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Abstract

We present a conceptual discussion of a
numerical method to simulate the penetra-
tion of a ballistic gel by a projectile. The
method draws on the computational advan-
tages presented by asynchronous variational
integrators (AVIs) and an immersed bound-
ary method to result in an easily paral-
lelizable, efficient and adaptive algorithm.
The paper focuses on the algorithmic ideas
involved– at the expense of details and a sim-
plified model.

1 Introduction

In this paper, we discuss some ideas we have
for simulating the mechanics of penetration in
a soft-tissue simulant. Such simulations are
of immediate interest in evaluating firearms
and bullets (see fig. 1) and in modelling the
complex wounding process. Parameters such
as the depth of penetration of a projectile,
its trajectory or the extent of the resulting
wound in the ballistic gel(tissue simulant) can
be estimated to aid in optimizing armor ma-
terials and designs.

The numerical algorithm that we propose
consists in adopting a finite element dis-
cretization of the gel, with an explicit asyn-
chronous time stepping for the elements, a
contact algorithm to handle the impact of the

Figure 1: Snapshot of a cavity
left in a ballistic gel by a bullet.
Source:http://www.naaminis.com/pix/25gel02.jpg

projectile and an adaptive remeshing tech-
nique. AVIs enable each element in the finite
element mesh to be advanced independently
(in time) with a time step befitting the local
dynamics. As a result, small time steps can
be adopted for elements close to the zone of
impact or in regions of high stresses to resolve
events occurring at small time scales.

The quality of the mesh used for the gel de-
teriorates as the projectile penetrates– a re-
sult of elements with large strains and poor
aspect ratios. It is therefore necessary to
adopt a fresh discretization for the gel. This
is achieved with an adaptive remeshing al-
gorithm based on an immersed boundary
method– the boundary of the deformed gel
is immersed in a simple discretization from
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which a new mesh for the gel, adapted to
suit the local dynamics, is extracted. The
displacement and velocity fields are used to
dictate the element sizes in the new mesh.
These fields are transferred to the new mesh
and the simulation is set up to continue.

While discussing these new ideas and eval-
uating them using simple examples, we make
a number of simplifying assumptions. While
we will highlight them in the sections that
follow, the most prominent among them is
that we model the phenomenon as an im-
pact of a rigid projectile on an elastic gel.
Penetration is an extremely complex phys-
ical phenomenon heavily dependent on the
materials involved in testing. Experiments,
for instance firing high speed bullets at steel
plates of different thicknesses (see [2]), reveal
large deformations, high strain rates, plastic
flow, fracture, temperature changes as well
as micro-structural alterations such as forma-
tion of shear bands. It is not hard to imagine
a transfer of mass (besides momentum) from
the projectile to the target or even adhesion.

Utility of numerical simulations such as
ours depends on how much of such physics
we can model. But there are significant nu-
merical challenges to be overcome. Identi-
fying surfaces of contact, avoiding interpen-
etration of colliding bodies or handling ge-
ometries with sharp corners is still a cumber-
some task in many state-of-the-art contact al-
gorithms. There is still some way to go be-
fore numerics start yielding insight about the
phenomenon or answering specific questions-
such as the influence of surface roughness in
such problems. In this respect, this article
should be viewed as a progress report based
on exciting ideas we have to address some
of the computational issues arising in simu-
lations of penetration.

In the following sections, we discuss the
numerical algorithms we adopt to simulate
a simplified penetration problem– an asyn-
chronous variational time integrator, a con-

(a) Snapshot of a simulation of the impact
of an ‘L’ shaped beam against a rigid wall
(not shown) using AVI and the contact algo-
rithm described next. Elements are colored
according to the time step adopted, with blue
representing an order of magnitude smaller
than red. The computational efficiency of
AVIs enables the resolution of high frequency
modes seen in such problems
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(b) Energy conservation characteristics of AVIs
demonstrated in the impact problem. The energy
is conserved nearly exactly, as the inset shows,
with only a minor drop in value through impact,
which can be regulated through the selection of
the time step for the elements in contact.

Figure 2: AVI with contact for dynamics simu-
lations.
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(a) An idealization of the proposed contact algo-
rithm. The contact constraint is given by the con-
dition g ≤ 0. When contact occurs (g = 0) with
the rigid projectile, the normal component of the
momentum of the gel is reversed while keeping the
tangential component unaltered.
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(b) Interpenetration is permitted in this algorithm.
Even though contact may be detected after the gel
has penetrated the projectile, this can be made neg-
ligible by adopting small time steps for elements
close to the contact region.

Figure 3: Illustration of the contact algorithm.

tact algorithm and an adaptive remeshing
strategy. We will focus on the main ideas
rather delving into specifics, which can be
found in the references provided.

2 Asynchronous Varia-

tional Time-Integrators

AVI possesses two properties most desirable
in dynamic simulations,

• being variational, it has outstanding mo-
mentum and energy conservation prop-
erties, and

• being asynchronous, it has the distin-
guishing feature of permitting an inde-
pendent selection of time steps for each
element in a mesh.

Fig.2 shows a snapshot of the simulation of
the impact of an ‘L’ shaped beam against a
rigid wall using AVI and the almost exact en-
ergy conservation of the system.

With traditional time integrators, the time
step for the entire mesh is dictated by the

minimum over the range of stable time steps
for elements in the mesh. This can be partic-
ularly hindering in high velocity contact sim-
ulations. Local stiffening of the material and
adaptively refined meshes can cripple long-
time simulations. With AVI, each element’s
time step need only satisfy its own stabil-
ity criterion, dependent on the local sound
speed, material velocity and element size,
rather than the most stringent one for the
mesh. See [6] for a detailed derivation and
analysis of the algorithm and [3] for imple-
mentation details.

3 Contact Algorithm

Next, we discuss a contact algorithm formu-
lated to handle the impact of the projectile
on the gel. The projectile is approximated as
a rigid body and the gel as a soft hyperelas-
tic material. The rigid body approximation
is adopted mainly for the significant algorith-
mic simplifications it yields, though this can
be loosely justified by the contrast in proper-
ties of the projectile and the gel.
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(a) Partition of the domain for parallel pro-
cessing.

(b) An elastic (Neohookean) block impacted by
a rigid sphere.

(c) A slice through the center of the block show-
ing the large deformation. The color contours
correspond to the magnitude of velocity, de-
creasing in magnitude from blue to red.

Figure 4: A snapshot of the impact of a rigid
sphere on an elastic block modeled using the con-
tact algorithm described.

Traditionally, contact has been modeled as
a constrained optimization problem in which
an energy functional is rendered stationary
subject to the constraint of no interpene-
tration. In the context of the current (dis-
cretized) problem, such a constraint can be
expressed in the form g(x) ≤ 0, where x rep-
resents the set of nodal positions of the gel
and g is a function that is strictly positive
in the interior of the projectile, zero on its
boundary and strictly negative in the exte-
rior. Note that g is implicitly a function of
time as well via the positions of the projectile
and the gel.

With this description, collision occurs
when g(x) = C ≥ 0. Upon detecting a col-
lision (at the end of a time step of some el-
ement), the component of the momentum of
the gel normal to the surface g(x) = C is
reversed while leaving the tangential compo-
nent unchanged, see fig. 3. Note that no pro-
jection onto the boundary g(x) = 0 is per-
formed to remove any penetration that has
occurred, although this is one possibility. In
this way, the gel effectively sees the contact
“wall” wherever it falls at the end of a time
step, instead of at a fixed location. An unde-
sirable consequence of permitting such inter-
penetration is the dissipation of energy. How-
ever, the time steps for elements approach-
ing contact with the projectile can be taken
to be very small (leaving the time steps else-
where unaltered) so that interpenetration and
consequently the energy loss is small. The
almost exact energy conservation in the ex-
ample of the L-shaped beam shown above
demonstrates precisely this. Another exam-
ple of a rigid sphere impacting a block is
shown in fig. 4.

In comparison with the above algorithm,
an approach of computing the exact time of
contact for each node close to the projec-
tile would prove prohibitively expensive. A
penalty approach is commonly used to min-
imize interpenetration, whereby the poten-
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tial in the (interior of the) projectile is made
large, approaching that of a rigid body, so
that it is energetically unfavorable for the
gel to cross the boundary of the projectile.
While this has the advantage that an inequal-
ity constraint need not be explicitly handled,
determining how stiff the penalty potential
should be while maintaining accuracy and
avoiding ill-conditioning issues is often non
trivial. Likewise, Lagrange multipliers have
also been used to impose the contact con-
straint at the cost of adding to the number
of unknowns in the system, and making it
implicit. A comprehensive review of contact
algorithms can be found in [9, 10].

4 A Preliminary Penetra-

tion Algorithm With

Adaptive Remeshing

In principle, the explicit time integration and
contact algorithms are sufficient to simulate
the long-term behavior of the dynamic sys-
tem under consideration. However, as the
simulation progresses, elements in the gel get
significantly deformed resulting in poor as-
pect ratios, as shown in fig. 5. This neces-
sitates a smaller time step to ensure the sta-
bility of the integrator and finally results in
an unfeasible time step. The remedy lies in
adopting a better discretization for the cur-
rent configuration. This is precisely what we
discuss next with the aid of a 2D example.
Most of the ideas can be extended to the 3D
case in a straightforward manner.

The adaptive remeshing algorithm broadly
consists of the following steps:

(a) determining when the quality of the
mesh of the gel has deteriorated enough
to warrant a new discretization,

(b) computing an indicator of how fine the
mesh need locally be to represent all cur-

(a) Mesh undergoing large deformation.

(b) Close-up view of the elements in the region
of contact.

Figure 5: A 2D example of a rigid ball impacting
a square in which poorly shaped elements result
from large deformations of the gel impacted by a
rigid ball. This renders explicit time integration
algorithms unstable unless extremely small time
steps are used.

rent velocity, strain stress and displace-
ment fields,

(c) creating a new mesh for the current con-
figuration of the mesh with element sizes
roughly as specified by the indicator and

(d) transferring fields (such as displacements
and velocities) via interpolation to ones
on the new mesh.

No doubt, each of the above steps is a dif-
ficult question and there have been numer-
ous solutions proposed, each tailored to suit
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(a) We adopt an ad-hoc local
refinement indicator based on
identifying regions of high cur-
vature in the displacement or
velocity fields. Shown here is
the curvature (in degrees) for
the vertical component of the
piecewise linear velocity field.
Note that change in angles can
be as large as 90◦.

(b) The remeshing strategy
involves the construction of
a quadtree over a square do-
main encompassing the gel.

(c) A Delaunay triangulation is
built over the convex hull of the
centers of the quadtree nodes.
Note that this triangulation is
sufficiently refined in regions
where the indicator is large in
the domain of the gel.

(d) The gel is considered to be
immersed in the triangulation
of the square. To extract a
mesh for the gel, the linear in-
terpolant of the signed distance
function to the boundary of the
gel is computed over all nodes
of the triangulation.

(e) A discretization for
the gel is determined by
trimming (and subdividing
quadrilateral cuts) elements
with the zero level-set of the
linearized signed distance
function.

(f) Displacement and velocity
fields are transferred to the new
mesh via interpolation. Shown
here is the vertical component
of the velocity field

Figure 6: Pictorial description of the adaptive remeshing algorithm. The distinguishing feature of
this algorithm is its simplicity– it avoids many of the cumbersome operations (like edge flipping,
mesh smoothing) commonly associated with meshing. It extends to 3D in a rather straightforward
manner and can be automated quite easily.
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Figure 7: Deformation of a square block, impacted by a circular ball, computed using the remeshing
strategy described. The block was remeshed four times (after fixed intervals) without considering
adaptivity. Shown also are the contours of the vertical component of the velocity.

a particular application. Shown in fig. 6 is a
pictorial description of the adaptive remesh-
ing algorithm that we propose. The highlight
is the remeshing strategy that draws from
a discontinuous Galerkin based immersed
boundary method [5, 8] we recently formu-
lated for solid mechanics. The idea is to
immerse the boundary of the domain to be
meshed (the gel in this case) in a simple dis-
cretization and extract a mesh that approxi-
mately fits the boundary. In this way, espe-
cially in 3D, the difficulties associated with
automatic mesh generation are quite easily
overcome. The rationale behind permitting
an approximate mesh is that it would be fu-
tile to attempt a perfectly conforming dis-
cretization considering the numerical approx-
imations involved and that the geometries
are already only approximately represented.
Moreover, the approximations in the domain
are very small- decreasing quadratically with
the new mesh size along the boundary of the
gel. It is important to note that even though
with this approach elements near the bound-
ary are often smaller than those in the inte-
rior, thanks to AVI, they run with their own
time step, without affecting the overall time
step of the system.

The simulations shown above and in fig. 7
are only preliminary ideas. These have to still
be refined and precisely analyzed to enhance

the robustness of the procedure, the Achilles
heel of every existing such approach.

5 Summary

Penetration problems are of great practical as
well as academic interest, playing host to a
whole range of physical phenomena. Numer-
ical methods are a key tool to understanding
the underlying physics. But there are signif-
icant challenges to be overcome to gain real-
istic insights (rather than being misled by al-
gorithmic artifacts). The numerical method
presented here is a step in this direction. Be-
sides its computational efficiency and capabil-
ity to simulate long-term dynamics, we also
try to thoroughly understand the approxima-
tions involved. With the (afore mentioned)
numerical tools, modern computational re-
sources and more realistic models of the pene-
tration phenomenon, simulations such as ours
can be expected to reveal exciting details.
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