosa et
al. (8). In particular, the energy storage capability
of RTBS vis-a-vis NTBS can become a crucial factor
in designing compact stacked TBS systems. Frictional
contact plays another unpredictable role in the overall
design and analysis and can be assessed only through
experiments. Finally, plasticity and hysteresis play a
significant role in spring design, and belleville spring
is no exception to this general concern. The research
objective of this work is to design a small-sized tapered
belleville spring for the null stiffness region to absorb low
velocity impact energy. The research objective is also to
examine the assumptions and approximations used in
existing theoretical formulations. Finally, in this work,
we compare the energy absorption in normal and reverse
tapered belleville springs.

Several SS304 NTBS were fabricated. Experiments
conducted on a Universal Testing Machine (UTM) to
find the load versus deflection characteristics showed
elastic-plastic deformation. Extensive elastic-plastic
finite element simulations with the same geometry and
in the same range of deformation as in experiments were
performed in ABAQUS (23). These simulations showed
a good match with NTBS experimental results. Next,
an analytical formulation that includes the null stiffness
region and Poisson’s ratio is presented and FEA were
performed on UBS, NTBS and RTBS geometries. It
was observed that there were differences in the results
obtained from FEA and analytical results which were

significant in the case of NTBS. A stiffness correction
factor, based on the theory of plates and shells by
Timoshenko & Krieger (24) is proposed and it is shown
that the use of this correction factor results in a much
closer match with the FEA for a NTBS. It is also
demonstrated that the FEA match reasonably well
for UBS and RTBS geometry even without the use
of the correction factor. Simulations also show that
RTBS stores more energy density than UBS or NTBS.
Thus, RTBS is desirable when more energy needs to be
processed.

This paper attempts to consolidate experimental,
numerical, and analytical results on TBS configurations
to gain an overall appreciation of the two main
non-linearities: elastic and plastic. This paper is
organized as follows: In the next section, we present
NTBS experiments performed and the results obtained.
this is followed by elastic-plastic FEA on NTBS
for comparison with theory and experiment. In the
theoretical formulation for NTBS, we include Poisson’s
ratio also unlike Rosa et.al(8). The section on the
correction factor improves upon the results derived by
Almen and Lazlo (5) and Rosa et al. (8) and the
use of the correction factor is shown to give a better
comparison with FEA for NTBS. Finally, the energy
storage capability of RTBS vis-a-vis NTBS is discussed
before presenting some experimental results on the
cyclic loading of SS304 NTBS. Conclusions drawn from
this investigation constitute the last section.

Experiments with TBS
Fig. 1 shows a 3D and section view of a NTBS. The
NTBS geometry is determined by the outer radius a,
inner radius b, thickness at radii a and b denoted by ta
and tb respectively, the height difference h between the
two faces at ‘a’ and ‘b’ and the angle β as shown in
Fig. 1b. The NTBS material parameters and properties
are given in Table1.

Table 1. Material and geometric parameter of NTBS
Sl no Fabricated spring specification
1 Material SS304
2 a 25 mm
3 b 12.5 mm
4 ta 3 mm
5 tb 1.5 mm
6 h 2.7 mm
7 β 12.18°
8 Hardness 34 HRC
9 E 195 GPa
10 Density 7.8 gm/cm3

11 Poisson’s ratio (ν) 0.27
12 Yield Stress of SS304 205 MPa

Loading experiments were conducted on a UTM with
a maximum capacity of 100 kN as shown in Fig. 3. A
digital vertical scale was used for vertical displacement.
The maximum time of loading and unloading was set
for 10 min, respectively and a load cut-off at 90% of
UTM capacity was set for a successful experiment and
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(a) 3D view of a TBS

(b) Geometric parameters of a TBS

Figure 1. Schematic of a TBS

Figure 2. Fabricated disc spring

to secure the load cell. During the tests, it was ensured
that the spring axis coincided with the center of the
axis of the fixture. A loading rate of 0.2 mm/min was
used. Three experiments were done for loading till the
deflection δ was the same as height h. To understand
the hysteresis behavior of the spring, experiments were
done for cyclic loading on the spring with displacements
of 0 0.5 mm – 0, 0 − 0.75 mm – 0, 0 − 1 mm – 0, 0 1.5
mm – 0, 0 1.75 mm – 0, and 0 2 mm – 0. Details of the
cyclic loading tests are provided in a later section.

The main results of NTBS experiments:

• NTBS exhibited non-linear behavior with the
increased flat region in the deflection range
(see Fig. 4). Multiple experiments show similar
behaviour on the stiffness curve with a small
scatter, caused by fabrication variation.

• The spring is fabricated with h/tc <
√
2 where

in the null stiffness is not expected according to
NTBS theory (8). Thus the flat region observed is
due to plastic deformation.

• The fabricated NTBS material has a low yield
strength of about 205 MPa and the spring angle
(≈ 12◦) results in plastic deformation due to high
stress build-up in the section.

• From the data of the three experiments, it can be
seen that the load vs deflection characteristics of
the fabricated spring are reasonably repeatable.
The maximum variation of 500 N observed at 0.5
mm deflection signals the onset of the plasticity.

To better understand the experimental behavior of
an NTBS, numerical analysis is discussed in the next
section.

FEA and simulation
This section outlines the FEA conducted in this
study, focusing on predicting the deformation behavior
of SS304 NTBS under axial loading using Abaqus
(23). Fig. 5a depicts the axisymmetric FE model,
highlighting its geometric dimensions and applied
boundary conditions. The NTBS is discretized utilizing
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(a) Disc spring on UTM from top

(b) Disc spring on UTM before loading

(c) Disc spring on UTM after loading

Figure 3. Different views of experiment on NTBS
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Figure 4. Load versus deflection plot for fabricated NTBS,
a=25 mm, b=12.5 mm, E=195 Gpa

an axisymmetric four-node quadrilateral element
(CAX4R), with a discretization number of four across
the thickness. An axial enforced displacement is applied
to the top edge of the spring, and the reaction force
is computed at each converged iteration. The NTBS is
free to slide along the outer diameter in the horizontal
plane. The NTBS analyzed in this study is presumed
to be composed of a homogeneous, isotropic, and elastic
material, characterized by Young’s modulus E = 195
GPa and a Poisson’s ratio ν = 0.27, Table 1. Geometric
non-linearity is incorporated into the simulation and all
contacts are assumed to be frictionless.

Fig. 6a shows a typical result obtained for a deflection
of 2 mm using FEA and Table 1 data. The maximum
elastic stress is 3877 MPa at the top of the inner radius
of the spring which is much larger than the yield stress
of SS304 material. Due to the high shear force, there
is significant distortion and yielding in the section. It
may be noted that the flat region observed in the
load versus displacement is due to plastic deformation.
To account for this plastic deformation, we resort to
elastic-plastic FEA using a yield stress versus plastic
strain database (25). The FEA for the same deflection,
geometrical parameters and plastic deformation are
shown in Fig. 6b. It can be seen that although the
maximum stress drops to 613 MPa throughout the
section, this value is still larger than the yield stress
of SS304. Consequently, yielding becomes inevitable.

For benchmarking FEA, the data by Rosa et al. (8)
is used. The results from the FEA are compared with
Rosa et al. (8) theory. The maximum load error is at
6.1% at the ’2h’ deflection and 4.6% at the ’h’ deflection
(Fig. 5b). For the same configuration but with reduced
thickness of the spring, FEA gives smaller stress Fig. 7
when compared to a thicker one (Fig. 5a).

Based on FEA, we can make the following main
observations:

• Elastic FEA results are in-line with Rosa (8) with
a 4.6% deviation at h – see Fig. 5b.

• Stresses are maximum at the top of the inner
radius and bottom of the outer radius and stresses
are minimum at the center portion of the spring
as shown in Fig. 6a.

• Stresses in the fabricated NTBS exceed the yield
stress of SS304 (Fig. 6a).
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(a) Axis-symetric model for FEA analysis
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(b) Comparison of load deflection, FEA and Rosa’s equation for
τ = −0.325, a = 56 mm, b = 28.5 mm, h = 2.22 mm, E = 206
GPa.

Figure 5. FE modeling and comparison with Rosa et al. (8)
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(a) von-Mises stress (MPa) in elastic deformed NTBS for
τ = −0.33, a = 25 mm, b = 12.5 mm, h = 2.7 mm.
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(b) von-Mises stress (MPa)in plastically deformed NTBS for
τ = −0.33, a = 25 mm, b = 12.5 mm, h = 2.7 mm.

Figure 6. FE simulation results for elastic and plastic
deformation in NTBS

• Elastic-plastic FEA demonstrate a flat region
similar to the experiment (see Fig. 8).

Comparison of FEA and experiments
The elastic as well as elastic-plastic load deflection
characteristics obtained from FEA are compared with
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Figure 7. von-Mises stress (MPa) in elastic deformed
NTBS τ = −0.33, a = 25 mm, b = 12.5 mm, h = 1.7 mm,
t′c = 1.2 mm.

experimental results in Fig. 8. As expected the elastic
load at 2 mm deflection of 11900 N is much larger than
the experimental value due to plasticity. However, the
elastic- plastic FEA matches well with the experiment
at 0.75 mm deflection under a load of 4300 N. The
difference between FEA and experimental data is less
than 1%. After 0.75 mm deflection, the load decreases
due to plastic flow.

0 0.5 1 1.5 2 2.5
Deflection(mm)

0

2000

4000

6000

8000

10000

12000

Lo
ad

(N
)

Plot of Load vs Deflection
EXP-1
EXP-2
EXP-3
FEM-Plastic
FEM-Elastic

Figure 8. Comparison of FEA and Experiment result for
τ = −0.33, a = 25 mm, b = 12.5 mm, h = 2.7 mm.

In the next section, we present an improved elasticity
model to predict TBS deflection including the null
stiffness region.

Theoretical Formulation
The TBS modeling is based on Timoshenko &
Krieger (24) and Almen & Lazlo (5). The aim is to
link the null stiffness region with Poisson’s ratio. The
improved TBS model is derived using the following
assumptions:

1. Spring remains elastic
2. Uniform loading on the smaller radius
3. Frictionless contact
4. The cross-section of the spring rotates about a

fixed point of the section throughout the deflection
5. The cross-section of the spring is undistorted

during loading
6. Small initial angle of the spring
7. Small deflection
8. Radial stresses are neglected

Fig. 9 is the sectional view of NTBS with the
outside thickness more than the inside thickness and the
thickness linearly varying with the span length. Once
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the uniform load P is applied on the inner diameter of
the NTBS, the whole spring starts to rotate about point
’O’ and it deflects from a small angle β to ϕ. There exists
a bending moment M1 about the rotation point which
leads to a change in curvature of the TBS. Associated
with the change in curvature another bending moment
M2, is generated about the point ’O’. The two moments
together resist the external moment generated by the
applied external load (5).

Figure 9. Section view of TBS

For a TBS with the thickness varying linearly, the
thickness T (x) at a distance x from the point of rotation
’O’ can be written as

T (x) = Ax+B (1)

At the radii r = b, and r = a, we have

x =
c− b

cosβ
and x =

c− a

cosβ
, respectively

where c is the distance as shown in Fig. 9. For small
angle approximation cosβ = 1 and sinβ = 0 and we
can write x = c− b and x = c− a at r = b and r = a,
respectively. Define τ as

τ =
tb − ta
2tc′

(2)

where tc′ is thickness at r =
a+ b

2
. At r = a, b and a+b

2

or x = c− a, c− b and 1
2 (2c− a− b), T (x) is given by

ta, tb and tc′ , respectively. From equation (1), A and B
can be written as

A =
2τtc′

a− b
, B = tc′

(
1− 2τc

a− b
+ τ

(
a+ b

a− b

))
(3)

and equation (1) can be written as,

T (x) =
2τtc′

a− b
x+ tc′

(
1− 2τc

a− b
+ τ

(
a+ b

a− b

))
(4)

At a distance of x from the rotation point, the
tangential strain due to external load P is given by (5)

ϵ =
xϕ
(
β − ϕ

2

)
c− x

(5)

and the tangential stress is given as

σ = E∗ϵ =
E∗xϕ

(
β − ϕ

2

)
(1− ν2) (c− x)

(6)

where, E∗ =
E

1− v2
, and E is the Young’s modulus of

the spring and ν is the Poisson’s ratio. It may be noted
here that the Poisson’s ratio is absent in reference (8).

For a strip dx Fig. 9, the tangential stress will create
a radial force given by

F = σ T (x) dx =
E
(
β − ϕ

2

)
(1− ν2)

(∫ c−b

c−a

Ax2

c− x
dx+

∫ c−b

c−a

Bx

c− x
dx

)
(7)

and the radial moment due to radial force (5) is given
by

M1 =
Eϕ(β − ϕ)

(
β − ϕ

2

)
dθ

1− ν2

∫ c−b

c−a

(Ax+B)x2

c− x
dx

(8)
The radial moment due to change in curvature (5) is

given by

M2 =
Eϕdθ

12 (1− ν2)

∫ c−b

c−a

(Ax+B)3

c− x
dx (9)

and the total internal moment on the disc is given by

Mint = M1 +M2 (10)
The external moment due to load P , Mint are related
as

Mext = Mint =
P (a− b)dθ

2π
(11)

For small angles β =
h

a− b
, ϕ =

δ

a− b
where h is the

initial height of the spring and δ is the deflection due
to the applied load P . Finally from equations (10) and
(11),

P =
2πEδ

(1− ν2) (a− b)5

[
(h− δ)

(
h− δ

2

)
tc′U1 + t3c′U2

]
(12)

where,

U1 =
1

3
τS1 −

1

2
S2S3

U2 =
1

12

(
6S3

2S4τ +
4

3
S1τ

3 − S3
3S5 − 6S3S2τ

2

)
S1 = 6c3 ln

(a
b

)
− 18c2(a− b) + 9c(a2 − b2)

−2(a3 + b3)

S2 = 2c2 ln
(a
b

)
− 4ca+ 4cb+ a2 − b2

S3 = 2cτ − aτ − bτ − a+ b

S4 = b− a+ c ln
(a
b

)
S5 = ln

(a
b

)
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The load equation (12) is the same as the one
proposed by Rosa (8) if the Poisson’s ratio ν, is set
to zero. It will be shown that the Poisson’s ratio
contributes more than 6.1% to the result with reference
to Rosa et. al (8).

Null load condition
As the name implies, the null load condition means
P = 0 in the equation (12) and this gives

2πEδ

(1− ν2) (a− b)5

[
(h− δ)

(
h− δ

2

)
tc′U1 + t3c′U2

]
= 0

(13)
The above cubic equation has three roots:

δ1 = 0, δ2,3 =
3

2
h±

√
9h2 − 8

(
h2U1 + t2c′U2

U1

)
For real values of deflection δ,

h

tc′
≥ 2

√
2

(
U2

U1

)
(14)

When h

tc′
= 2

√
2

√
U2

U1
the spring will exhibit its

snapping behaviour.

Null stiffness condition
The region in the load-deformation curve where the
slope of the curve is zero (or almost zero) is termed
as the null stiffness region. This is obtained by setting
dP

dδ
= 0. Using equation (12), the two roots are:

δ4,5 = h±

√
h2 − 2

3

(
h2U1 + t2c′U2

U1

)
For the null slope condition, the load at δ4 and δ5 will
be nearly equal. For real values of δ,

h

tc′
≥

√
2

(
U2

U1

)
(15)

A TBS that satisfies the condition in equation (15),
will exhibit a null stiffness from δ4 to δ5. For the above
range of deflection, the force will be constant. This type
of spring is suitable for absorbing large impact energy
without transferring the load to the next element of the
system.

Radius of rotation
The radius c from rotation point O to the spring axis
can be obtained using the condition that the summation
of force at the neutral point, ‘O’, is equal to zero. Hence,
for
∑

F = 0, we get

Eϕ
(
β − ϕ

2

)
(1− ν2)

(∫ c−b

c−a

Ax2

c− x
dx+

∫ c−b

c−a

Bx

c− x
dx

)
= 0

(16)

After evaluating the above integral and substituting
for A and B, we get the value of c as

c =
(a− b)2

(a− b) ln
(
a
b

)
+ τ(a+ b) ln

(
a
b

)
− 2τ(a− b)

(17)

For the condition, ta = tb, or τ = 0, we get

c =
(a− b)

ln
(
a
b

)
which is a familiar result from Almen & Lazlo (5). From
equation (17), a designer can fix the center of rotation
c of the spring, and then τ can be derived. This helps
in designing instrumentation to find the rotation angle.

Correction factor: theory of plates & shells
The NTBS stiffness predicted by Rosa et al. (8) is
inconsistent with the elastic theory of plates when h = 0.
In this section, we develop a correction factor to give a
much better estimate of NTBS stiffness. This correction
factor obviates the need for computationally intensive
FEA for different geometries.

The theory of plates is well established (24). For a
flat annular disk of inner radius b and outer radius a
and uniform thickness t, The deflection δ is given by

δ =
Pr2

8πD

[
ln
( r
a

)
− 1
]
− C1r

2

4
− C2 ln

( r
a

)
+ C3 (18)

At r = b of an annular plate

C1 =
P

4πD

[(
1− ν

1 + ν

)
− 2b2

a2 − b2
ln

(
b

a

)]
C2 = − P

4πD

[(
1 + ν

1− ν

)
a2b2

a2 − b2
ln

(
b

a

)]
C3 =

Pa2

8πD

[
1 +

1

2

(
1− ν

1 + ν

)
− b2

a2 − b2
ln

(
b

a

)]
D =

Et3

12 (1− ν2)
(19)

For deflection at r = b equation (18) can be written
as

δ =
Pb2

8πD

[
ln

(
b

a

)
− 1

]
− C1b

2

4
− C2 ln

(
b

a

)
+ C3

From the above equation, the compliance δ

P
denoted

by CFAP can be determined as

CFAP =
b2

8πD

[
ln

(
b

a

)
− 1

]
− C1b

2

4P

−C2

P
ln

(
b

a

)
+

C3

P
(20)

Utilizing load equation (12), we get

P =
2πEδ

(1− ν2) (a− b)5

[
(h− δ)

(
h− δ

2

)
tc′U1 + t3c′U2

]
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and

P

δ
=

2πE

(1− ν2) (a− b)5

[
(h− δ)

(
h− δ

2

)
t′cU1 + t′3c U2

]
(21)

The compliance of belleville spring, (CFBS), can be
written from equation (21) as

CFBS = lim
h→0,δ→0

(
δ

P

)
=

1.5(a− b)5

πD (18S2
3S4τ + 4S1τ3 − 3S3

3S5 − 18S3S2τ2)

(22)

By comparing equations (20) and (22), we define a
correction factor G as

G = 1−
24 (a− b)

5
(a2 − b2)

(
1− ν2

)
MN

(23)

where

M = 4

(
ln

(
b

a

))2

a2b2 (ν + 1)
2

−
(
a2 − b2

) (
ν2 + 2 ν − 3

)
and

N =
(
4S1τ

3 − 18S2S3τ
2 − 3S3

3S5 + 18S3
2S4τ

)
The correction factor G derived above is obtained

from the compliance of a flat belleville spring and a flat
annular plate.

For springs with τ < 0 ( NTBS), the stiffness reduces
in comparison to τ = 0. At the same time the center of
rotation of the section is at a larger distance from the
axis of rotation. For the same deflection and projected
area of the spring, the stiffness is less than the nominal
stiffness of the UBS.
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Figure 10. Variation of correction factor(G) with d for
different values of τ

The correction factor depends upon d = b/a and τ for
a fixed Poisson’s ratio. From Fig. 10, it can be seen that
G increases monotonically for d ≥ 0.2.

To obtain a correct P for a particular deflection, a
designer has to fix d and find G from Fig. 10 and then
use equation (24) given below

P =
2πEδG

(1− ν2) (a− b)5

[
(h− δ)

(
h− δ

2

)
tc′U1 + t3c′U2

]
(24)

Figure 14 shows load versus deflection for four
cases, namely equation (12) with Poisson’s ratio, elastic
and elastic - plastic FEA results from ABAQUS, and
analytical model with correction factor. As mentioned
earlier, Poisson’s ratio increases the load compared to
FEA by approximately 15%. This is for the geometry
studied in this work with G = 0.836 (for d = 0.5, τ =
−0.33 and tc = 1.2 mm). Figure 12 shows that the plot
with the correction factor is very close to the FEA
results with less than than 1% difference.
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Figure 11. Comparison of load results of NTBS for
τ = −0.33, a = 25 mm, b = 12.5 mm, h = 1.7 mm.
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Figure 12. Proposed equation with correction factor
converging with FEA result (τ = −0.33, a = 25 mm,
b = 12.5 mm, h = 1.7 mm).

We have performed extensive FEA on RTBS where
τ > 0. In this case, the thickness decreases as we move
away from the axis of rotation of the spring with tb > ta.
This implies that the stiffness, from the equation (12),
is increasing in comparison to NTBS. At the same time
the center of rotation of the section is nearer to the axis
of rotation. Hence, the relative stiffness of the RTBS
is greater than NTBS and UBS. A representative plot
of load versus deflection for an RTBS (τ = 0.33, a = 25
mm, b = 12.5 mm, h = 1.7 mm) is shown in Fig. 13.
It can be seen that the match with FEA is reasonably
good and the use of correction factor is not required.

Finally, we describe the FEA for the geometry of the
belleville springs used in experiments. The deflection
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Figure 13. Comparison of load results of RTBS for
proposed equation(PRO) and FEA τ = 0.33, a = 25 mm,
b = 12.5 mm, h = 1.7 mm.

limited to 2 mm due to experimental constraints is
shown in Fig. 14. It can be observed that results with
plasticity are quite different from those obtained from
the elastic formulation, equation (12) and equation (24).
It may be mentioned again that the FE simulation
results with plasticity are close to the experimental
results and the match is reasonable.
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Figure 14. Comparison of theoretical and FEA (plasticity)
results for τ = −0.33, a = 25 mm, b = 12.5 mm, h = 2.7
mm.

In the next section, we look at the absorption of
energy by a TBS and the use of the correction factor
to predict the energy absorbed by a tapered belleville
spring.

Energy absorption
For a given a, b, and tc, a TBS can be fabricated with
any value of τ from -1 to 1, and the spring can take the
shape of NTBS or RTBS. To optimize a TBS in terms
of energy per unit volume, we start with the well-known
expression for energy per unit volume

E =

∫ h

0

Pdδ (25)

Using equations (24) and (25), E can be written as

E = K

(
U1

∫ h

0

δ(h− δ)

(
h− δ

2

)
dδ + t2cU2

∫ h

0

δdδ

)
(26)

where K =
2πEtc

(1− ν2) (a− b)5

The energy of TBS at the deflection δ = h can be
written as

ETBS = K

((
h4

8

)
U1 +

h2

2
t2cU2

)
(27)

The energy of uniform spring (UBS) can also be
derived as below using load equation in reference (5)
and is given by

EUBS = K

((
δ4

8
− δ8h

2
+

δ2h2

2

)
1

M
+

δ2

2
t2c

1

N

)
(28)

The volume of a TBS is given by

VR = π (ta + tb)
(a− b)

cosβ

(
a− (ta + 2tb)

3(a+ b)

(a− b)

cosβ

)
(29)

VN = π (ta + tb)
(a− b)

cosβ

(
b+

(tb + 2ta)

3(a+ b)

(a− b)

cosβ

)
(30)

where VR and VN are the volume of RTBS and NTBS,
respectively.

The volume of UBS is given by

V =
(a2 − b2)πt

cosβ
(31)

The energy density can be calculated by dividing the
energy of the spring at a particular deflection by its
volume. For a fixed a, b, tc, it is found that RTBS stores
more energy than NTBS and a UBS. The energy density
of RTBS is almost 35% and 27% higher than the energy
density of NTBS and UBS respectively for the selected
τ range.

Effect of correction factor on energy absorption
The energy equation (28) is modified as

E =
2πEtcG

(1− ν2) (a− b)5

((
h4

8

)
U1 +

h2

2
t2cU2

)
(32)

Thus the energy can be increased by selecting the
higher value of the τ from Fig. 10.

Design considerations for a TBS
In this section, the design parameters of a TBS are
explored from an impact energy absorption point of
view. For impact energy absorption purposes, we would
like the TBS to satisfy the null stiffness condition
equation (14). Hence, we study the null stiffness
condition for varying values of τ for TBS, as shown in
Fig. 15. It is observed that for τ = 0 (UBS), h

tc′
=

√
2,

which is the same as the null stiffness condition obtained
by Almen & Lazlo (5). For the same positive and
negative value of τ , h

t
curves are a pair of curves

symmetric about a horizontal line and converging as
d tends to 1. From practical considerations, a and h
can be fixed for a given application and we can find
an appropriate d between 0.2 and 0.6 as after d = 0.6
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the plots converge and the ratio h/t has no effect. For
h

tc′
=

√
2, representing the null stiffness condition, tc′ is

obtained for a given value of h. Finally, ta and tb are
obtained for the calculated tc′ .
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Figure 15. Variation of height to thickness ratio for null
stiffness condition with respect to d

Another consideration from an experimentation and
instrumentation point of view is as follows: from
equation (17), for the values of τ ranging from −1 to
1 and a = 25 mm and b = 12.5 mm, it can be observed
that c varies almost linearly with τ . For τ = −1, c =
20.37 mm, for τ = 1, c =16.18 mm, and at τ = 0, c
is obtained as 18.03 mm and this value is identical
to that given in Almen & Lazlo (5). For our case of
τ = −0.33, c = 18.75 mm. It may be noted that for a
fixed value of a and b, and −1 < τ < 1, the value of
c can be obtained. If it is desired that c is exactly
(a+ b)/2, the corresponding τ can be obtained from the
plot. The above helps to identify the point of rotation
in a fabricated TBS and for instrumentation on a TBS
for strain measurement.

It is understood from equation (32) that energy can be
increased by choosing an optimum pair of G and d. The
correction factor G presented in this work needs to be
used for estimating the actual energy storage capacity
in a belleville spring.

Belleville spring under cyclic loading
Multiple experiments were conducted on the fabricated
TBS. In one experiment, cyclic loading and unloading
was done in steps as 0 – 0.5 mm – 0, 0 – 0.75 mm – 0, 0 –
1.0 mm – 0, 0 – 1.5 mm – 0, 0 – 1.75 mm – 0, 0 – 2.0 mm
– 0 and 0 – 2.5 mm – 0 (see Fig. 16). It is interesting to
note in this figure that the second loading cycle reaching
4000 N gives a signal of yielding at a slightly higher
displacement than in Fig. 8 dealing with monotonic
loading. It was found that the loading and unloading
caused hysteresis which could be explained by plastic
yielding confirmed by elastic-plastic FEA. Almost half
of the energy was lost due to plastic deformation as
seen in the experiments (see Fig. 16). When all the
cyclic plots were connected, it was observed that a single
spring of 50 mm diameter can absorb around 6.5 J of
energy. For a given load, multiple springs in series can
be stacked to absorb more energy. The flat region occurs
well before the peak load and deflection predicted by
elastic theory. The elastic-plastic response also leads to

hysteresis in cyclic loading. Numerical predictions are
consistent with experimental results obtained for an
SS304 spring material (see Table 1). Further research
on hysteresis and residual stress induced by plasticity is
needed for better understanding.
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Figure 16. Cyclic loading experiment results on fabricated
TBS

Discussion
The compact nature of beleville spring and its ability to
produce null stiffness zone in stiffness plot motivates us
to design the TBS for impact absorption. The SS304 -
NTBS for τ = −0.33 was designed for small size (Table
1) and experiments were done on them. In experiments,
NTBS yielded. This is due to the large thickness and
the spring angle of the fabricated spring which makes
the spring behave more like a beam resulting in large
shear. Hence, the proper combination of the geometric
parameters of NTBS is necessary for an optimum spring
design. The comparison of experimental and simulation
results is based on similar geometrical dimensions,
similar material and mechanical properties, and similar
boundary conditions. The experimental load deflection
plot is validated with the simulation result. For the same
projected area, the FEA of NTBS and RTBS confirms
that the energy density of RTBS is more than NTBS.
It can also be concluded that RTBS is suitable for
higher load applications and NTBS is suitable for higher
impact energy absorption.

Conclusion
This work deals with experiments, modeling and
analysis of small sized belleville springs. The geometric
non-linearity in a belleville spring and its ability to
produce a null stiffness zone in a stiffness plot motivates
one to design and use a belleville spring for impact
absorption. In this work, small sized SS304 NTBS were
fabricated and experiments were done. Experimentally
it was found that a flat region in the load-deflection
plot was due to yielding and not demonstrating null
stiffness due to non linear elasticity. Elastic FEA showed
a significantly higher load than elastic-plastic FEA
which matched well with experimental results for small
deflection.

In order to supplement FEA results for different
geometries, a theoretical development including the
effect of Poisson’s ratio is presented. The results
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obtained are compared with FEA for TBS in the elastic
range. It is observed that the analytical loads are higher
by 15% for NTBS and within 4% for RTBS, as compared
to FEA. A correction factor for NTBS is introduced
based on the classical theory of plates. For typical
dimensions of the spring, the differences between FEA
and the analytical model after applying the correction
factor is reduced to less than 1%. The FEA also shows
that for the same projected area of the spring, RTBS
can store up to 35% more energy than NTBS and 27%
more energy than UBS. The main findings of this paper
are a) Poisson’s ratio makes a difference in the TBS
load equation, b) Analytical loads are 15% higher than
the FE simulation load, c) Correction factor reduces the
differences in load from 15% to 1% for NTBS , and
d) RTBS can absorbs 35% more energy than NTBS
and 27% more than UBS. This paper also presents an
approach for the design of TBS from a null stiffness
point of view.

In this work, we show that previous theoretical
formulations result for TBS were not in line with FEA.
A correction factor introduced in this work improves
the theoretical formulation to give nearer results as
compared to those obtained from FEA. In future, the
friction effect on TBS and load versus deflection for a
stacked TBS will be studied.

Further experiments are planned with belleville
springs made of high-strength alloys, in stacked series
and parallel arrangements, for achieving higher energy
storage and impact absorption. As observed in the
experiments, friction and plasticity are additional
complexities and these dissipative mechanisms induce
residual stress which requires further theoretical and
numerical investigations.

Acknowledgment
The author is grateful to Dr. Rajeev Chaturvedi and
Dr. Nazeer Ahmed for providing useful inputs during
this work.

Nomenclature

References
[1] Chidambarathanu G, Nair V and Stanis S. Structural

analysis of belleville spring used in automatic shift
transmission multi-plate wet clutch for off-highway
application. SAE Technical Paper 2020-28-0491, 2020
2020; 2(28). DOI:10.4271/2020-28-0491.

[2] Mrazek M, Skovajsa M and Sedlacek F. Design of
composite disc spring for automotive suspension with
using numerical simulation. Manufacturing Technology
2022; 21(6): 829–835. DOI:10.21062/mft.2021.100.
URL https://doi.org/10.21062/mft.2021.100.

[3] Schonrr A. Handbook for disc springs 2010; .
[4] Hui AM, Yan M, Zhang L et al. Shock characteristics

of the opposed disc springs (ODS) shock isolator with
pretightening under boundary friction condition. Shock

Table 2. Nomenclatures used in the formulation
Symbol Description

T(x) Thickness at any point
A,B Thickness constant
τ Shape factor
a Outer radius
b Inner radius
d Ratio of b/a
G Correction factor
tc′ Thickness at (a+ b)/2
β Initial angle of disc spring
ϕ Change in angle
h Initial height of the disc
ta Thickness at the radius a
tb Thickness at the radius b
δ deflection of the disc
O center of rotation
c Radius at point O
P Load applied
ϵ Tangential strain
σ Radial stress
E Young modulus
ν Poisson’s ratio

M1, M2 Moments
dθ Angle of the small strip on the disc

M, N Correction factor variable
CFBS Compliance of flat belleville spring
CFAP Compliance of flat annular plate

SS Stainless steel
BS Belleville Spring

UBS Uniform Belleville Spring
TBS Taper Belleville Spring

NTBS Normal Taper Belleville Spring
RTBS Reverse Taper Belleville Spring

and Vibration 2021; 2021: 1–21. DOI:10.1155/2021/
5510200. URL https://doi.org/10.1155/2021/5510200.

[5] Almen J and Lazlo A. The uniform–section disk spring.
Trans ASME 1936; 2(13): 68–73.

[6] Kobelev V. Durability of Springs. Springer
International Publishing, 2018. DOI:10.1007/
978-3-319-58478-2. URL https://doi.org/10.1007/
978-3-319-58478-2.

[7] Du X, Liao C, Gan B et al. Analytical modeling and
experimental verification for linearly gradient thickness
disk springs. Thin-Walled Structures 2021; 167: 108153.
DOI:10.1016/j.tws.2021.108153. URL https://doi.org/
10.1016/j.tws.2021.108153.

[8] Rosa GL, Messina M and Risitano A. Stiffness
of variable thickness belleville springs. Journal of
Mechanical Design 1998; 123(2): 294–299. DOI:
10.1115/1.1357162. URL https://doi.org/10.1115/1.
1357162.

[9] Saini PK, Kumar P and Tandon P. Design and analysis
of radially tapered disc springs with parabolically
varying thickness. Proceedings of the Institution of
Mechanical Engineers, Part C: Journal of Mechanical
Engineering Science 2007; 221(2): 151–158. DOI:10.
1243/0954406jmes114. URL https://doi.org/10.1243/

Prepared using sagej.cls

https://doi.org/10.21062/mft.2021.100
https://doi.org/10.1155/2021/5510200
https://doi.org/10.1007/978-3-319-58478-2
https://doi.org/10.1007/978-3-319-58478-2
https://doi.org/10.1016/j.tws.2021.108153
https://doi.org/10.1016/j.tws.2021.108153
https://doi.org/10.1115/1.1357162
https://doi.org/10.1115/1.1357162
https://doi.org/10.1243/0954406jmes114


12 Journal Title XX(X)

0954406jmes114.
[10] Fawazi N, Lee JY and Oh JE. A load–displacement

prediction for a bended slotted disc using the
energy method. Proceedings of the Institution of
Mechanical Engineers, Part C: Journal of Mechanical
Engineering Science 2011; 226(8): 2126–2137. DOI:
10.1177/0954406211430046. URL https://doi.org/10.
1177/0954406211430046.

[11] Pedersen NL and Pedersen P. Stiffness and design for
strength of trapezoidal belleville springs. The Journal
of Strain Analysis for Engineering Design 2011; 46(8):
825–836. DOI:10.1177/0309324711414337. URL https:
//doi.org/10.1177/0309324711414337.

[12] Dubey H. Stress and deflection analysis of
belleville spring. IOSR Journal of Mechanical
and Civil Engineering 2012; 2(5): 01–06. DOI:10.
9790/1684-0250106. URL https://doi.org/10.9790/
1684-0250106.

[13] Ramhormozian S, Clifton GC, MacRae GA et al.
Stiffness-based approach for belleville springs use in
friction sliding structural connections. Journal of
Constructional Steel Research 2017; 138: 340–356. DOI:
10.1016/j.jcsr.2017.07.009. URL https://doi.org/10.
1016/j.jcsr.2017.07.009.

[14] Venkatesh DL and Zhou H. Designing belleville spring
washers. International Journal of Engineering Research
and 2018; V7(12). DOI:10.17577/ijertv7is120044. URL
https://doi.org/10.17577/ijertv7is120044.

[15] Zhu D, Ding F, Liu H et al. Mechanical property
analysis of disc spring. Journal of the Brazilian Society
of Mechanical Sciences and Engineering 2018; 40(4).
DOI:10.1007/s40430-018-1152-2. URL https://doi.org/
10.1007/s40430-018-1152-2.

[16] Chaturvedi R, Trikha M and Simha K. Theoretical
and numerical analysis of stepped disk spring. Thin-
Walled Structures 2019; 136: 162–174. DOI:10.1016/
j.tws.2018.12.003. URL https://doi.org/10.1016/j.tws.
2018.12.003.

[17] Leininger DS, Geilen MB, Klein M et al. A new method
for the calculation of characteristics of disc springs with
trapezoidal cross-sections and rounded edges. Materials
2022; 15(5): 1954. DOI:10.3390/ma15051954. URL
https://doi.org/10.3390/ma15051954.

[18] Ferrari G. A new calculation method for belleville
disc springs with contact flats and reduced thickness.
International Journal of Manufacturing, Materials, and
Mechanical Engineering 2013; 3(2): 63–73. DOI:10.
4018/ijmmme.2013040105. URL https://doi.org/10.
4018/ijmmme.2013040105.

[19] Paredes M and Daidié A. Optimal catalogue selection
and custom design of belleville spring arrangements.
International Journal on Interactive Design and
Manufacturing (IJIDeM) 2009; 4(1): 51–59. DOI:
10.1007/s12008-009-0086-4. URL https://doi.org/10.
1007/s12008-009-0086-4.

[20] Maharjan D, Shah MS, Abugharara A et al.
Calculating frictional losses in belleville springs by
linear interpolation. In Progress in Canadian
Mechanical Engineering. Volume 3. University of Prince
Edward Island. Robertson Library. DOI:10.32393/

csme.2020.1287. URL https://doi.org/10.32393/csme.
2020.1287.

[21] Xiao SJ, Xu LH and Li ZX. Design and experimental
verification of disc spring devices in self-centering
reinforced concrete shear walls. Structural Control and
Health Monitoring 2020; 27(7). DOI:10.1002/stc.2549.
URL https://doi.org/10.1002/stc.2549.

[22] Mastricola NP, Dreyer JT and Singh R. Analytical
and experimental characterization of nonlinear coned
disk springs with focus on edge friction contribution
to force-deflection hysteresis. Mechanical Systems and
Signal Processing 2017; 91: 215–232. DOI:10.1016/
j.ymssp.2017.01.009. URL https://doi.org/10.1016/j.
ymssp.2017.01.009.

[23] Dassault Systéms. Abaqus 2020; .
[24] Timoshenko S. Theory of plates and shells 1959; 2.
[25] Rack HJ and Knorovsky GA. Assessment of stress-

strain data suitable for finite-element elastic–plastic
analysis of shipping containers ; DOI:10.2172/6513543.
URL https://www.osti.gov/biblio/6513543.

Prepared using sagej.cls

https://doi.org/10.1243/0954406jmes114
https://doi.org/10.1243/0954406jmes114
https://doi.org/10.1177/0954406211430046
https://doi.org/10.1177/0954406211430046
https://doi.org/10.1177/0309324711414337
https://doi.org/10.1177/0309324711414337
https://doi.org/10.9790/1684-0250106
https://doi.org/10.9790/1684-0250106
https://doi.org/10.1016/j.jcsr.2017.07.009
https://doi.org/10.1016/j.jcsr.2017.07.009
https://doi.org/10.17577/ijertv7is120044
https://doi.org/10.1007/s40430-018-1152-2
https://doi.org/10.1007/s40430-018-1152-2
https://doi.org/10.1016/j.tws.2018.12.003
https://doi.org/10.1016/j.tws.2018.12.003
https://doi.org/10.3390/ma15051954
https://doi.org/10.4018/ijmmme.2013040105
https://doi.org/10.4018/ijmmme.2013040105
https://doi.org/10.1007/s12008-009-0086-4
https://doi.org/10.1007/s12008-009-0086-4
https://doi.org/10.32393/csme.2020.1287
https://doi.org/10.32393/csme.2020.1287
https://doi.org/10.1002/stc.2549
https://doi.org/10.1016/j.ymssp.2017.01.009
https://doi.org/10.1016/j.ymssp.2017.01.009
https://www.osti.gov/biblio/6513543

	Introduction
	Experiments with TBS
	FEA and simulation
	Comparison of FEA and experiments

	 Theoretical Formulation
	Null load condition
	Null stiffness condition
	Radius of rotation

	Correction factor: theory of plates & shells
	Energy absorption
	Effect of correction factor on energy absorption 

	Design considerations for a TBS
	Belleville spring under cyclic loading
	Conclusion
	Nomenclature

