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Abstract — A class of dynamically isotropic two radii 

Gough-Stewart Platform (GSP) is considered in this work for 

the application of isolating micro-vibration. Such a device can 

attenuate the first six modes of vibration equally and 

effectively. A novel geometry-based approach employing the 

force transformation matrix is used to arrive at a complete set 

of closed-form analytical solutions for any given payload. The 

above method is applicable to any number of struts (even and 

odd) for a two radii GSP. A 6-6 dynamically isotropic two radii 

GSP was found most suitable for the micro-vibration isolation 

applications compared to other configurations with more struts 

as it has the lowest natural frequency. The generalized 

approach presented in this work is based on geometry and has 

not been discussed in any existing literature. The dynamically 

isotropic designs obtained from the closed-form solutions were 

successfully validated using the finite element software 

ANSYS®. 

Keywords— Dynamic isotropy, Force transformation matrix, 

Natural frequency matrix, Modified Gough-Stewart Platform 

(MGSP). 

I. INTRODUCTION  

Micro-vibration in spacecraft is induced due to the 
presence of various rotating and reciprocation components 
such as momentum wheels, reaction wheels, cryo-coolers, 
and firing of thrusters. A Gough-Stewart platform-based 
isolator has been extensively used and proposed in the 
literature [1] for control of micro-vibration. However, these 
are hard to realize, keeping in mind the non-linearity and 
time variance associated with the system [2]. Hence several 
researchers have come up with decoupled and isotropic 
measures as the desired performance [2-8]. The primary 
design consideration for effective vibration isolation is that 
the first six natural frequencies of translation and rotation 
ideally be the same [1]. In such an ideal design, the slope in 
the region of isolation for any of the degrees of freedom 
(DOFs) will not be affected by the peak associated with the 
cross DOFs in the amplitude vs. frequency curve. The 
dynamically isotropic configuration ensures all the resonance 
peaks for different DOFs lie in the same place, making it 
easy to tune dampers for the given frequency bandwidth. 
From the point of view of active control, a multi-input-multi-
output (MIMO) system can be treated as a single-input-
single-output (SISO) system, and a decoupled control 
strategy can be used [3]. 

Many researchers have concluded that, practically, a 
traditional 6-6 Gough-Stewart platform (GSP) cannot be 
dynamically decoupled [1,4,5,7]. Hence, a modified 6-6 two 
radii GSP (MGSP) was studied and such a two radii GSP can 

lead to a dynamically isotropic design [2,3,5,6,7]. It differs 
from the traditional GSP with the anchoring points described 
on two radii on each platform instead of one radius in a 
traditional GSP, as shown in Fig. 1 (See also Fig. 7). Yun et 
al. [3] designed an isotropic 6-6 MGSP for a telescope 
secondary mirror and successfully demonstrated its 
effectiveness experimentally using a decoupled control 
strategy. Tong et al. [2] and a few others [3,5,6,7,8] explored 
approaches to develop an analytical solution for an MGSP. 
In all the cases, the obtained solutions are coupled or implicit 
and it is challenging to arrive at a design. Additionally, most 
of these studies are restricted to 6-6 MGSP with six struts. A 
large class of MGSPs with more than six struts remains 
unexplored. In practical applications, a greater number of 
struts (>6) are preferred for distributing heavy loads on 
several actuators or for fault tolerance [8]. Yi et al. [8] 
developed a two-parameter class of six-strut orthogonal GSP, 
leading to an isotropic manipulator, and later, this class was 
extended to include additional struts in GSPs. However, the 
formulation was not consistent for any number of struts and 
for odd-even struts. 

To the best of our knowledge, a consistent analytical 
closed-form solution in their explicit form for any number of 
struts in an MGSP is yet to be established. The novel 
geometry-based approach presented in this work provides a 
closed-form solution in their explicit form, making it easier 
to directly compare various configurations belonging to this 
class in terms of geometrical parameters, natural frequencies, 
and feasibilities.  

II. NOMENCLATURE 

     An MGSP is a parallel manipulator with a movable top 

platform, a fixed base, and struts with a linear actuator in 

between them, as shown in Fig. 1. In an MGSP, these struts 

are divided into two sets having a rotational symmetry for 

their attachment points along the circumference with an 

equal angular spacing of 360 divided by the number of legs 

in that set. Let 𝑛1 be the number of struts in the first set 

((𝐴1 − 𝐵1) in Fig. 1). All struts of this set will be of the 

same length but rotated by 𝜃1 = (2𝜋/𝑛1). Similarly, 𝑛2 be 

the number of struts in the second set ((𝐴𝑗 − 𝐵𝑗) in Fig. 1 

with 𝑗 = 𝑛1 + 1). The rotational symmetry in this set will be 

by 𝜃2 = (2𝜋/𝑛2). Hence an MGSP with n numbers of struts 

(n = n1 + n2) will be designated as ⟨n1, n2⟩ throughout the 

paper. A 6-6 MGSP with six struts will be designated as 
⟨3, 3⟩  as it has three struts in each set with rotational 

symmetry of 𝜃1=𝜃2=120°. A ⟨4, 4⟩ MGSP with eight struts,  



 

Fig. 1.  An MGSP or two radii GSP with one strut belonging to each set. 

 

Fig. 2.  a) ⟨4, 4⟩ MGSP, 𝜃1=𝜃2=90°, b) ⟨4, 5⟩ MGSP, 𝜃1=90°, 𝜃2=72°.   

and ⟨4, 5⟩ MGSP with nine struts along with their top views 

are shown in Fig. 2. 

       The variables 𝑅𝑏𝑜, 𝑅𝑏𝑖 are used to denote the outer and 

inner radii of the bottom platform while 𝑅𝑡𝑜, 𝑅𝑡𝑖 represents 

the outer and inner radii of the top platform, respectively in 

Fig. 1. The coordinates of a point on the base frame {𝐵} are 

given by {𝑥𝑏 , 𝑦𝑏 , 𝑧𝑏} and on the top or moving frame {𝑃} are 

given by {𝑥𝑝 , 𝑦𝑝′  𝑧𝑝}. The vector 𝒐𝒃𝑩𝟏 (𝑖. 𝑒. 𝑅𝑏𝑜) is chosen 

along 𝒙𝒃, and 𝛼𝑡𝑜, 𝛼𝑏𝑖, 𝛼𝑡𝑖 are angles made by the anchoring 

points(𝐴1, 𝐵𝑗 , 𝐴𝑗) of respective radii (𝑅𝑡𝑜, 𝑅𝑏𝑖, 𝑅𝑡𝑖) with 𝒙𝒃. 

The height between the two platforms is denoted by 𝐻. The 

struts are assumed to have a prismatic joint connected to the 

top platform through a spherical joint and to the bottom 

platform through a spherical or a universal joint. 

III. FORMULATION 

The Jacobian matrix [2-8] or the force transformation 
matrix [9,10] for GSPs at their neutral position is used and 
this is a reasonable assumption since in a vibration isolation 
application, the motion of the top platform is very small. The 
force transformation matrix ([𝐁]) is a transpose of an inverse 
Jacobian ([𝐉]) and is given by [𝐁] = ([𝐉]−1)𝑇[9]. If all the 
struts are assumed to have an axial stiffness 𝑘 (joint space), 
then the stiffness matrix [𝐊𝐓] in the task space is described 
as:  

                             [𝐊𝐓] = 𝑘[𝐁][𝐁]𝑇                              (1) 

The force transformation matrix for an MGSP is given by   

[𝐁]6×𝑛 = [
𝒔𝟏

( [𝐑]𝑃 
𝐵 𝒑𝟏 

𝑷 ) ⨯ 𝒔𝟏  
| … |

𝒔𝒏

( [𝐑]𝑃 
𝐵 𝒑𝒏 

𝑷 ) ⨯ 𝒔𝒏
 ]    (2) 

where 𝒔𝒒 =
𝒕 

𝑩 + [𝐑]P 
B 𝒑𝒒 

𝑷  − 𝒃𝒒 
𝑩

𝑙𝑞
, where q=1-n 

The vector 𝒕 
𝑩  is the vector joining center of top and base 

platforms, 𝑺𝒒 (= 𝑙𝑞𝒔𝒒) is a vector along the respective leg of 

an MGSP with length 𝑙𝑞 , and 𝒑𝒒 
𝑷  and 𝒃𝒒 

𝑩  be the co-

ordinates of an anchoring point on the top and base platform 
expressed in their respective frames. For the neutral position, 

[𝐑]P 
B = [𝐈] and 𝒕 

𝑩 = [0 0 𝐻]𝑇
. An observation in (2) is that 

moving along the direction of unit vector 𝒔𝒒  i.e., ( 𝒑𝒒 
𝑷 +

 𝜹𝒔𝒒) does not affect the cross product ( 𝒑𝒒 
𝑷 +  𝜹𝒔𝒒) ⨯ 𝒔𝒒 =

( 𝒑𝒒 
𝑷 ) ⨯ 𝒔𝒒. Hence given a Jacobian or force transformation 

matrix, the attachment points on the payloads are not 
uniquely determined [4,8]. So, we can have an infinite 
number of configurations with the same [𝐉] or [𝐁] matrix.  

Let [𝐌] be the payload’s mass matrix in the task space. 
Without any loss of generality, a diagonal structure of [𝐌] 
matrix can be used by choosing the coordinate system to 
coincide with the orientation of the principal axes of the 

payload. Hence, [𝐌] = diag([𝑚𝑝  𝑚𝑝  𝑚𝑝  𝐼𝑥𝑥   𝐼𝑦𝑦  𝐼𝑧𝑧]) 

where, 𝑚𝑝  represents the payloads’ mass and 𝐼𝑥𝑥, 𝐼𝑦𝑦, 𝐼𝑧𝑧 

represents its moment of inertia along each direction with 
respect to its centre of mass (COM). 

From [𝐌] and [𝐊𝐓], and using (1), the natural frequency 
matrix [𝐆] in the task space [2,4,6,7] is given by 

                [𝐆] =  [𝐌]−1[𝐊𝐓] = [𝐌]−1𝑘[𝐁][𝐁]𝑇            (3) 

All six eigenvalues of this natural frequency matrix must 
be equal to obtain dynamic isotropic conditions. Using (2) 
and (3), the [𝐆] matrix is given by: 

                         [𝐆] = |
𝐏3⨯3 𝐑3⨯3

𝐑3⨯3
𝑇 𝐐3⨯3

|                             (4) 

𝐏3⨯3 = diag(𝜆1,  𝜆2,  𝜆3) , 𝐐3⨯3 = diag(𝜆4, 𝜆5, 𝜆6) 

𝐑3⨯3 = [

𝜇11 −𝜇12 0
𝜇12 𝜇11 0
0 0 𝜇33

] 

𝜆1 =
𝑘 (𝑛2𝑙1

2𝛹1+𝑛1𝑙2
2𝛹2)

2𝑚𝑝𝑙1
2𝑙2

2   , 𝜆2 =
𝑘 (𝑛2𝑙1

2𝛹1+𝑛1𝑙2
2𝛹2)

2𝑚𝑝𝑙1
2𝑙2

2  

𝜆3 =
𝑘𝐻2(𝑛2𝑙1

2+ 𝑛1𝑙2
2)

𝑚𝑝𝑙1
2𝑙2

2  ,  𝜆4 =
𝑘𝐻2𝛹5   

2𝐼𝑥𝑥𝑙1
2𝑙2

2,   𝜆5 = 𝜆4
𝐼𝑥𝑥

𝐼𝑦𝑦
  

𝜆6 =
𝑘(𝑛2𝛹6

2 𝑙1
2+ 𝑛1𝛹7

2𝑙2
2)

𝐼𝑧𝑧𝑙1
2𝑙2

2 ,   𝜇11 =
−𝑘𝐻(−𝑛2𝛹6𝑙1

2+ 𝑛1𝛹7𝑙2
2)

2𝑙1
2𝑙2

2 , 

 𝜇33 =
𝑘𝐻(−𝑛2𝛹6𝑙1

2+ 𝑛1𝛹7𝑙2
2)

𝑙1
2𝑙2

2 ,  𝜇12 =
𝑘𝐻(𝑛2𝛹3𝑙1

2+𝑛1𝛹4𝑙2
2)

2𝑙1
2𝑙2

2   

       where, 

𝛹1 = 𝑅𝑡𝑖
2 + 𝑅𝑏𝑖

2 − 2𝑅𝑡𝑖𝑅𝑏𝑖 cos(𝛼𝑏𝑖 − 𝛼𝑡𝑖) 

𝛹2 = 𝑅𝑡𝑜
2 +  𝑅𝑏𝑜

2 − 2𝑅𝑡𝑜𝑅𝑏𝑜 cos(𝛼𝑡𝑜) 

𝛹3 = 𝑅𝑡𝑖
2 − 𝑅𝑡𝑖𝑅𝑏𝑖 cos(𝛼𝑏𝑖 − 𝛼𝑡𝑖) 

𝛹4 = 𝑅𝑡𝑜
2 − 𝑅𝑡𝑜𝑅𝑏𝑜 cos(𝛼𝑡𝑜) 

𝛹5 = 𝑛2𝑅𝑡𝑖
2 𝑙1

2 +  𝑛1𝑅𝑡𝑜
2 𝑙2

2 

𝛹6 = 𝑅𝑡𝑖𝑅𝑏𝑖 sin(𝛼𝑏𝑖 − 𝛼𝑡𝑖) 

𝛹7 = 𝑅𝑡𝑜𝑅𝑏𝑜 sin(𝛼𝑡𝑜) 



         As stated, a ⟨𝑛1, 𝑛2⟩ MGSP has two set of struts with 
lengths:  

𝑙1 = |𝑺𝒑| = √𝑅𝑡𝑜
2 +  𝑅𝑏𝑜

2 − 2𝑅𝑡𝑜𝑅𝑏𝑜 cos(𝛼𝑡𝑜) + 𝐻2 

𝑙2 = |𝑺𝒋| = √𝑅𝑡𝑖
2 +  𝑅𝑏𝑖

2 − 2𝑅𝑡𝑖𝑅𝑏𝑖 cos(𝛼𝑏𝑖 − 𝛼𝑡𝑖) + 𝐻2 

Here, 1 ≤ 𝑝 ≤ 𝑛1, and 𝑛1 + 1 ≤ 𝑗 ≤ 𝑛1 + 𝑛2 
  
        The relation between these two-leg lengths is given by 
the leg length ratio denoted by 𝑎, and hence, 

                                        𝑙2 = 𝑎𝑙1                                        (5) 

        For dynamic isotropy, we have to solve a set of 

coupled transcendental equations generated from conditions 

given by  

 𝜆1 = 𝜆2 = 𝜆3 = 𝜆4 = 𝜆5 = 𝜆6 = ω2   

 𝜇11 = 𝜇12 = 𝜇33= 0.  

        where, 𝜔 is the natural frequency of the MGSP and 

 𝜆1 to 𝜆6 are eigen values of matrix [𝐆]. 

IV. DESIGN OF A CLASS OF MGSP 

The difficulty in finding a simple closed-form solution 
lies in the fact that the number of unknowns is more than the 
number of transcendental equations. We propose a geometry-
based method to obtain the solution. 

We start with the condition of  𝜆1 = 𝜆2 = 𝜆3,  and using 
(5), we get: 

           𝑏2 = 𝑅𝑡𝑖
2 +  𝑅𝑏𝑖

2 − 2𝑅𝑡𝑖𝑅𝑏𝑖 cos(𝛼𝑏𝑖 − 𝛼𝑡𝑖)            (6) 

           where, 𝑏 = √(
(𝑛1(3𝑎2−1)+2𝑛2)

(𝑛1+𝑛2)
)  𝐻                    (7) 

       Equation (6) can be seen as a cosine rule in a triangle 

with sides 𝑅𝑡𝑖 , 𝑅𝑏𝑖 and 𝑏. A similar observation can be made 

from Fig. 1 where 𝑅𝑏𝑖  and 𝑅𝑡𝑖  makes (𝛼𝑏𝑖 − 𝛼𝑡𝑖)  angle 

between them as shown in Fig. 3. Hence the initial variables 

can be estimated using triangles, Δoc𝑞1, Δoc𝑞2, 𝛥𝑜𝑐𝑞3… To 

fix these triangles, the intersection points (i.e., 𝑞1, 𝑞2, 𝑞3 …) 

needs to be determined. For a particular MGSP ⟨𝑛1, 𝑛2⟩ of a 

given length ratio 𝑎 and height 𝐻, the variable 𝑏 given by 

(7) will be a constant. From Fig. 3, 𝑞1, 𝑞2, 𝑞3 …  are points 

equidistant from point c and hence locus is a circle with 

radius 𝑏 and center c. If {𝑋, 𝑌} is the local coordinate system 

at 𝑜, and 𝑿 is taken along 𝑅𝑡𝑖 as shown in Fig. 3, then the 

equation of virtual circle can be written as: 

                            (𝑋 − 𝑅𝑡𝑖)
2 + 𝑌2 = 𝑏2                           (8) 

      Equation of line 𝑅𝑏𝑖  having a slope 𝑚= tan(𝛼𝑏𝑖 − 𝛼𝑡𝑖) 

can be written in the same frame as: 

                                     𝑌 = 𝑚𝑋                                         (9) 

      Our geometry-based approach implies that points  

q1, q2 , q3 … can be determined by solving for the intersection 

of a virtual circle given by (8) and a line Rbi at different 

slopes m given by (9). 

      For the existence of solution, the condition is given by 

𝑚 = tan(𝛼𝑏𝑖 − 𝛼𝑡𝑖) ≤ √𝑏2/(𝑅𝑡𝑖
2 − 𝑏2) 

 

 

Fig. 3.  Top view showing a virtual circle with center (𝑅𝑡𝑖 , 0) and radius 𝑏 

intersecting with line 𝑅𝑏𝑖. 

 

Fig. 4.  Top view of an MGSP with a tangency condition. 

      The maximum value of 𝑚 at equality will correspond to 

the tangency condition for the virtual circle, and Δoc𝑞1 will 

be a right-angle triangle as shown in Fig. 4. We choose this 

right-angle triangle condition and later generalize it for other 

intersections apart from the tangency condition. Let, 

                                          𝑅𝑡𝑖 = 𝑥 𝐻                                (10) 

      where 𝑥 is a ratio between the two initial parameters and 

will be found later (Note: 𝑿 was an axis). Using Pythagoras 

theorem in Δo𝑞1𝑐 in Fig. 4, we get 

                               𝑅𝑏𝑖 = √(𝑥2𝐻2 − 𝑏2)                         (11) 

                               sin(𝛼𝑏𝑖 − 𝛼𝑡𝑖) =
𝑏

𝑥 𝐻
                          (12)  

      Let 𝐾 = 𝐼𝑥𝑥/𝐼𝑧𝑧  and 𝑄 =  𝐼𝑥𝑥/𝑚𝑝 , hence 𝐾  and 𝑄 

(payloads’ properties) are known. To satisfying 𝜆4 = 𝜆5 , 

𝐼𝑥𝑥 = 𝐼𝑦𝑦  remains a necessary condition and is practically 

valid for symmetrical payloads. Using the condition 𝜆4 =
𝜆5 = 𝜆6, 𝜇11 = 0 and (5), on simplification, we get 

𝑅𝑡𝑜 = √
1

𝑛1𝑎2 {
2𝑛2

2𝐾𝑏2

𝐻2𝑎2 (
𝑎2

𝑛2
+

1

𝑛1
 ) (𝑥2𝐻2 − 𝑏2) − 𝑛2𝑥2𝐻2} 

(13)  

         Using the condition 𝜆1 = 𝜆2 = 𝜆3 , 𝜇12 = 0, and (5)  , 

we get 

    𝑅𝑏𝑜 = √
1

𝑛1𝑎2
{𝑛1𝑎2𝑅𝑡𝑜

2 + 𝑛2𝑏2 + 2𝐻2(𝑛1𝑎2 + 𝑛2)}   (14) 

         From the condition of 𝜇11 = 0, and using (5), we get 

                   sin(𝛼𝑡𝑜) =
𝑛2𝑅𝑏𝑖𝑅𝑡𝑖 sin((𝛼𝑏𝑖−𝛼𝑡𝑖))

𝑛1𝑎2𝑅𝑏𝑜𝑅𝑡𝑜
               (15)                              



      Using the expressions for the variables obtained and the 

trigonometry identity sin2(ϴ) + cos2(ϴ) = 1  in 𝜇11 = 0,
𝜇12 = 0, and on simplification, we get 

     𝑥 = √
𝐾 (

𝑎2(2𝑛1−𝑛2)+3𝑛2
(𝑛1+𝑛2)

) (
(𝑛1(3𝑎2−1)+2𝑛2)

(𝑛1+𝑛2)
)

2

 

𝐾 (
𝑎2(2𝑛1−𝑛2)+3𝑛2

(𝑛1+𝑛2)
)(

(𝑛1(3𝑎2−1)+2𝑛2)

(𝑛1+𝑛2)
)

 

−𝑎2
     (16) 

     Using 𝜆3 = 𝜆4  and on simplification, we obtain the 

expression for 𝐻 in its explicit form as 

𝐻 = √
𝑄𝑛1(𝐾 (

𝑎2(2𝑛1−𝑛2)+3𝑛2
(𝑛1+𝑛2)

)(
(𝑛1(3𝑎2−1)+2𝑛2)

(𝑛1+𝑛2)
)

 

−𝑎2)

{𝐾𝑛2(
(𝑛1(3𝑎2−1)+2𝑛2)

(𝑛1+𝑛2)
)

2

} 

        

                                                                                         (17) 

     The design procedure for any ⟨𝑛1, 𝑛2⟩ dynamically 

isotropic MGSP with a given payload (𝐾  and 𝑄 ) can be 

summarized as: 

• Select desired 𝐻 from (17) with input as ratio 𝑎.  

• Obtain 𝑥 from (16) using the same 𝑎 as above. 

• Using (7), 𝑏 can be obtained with known values of 

𝐻 and 𝑎. 

• 𝐻, 𝑎, 𝑥, and 𝑏 can be substituted to find 𝑅𝑡𝑖,  𝑅𝑏𝑖 ,
(𝛼𝑏𝑖 − 𝛼𝑡𝑖),  𝑅𝑡𝑜,  𝑅𝑏𝑜, 𝛼𝑡𝑜  in the respective order 

using (10), (11), (12), (13), (14), (15) respectively. 

      Note that by the above back substitutions, all the 

parameters can be directly expressed in a more 

straightforward implicit form with only 𝑎  as an input, 

similar to the above steps and is not shown. For example, 

𝑅𝑡𝑖 from (10) can be expressed as:       

                  𝑅𝑡𝑖 =   
𝑄𝑛1

𝑛2
(

𝑎2(2𝑛1−𝑛2)+3𝑛2

(𝑛1+𝑛2)
)                  (18) 

V. RESULTS AND OBSERVATIONS 

A. Class of MGSP with 𝑛1 = 𝑛2 

       A very interesting observation that can be made for a 
class of MGSP with 𝑛1 = 𝑛2  (equal numbers of struts in 
both the set ⟨3, 3⟩, ⟨4, 4⟩, ⟨5, 5⟩ ) is that all the geometric 
parameters remain invariant with 𝑛1 or 𝑛2. It is evident from 
the closed-form expressions for 𝑥, 𝐻, and 𝑅𝑡𝑖  in (16), (17), 
and (18) which remains the same for this class. Hence an 
MGSP with 𝑛1 = 𝑛2  will have all parameters the same 
except the rotation angle of struts’ anchoring points 𝜃1and 
𝜃2. A 6-6 MGSP ⟨3, 3⟩ (𝑛1 = 𝑛2) is also included here.  

     Fig. 5 (a) and 5 (b) show the plot for different parameters 
for an MGSP with 𝑛1 = 𝑛2 for a typical payload. At smaller 
values of 𝑎, 𝑅𝑏𝑜 is larger making 𝑙1 larger and justifying the 
smaller value of 𝑎 (𝑙2/𝑙1). Similarly, for a higher value of 𝑎, 
𝑅𝑡𝑖 is greater making 𝑙2 larger.  

      If 𝑛1 ≠ 𝑛2 , the MGSPs will have different values of 
parameters depending on n1 and n2.  Fig. 6 (a) and 6 (b) 
show plot for one such ⟨3, 4⟩ MGSP.    

 
Fig. 5.  a) Variation of length parameters for an MGSP where 𝑛1 = 𝑛2 , b) 
Variation of angles for an MGSP where 𝑛1 = 𝑛2. 

 
Fig. 6.  a) Variation of length parameters for ⟨3, 4⟩ MGSP (𝑛1 ≠ 𝑛2), b) 
Variation of angles for ⟨3, 4⟩ MGSP (𝑛1 ≠ 𝑛2). 

B. Concept of a transition point (𝑎∗)  

     An interesting observation from the Fig. 5 (a) can be seen 

at 𝑎=1, that 𝑅𝑡𝑜 = 𝑅𝑡𝑖 or the two radii on the top platform 

converges into a single radius. For the case of MGSP with 

𝑛1 = 𝑛2, this always occurs at 𝑎=1, i.e., when the length of 

both set of struts become equal. Hence, a class of MGSP 

with all struts equal (𝑎=1), and same number of struts in 

each set  (𝑛1 = 𝑛2), will have 𝑅𝑡𝑜 = 𝑅𝑡𝑖.This points is also 

a point of configuration transition ( 𝑎∗)  for an MGSP 

because: 

• At 𝑎 <(𝑎∗), MGSP will have outer to outer radius 

connections and inner to inner radius connections. 



 
Fig. 7.  Configuration transition for ⟨3, 3⟩ MGSP with 𝑛1 = 𝑛2 (with their 
top view). 

• At 𝑎 =(𝑎∗), MGSP will have 𝑅𝑡𝑜 = 𝑅𝑡𝑖. 

• At 𝑎 >(𝑎∗), MGSP will have outer to inner radius 

connections (cross leg type). 

        This phenomenon can be visualized from Fig. 7. Using 
the closed form expression for 𝑅𝑡𝑜 = 𝑅𝑡𝑖, the expression for 
(𝑎∗) can be obtained as: 

                           𝑎∗ = √
𝑛2(2𝑛2−𝑛1)

𝑛1(2𝑛1−𝑛2)
                            (19) 

        Interestingly 𝑎∗ is independent of the payload properties 
and is always one for MGSP of type 𝑛1 = 𝑛2. However, it 
will hold different values for the case when 𝑛1 ≠ 𝑛2 which is 
evident from plot Fig. 6 (a) for ⟨3, 4⟩ MGSP, where 𝑅𝑡𝑜 =
𝑅𝑡𝑖  is at 𝑎  = 𝑎∗ =1.825. The phenomenon of configuration 
transition for a ⟨3, 4⟩ MGSP is given by Fig. 8. 

        Contrary to this, the value of radius 𝑅𝑡𝑜 or 𝑅𝑡𝑖 at 𝑎∗ is 
dependent only on payload properties. From (18) or (19), the 
value of this radius is: 

𝑅𝑡𝑜 = 𝑅𝑡𝑖 = √2𝑄 

C. General solution for any ⟨𝑛1, 𝑛2⟩ MGSP 

         Once all the geometric parameters for an MGSP 

corresponding to the tangency condition ( 𝑎 = 𝑎𝑜 ) are 

known, we can fix our virtual circle as shown in Fig. 3 and 

given by (8). Fixing this circle means keeping the radius 𝑏 

from (7) and offset (𝑅𝑡𝑖 , 0) from (18) the same as before 

(𝑎 = 𝑎𝑜 ). The basic idea is to find all other intersections 

(𝑞1, 𝑞2, 𝑞3 …) of line 𝑅𝑏𝑖  with the fixed virtual circle for a 

general slope 𝑚 . With 𝑅𝑡𝑖  and 𝑏  the same, all other 

parameters including 𝑎  are varied to obtain these 

intersections at any general slope 𝑚, which reveals that the 

condition of tangency is the only solution. This is evident 

from Fig. 9 where the error (𝑙2 − 𝑎𝑙1)  is zero only at single 

𝑎 value (𝑖. 𝑒.  𝑎𝑜 ) for which the circle was fixed initially. 

Three cases for 𝑎𝑜  (0.5, 1.0, 2.0) nullify error only at 𝑎 = 

0.5, 1.0, 2.0, respectively. Multiple solution for an MGSP, 

as discussed before is obtained from the tangency condition 

for different circles/ different 𝑎𝑜  values. Hence, our 

geometry-based approach effectively provides a complete 

set of solutions. 

 

  
Fig. 8.  Configuration transition for ⟨3, 4⟩ MGSP (𝑛1 ≠ 𝑛2) (with their top 
view). 

 
Fig. 9. error (𝑙2 − 𝑎𝑙1) for ⟨3, 3⟩ MGSP at different 𝑎𝑜 values.  

D. Natural frequencies for any ⟨𝑛1, 𝑛2⟩ MGSP 

        For dynamic isotropy, all the natural frequencies 𝜔 

(square root of the eigenvalues of [𝐆]) must be equal, i.e., 

 𝜆1 = 𝜆2 = 𝜆3 = 𝜆4 = 𝜆5 = 𝜆6 = ω2  and can be written in 

closed-form after substituting the values of unknown 

parameters as 

                            𝜔 = √
𝑘(𝑛1+𝑛2)

3𝑚𝑝
                                (20) 

        The translational natural frequencies correspond to 

 𝜆1,  𝜆2, and 𝜆3  and the rotational natural frequencies 

correspond to  𝜆4, 𝜆5, and 𝜆6. 

     

Fig. 10. Natural frequency corresponding to an MGSP.  
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TABLE I.  COMPARISION OF RESULTS OBAINTED USING FE AND 

CLOSED-FORM. 

MGSP Strut 

Configuration  

 Natural frequencies 

(Hz) 

DII 

{3,3} FE 31.678, 31.703, 31.707, 

31.810, 31.813, 31.845 

1.005 

Closed 

form 

31.83, 31.83, 31.83, 

31.83, 31.83, 31.83 

1.00 

{4,3} FE 34.218, 34.236, 34.247, 
34.359, 34.366, 34.388 

1.005 

Closed 
form 

34.38, 34.38, 34.38, 
34.38, 34.38, 34.38 

1.00 

{4,4} FE 36.543, 36.564, 36.569, 
36.723, 36.741, 36.765 

1.006 

Closed 

form 

36.75, 36.75, 36.75, 

36.75, 36.75, 36.75 

1.00 

 
       The natural frequency is dependent on the total number 
of structs (𝑛1 + 𝑛2) . Hence, any ⟨𝑛1, 𝑛2⟩  dynamically 
isotropic MGSP with more structs will have a larger value 
of natural frequency as seen in Fig. 10 for a typical payload 
with 𝑚𝑝 = 5  Kg, and 𝑘 = 105 N/m. A ⟨3, 4⟩ MGSP and 

⟨4, 3⟩ MGSP will have the same natural frequencies despite 
all geometric parameters being different. Interestingly all 
⟨𝑛1, 𝑛2⟩ dynamically isotropic MGSP with 𝑛1 = 𝑛2  have a 
different natural frequency with respect to each other despite 
having all geometric parameters being the same. The ⟨4, 4⟩, 
⟨3, 5⟩, ⟨5, 3⟩ MGSP will have the same natural frequencies 
pertaining to total eight number of struts.          

        A 6-6/ ⟨3, 3⟩ dynamically isotropic MGSP is found to 
have the least natural frequency among this class and hence, 
most suitable for vibration isolation purposes. This is 

because the region of isolation (√2𝜔) will also appear early 
in the transmissibility curve, providing more scope for the 
micro-vibration isolation. Another reason to justify usage of 
⟨3, 3⟩ MGSP over others can be the requirement of a smaller 
number of actuators. However, we may have to shift to a 
higher number of struts for heavier payloads, owing to 
limited load bearing capacities of actuators. 

VI. VALIDATION THROUGH ANSYS® 

       A rigid body model was built in ANSYS® with similar 

assumptions as in the analytical formulations with platforms 

treated as rigid bodies and struts as ideal springs. Simulation 

results for a ⟨3, 3⟩ , ⟨4, 4⟩  and ⟨3, 4⟩ dynamically isotropic 

MGSP are listed in Table I. The closed-form solutions and 

simulation results are obtained for a typical payload with 𝐾 

=3748/6343, 𝑄  = 5.089*10-3  𝑚2 ,  𝑚𝑝 = 5  Kg, and 𝑘= 105 

N/m. The same geometric parameters are used for ⟨3, 3⟩ and 
⟨4, 4⟩ (𝑛1 = 𝑛2) in simulations as obtained via closed-form. 

We obtained the dynamic isotropic index (DII), the ratio of 

the largest to the smallest natural frequency (DII should 

ideally be one or close to one), and the DII obtained from 

the simulation for all the MGSP closely matches our closed-

form solution. This validates our closed-form analytical 

approach.  

VII. CONCLUSION 

       This paper deals with the design of a class of 

dynamically isotropic MGSP. Previous researchers have 

mostly confined to two radii 6-6 MGSP. This work extends 

MGSP with arbitrary number of struts, and using a novel 

geometry-based approach, a complete closed-form solution 

in an explicit form is developed. The tangency condition for 

the virtual circle was found to yield a complete set of 

solutions. A new concept of a configuration transition point 

is discussed in detail. A 6-6 or ⟨3, 3⟩ MGSP is found most 

suitable for micro-vibration isolation among all other 

MGSPs due to its lowest natural frequency. The closed-form 

results for various MGSP or two-radii GSPs are successfully 

validated via simulation using an FE software. Our current 

work includes extending this study to account for centre of 

mass variation. The scope for future work consists of the 

incorporation of damping and active controls.   

REFERENCES 

[1] R. B. A. Shyam, N. Ahmad, R. Ranganath, and A. Ghosal, “Design of 
a dynamically isotropic Stewart-Gough platform for passive micro 
vibration isolation in spacecraft using optimization,” Journal of 
Spacecraft Technology, vol. 30, no. 2, pp. 1-8, December 2019. 

[2] Z. Tong, J. He, H. Jiang, and G Duan, “Optimal design of a class of 
generalized symmetric Gough–Stewart parallel manipulators with 
dynamic isotropy and singularity-free workspace,” Robotica, vol. 30, 
no. 2, pp. 305–314, 2012. 

[3] H. Yun, L. Liu, Q. Li, W. Li, and L. Tang, “Development of an 
isotropic Stewart platform for telescope secondary mirror,” 
Mechanical Systems and Signal Processing, vol. 127, pp. 328–344, 
2019. 

[4] J. Hong-zhou, T. Zhi-zhong, and H. Jing-feng, “Dynamic isotropic 
design of a class of Gough–Stewart parallel manipulators lying on a 
circular hyperboloid of one sheet,” Mechanism and Machine Theory, 
vol. 46, no. 3 , pp. 358–374, 2011. 

[5] J. Yao, Y. Hou, H. Wang, T. Zhou, and Y. Zhao, “Spatially isotropic 
configuration of Stewart platform-based force sensor,” Mechanism 
and Machine Theory , vol. 46, no. 3, pp. 142–155, 2011. 

[6] Z. Tong, C. Gosselin, and H. Jiang, “Dynamic decoupling analysis 
and experiment based on a class of modified Gough-Stewart parallel 
manipulators with line orthogonality,” Mechanism and Machine 
Theory, vol. 143, pp. 1-18 , 2020. 

[7] H. Z. Jiang, J. F. He, Z. Z. Tong, and W. Wang, “Dynamic isotropic 
design for modified Gough–Stewart platforms lying on a pair of 
circular hyperboloids,” Mechanism and Machine Theory, vol. 46, no. 
9, pp. 1301–1315, 2011. 

[8] Y. Yi, J.E. McInroy, and F. Jafari, “Generating classes of locally 
orthogonal Gough–Stewart platforms,” IEEE Transactions on 
Robotics, vol. 21, no. 5, pp. 812-820, October 2005. 

[9] A. Ghosal, “Robotics: Fundamental Concepts and Analysis,” 
Oxford University Press, February 2006. 

[10] A. A. Hanieh, “Active isolation and damping of vibrations via 
Stewart platform,” ULB Active Structures Laboratory, pp. 62-66 , 
2003. 

 

 

 
 

 

 

 

 

 


